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Abstract 

 

Drug delivery to the central nervous system (CNS) has been a major challenge for CNS tumors due to the 

impermeability of the blood brain barrier (BBB). There have been a multitude of techniques aimed at 

overcoming the BBB obstacle aimed at utilizing natural transport mechanisms or bypassing the BBB 

which we review here. Another approach that has generated recent interest in the recently published 

literature is to use new technologies (Laser Interstitial Thermal Therapy, LITT; or Low Intensity Focused 

Ultrasound, LIFU) to temporarily increase BBB permeability. This review overviews the advantages, 

disadvantages, and major advances of each method. LIFU has been a major area of research to allow for 

chemotherapeutics to cross the BBB which has a particular emphasis in this review. While most of the 

advances remain in animal studies, there are an increasing number of translational clinical trials which 

will have results in the next few years. 

Keywords : Low intensity focused ultrasound, blood-brain barrier, neuro-oncology, drug delivery, MRI-

guided focused ultrasound 
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Introduction 

 

 Despite decades of advances in understanding the genetics and biology of primary malignant 

brain tumors, there has been little success in improving the patient survival via conventional routes of 

therapeutic delivery (e.g., oral, intravenous formulations).1 One of the key challenges in the delivery of 

therapeutics to the central nervous system (CNS) is the presence of the blood-brain-barrier (BBB) and 

blood-cerebrospinal fluid-barrier.1, 2  It has been estimated that these barriers prevent more than 98% of 

potential neurotherapeutics from reaching the CNS, and consequently much effort has been devoted to 

finding ways to either change the physical/chemical properties of drugs to make them more brain 

penetrant, directly deliver therapeutics into the brain or make the BBB more permeable to existing 

therapeutics.1-5  This review will focus on some of the more recent methods to open the BBB to 

systemically delivered therapeutics or bypass it for direct delivery of therapeutics to brain tissue (Figure 

1) and the current state of the research in each modality (Table 1).   

 

Blood-Brain-Barrier 

 

Anatomically the BBB consists of cerebral endothelial cells, pericytes, astrocytes, and basement 

membrane.6 These cells are non-fenestrated and linked by tight junctions to highly regulate molecular 

transport. The tight junctions have been a primary hurdle for disruption of the BBB.7 An intact BBB 

limits entry of 98% of small molecule drugs and often near 100% of large molecule drugs.1, 2 Trauma, 

inflammation, and tumors can disrupt the integrity of the BBB; therefore, in patients with cancer, it is 

referred to as the blood-brain tumor barrier (BBTB) which is a more heterogenous category.4 The tenets 

of these naturally occurring BBB breakdown have been exploited to treat central nervous system (CNS) 

cancer. Gliomas, however, have a varying degree of BBB breakdown with many having anatomically 

intact (non-contrast enhancing) regions that do not allow CNS penetration of chemotherapeutics.8  Even if 

a drug is able to permeate contrast enhancing tumor tissue, it is unlikely to reach the diffuse tumor cells 

that rest behind the intact BBB. 

 There are three major mechanisms that allow for drug molecules to cross the BBB: (1) increasing 

BBB permeability, (2) bypassing the BBB via direct brain delivery and (3) utilizing natural transport 

mechanisms (Figure 1). Many have postulated the ideal properties for a drug to cross the BBB including 

small molecular weight <500 g/mol, lipid soluble, electrically neutral, and weak bases.3 Altering 

chemotherapeutic agents or packaging them into BBB-permeable means has been one approach to 

overcoming the BBB problem, often with nanoparticles used in conjunction with another means of BBB 

disruption.9, 10  Other approaches have involved the use of targeted pharmacological agents or high-

osmolarity infusions to transiently open the BBB,11 but more recently there has been an emphasis on 

increasing BBB permeability via the application of other technologies used primarily to create lesions in 

the brain.  Specifically, these technologies are low intensity focused ultrasound (LIFU) and laser 

interstitial thermal therapy (LITT). These two procedures are unique in their use of MR thermometry to 

protect eloquent areas of the brain while creating BBB breakdown in a targeted manner (Figure 2). This 

review summarizes what is known about the use of these new modalities to overcome the BBB in treating 

CNS tumors. 
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TRANSPORT-MEDIATED SYSTEMS TO ENABLE BBB PENETRATION 

 

 Utilization of endogenous transport mediated systems has emerged as an active area of pre-

clinical research.12 These efforts exploit native cellular biology using novel techniques such as genetically 

modified ligands on the surface of drug-loaded nanoparticles or antibodies with specific receptors 

expressed on brain endothelial cells.13 Each of the three transcytosis methods discussed here are provided 

in brief as they are currently largely limited to animal models and have a very broad field of research that 

is too extensive to be included in this overview. 

 

Receptor-mediated transcytosis (RMT) 

 

Amongst transport-mediated systems, receptor-mediated transcytosis (RMT) is currently the most 

utilized mechanism in research for CNS penetration. RMT is a naturally occurring process where 

macromolecules bind to receptors that initiates uptake across the BBB.14 There are a multitude of research 

paradigms in this field; for example, one approach uses murine 83-14 monoclonal antibodies to human 

insulin receptors. 15, 16 In a primate model, humanized insulin receptor monoclonal antibodies were 

rapidly taken up in the Rhesus monkey brain via a receptor-mediated transcytosis pathway and proposed 

for human trials.17 Similar efforts are ongoing with many animal model publications utilizing a variety of 

receptor targets often including transferrin and low-density lipoprotein receptor-related protein in addition 

to insulin. 18, 19 Angiopep2 is a specific oligopeptide that utilizes a low-density lipoprotein receptor-related 

protein 1 and the RMT process that has demonstrated advancements in CNS drug delivery across many 

applications including stroke, epilepsy, tumor, brain injury, and neurodegenerative diseases.20, 21 While 

receptor-mediated transcytosis deserves a larger and more extensive review, it’s applicability has just 

recently reached clinical trials which are hopeful to show results in the next decade. The historical use of 

RMT for non-neurological indications has allowed for a fast growth of RMT research in CNS tumor 

therapy through BBB penetration as well as in non-tumor applications of BBB disruption.14, 22, 23 The use 

of target transport vehicles such as transferrin receptors have been a promising focus with multiple 

clinical trials that have been approved by the United States Food and Drug Administration (FDA) for 

other indications beyond BBB penetration.22-26 

 

Adsorptive-mediated transcytosis (AMT) 

 

Adsorptive-mediated transcytosis (AMT) acts to circumvent the BBB by utilizing the electrostatic 

interactions to facilitate transcytosis between the naturally negatively charged luminal and abluminal 

membrane surfaces of the BBB and positively charged proteins.27 The idea emerged from studying 

polycationic proteins such as protamine which can bind to endothelial cells and subsequently penetrate 

the BBB. This was then explored with many other substrates including histone, avidin, several 

agglutinins, monoclonal antibodies, and many basic peptides.28 This mode of transport across the BBB is 

generally considered unidirectional, and is mediated by clathrin-dependent endocytosis.29 
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Most investigations into AMT have also been preclinical, using either animal models or in vitro 

studies of live human cells. One mode of drug delivery using AMT involves conjugating a target drug to a 

cationized molecule. Popular options include the polysaccharide chitosan and albumin.30 Albumin is 

particularly promising because albumin-binding proteins and potential transporters have shown increased 

expression in glioblastoma.31 Specifically, in an in vitro study of animal brain endothelial cells, 

doxorubicin conjugated to a carrier and cationized albumin had a 10 times higher permeation than plain 

doxorubicin, and a 1.5 times higher penetration when compared with the same formulation without the 

cationized albumin.32 

In addition to conjugation with a cationized ligand, a cationic polymeric core may be fashioned to 

act as a reported “Trojan horse” to deliver therapeutic agents. This mechanism may condense and protect 

nucleic acid from endosomes by taking advantage of their proton buffering capacity.33 In an in vitro and 

in vivo animal study, Park et al. showed successful and enhanced delivery of a rabies virus glycoprotein 

across the BBB in an evaluation of RNA therapeutics for Alzheimer’s disease.34 

AMT does have certain limitations. Low lipid solubility of the entire compound will hinder 

permeation across the BBB.35 There are also mixed concerns regarding cytotoxicity associated with 

cationic surfaces compared with neutral surfaces.36 However, at least one study found no difference in 

rate of cell membrane damage between normal and cationized albumin.37 The possible risk for 

cytotoxicity warrants further investigation. Meanwhile, the mechanism of electrostatic interaction that 

AMT relies on is nonspecific and may be susceptible to other reticuloendothelial systems such as those 

found in the liver or lungs.36 

Overall,  there is momentum in AMT research as a means for drug delivery across the BBB. 

While clinical trials have not yet produced extensive results, some studies have utilized a combination of 

therapies including AMT and nanoparticles, along with ultrasound mediated blood brain barrier 

disruption (see below), to increase drug penetrance in the CNS (e.g. NCT04528680).38, 39 Clear 

demonstrations of clinical efficacy are currently lacking and the next decade will determine whether this 

technique will translate to FDA-approved therapeutics. 

 

Solute carrier-mediated transcytosis 

 

Solute carrier-mediated transcytosis (SCMT) utilizes native nutrient transporters much like RMT. 

However, SCMT generally uses larger transmembrane carrier proteins and nutrient channels specific to a 

certain solute, allowing for active transport of the solute across the membrane using ATP hydrolysis. 

Examples of solute transporters and their respective solutes include glucose transporter type 1 (GLUT1) 

and glucose, monocarboxylate transporter 1 (MCT1) and monocarboxylic acid (eg. lactic acid) and large 

amino acid transporter 1 (LAT1) and large amino acids such as phenylalanine and its derivatives. This 

natural process can be used to facilitate drug delivery across the BBB by combining drugs and solutes or 

other natural analogs that mimic the solutes for which the transport channels have high affinity. 

Many SCMT conduit transporters have been extensively studied in preclinical and animal 

models.36 In particular, GLUT1 and LAT1 possess high enough transport capacity to be potential modes 

of clinically meaningful drug delivery across the BBB.40, 41 LAT1 is abundantly expressed in both the 

abluminal and luminal surfaces of the BBB and has a 100-fold higher expression level in capillary 

endothelial cells in the BBB than in peripheral tissues such as the retina, intestines, and placenta.41 LAT1 
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is also preferentially expressed in high grade glial tissue. Kobayashi et al. detected expression of LAT1 at 

high, moderate, or low levels in 75% of glioblastoma (grade IV astrocytoma) and anaplastic astrocytoma 

(grade III) but only at low levels in only one of three diffuse astrocytoma (grade II) and was also 

undetectable in three samples of nonneoplastic tissue.42  

Furthermore, SCMT is also invoked in the mechanism of action used by some common drugs, 

including L-DOPA, gabapentin, baclofen, and melphalan – all of which mimic the natural substrates of 

LAT1.43-46 However, despite the potential of SCMT for enhancing drug delivery across the BBB, clinical 

trials utilizing SCMT for chemotherapeutic drug delivery have yet to produce any meaningful results.36 

For all type of transcytosis, it is difficult to provide an exhaustive review here as many of the studies now 

involve multimodal treatment therapies and are often not clear in the type of transcytosis being utilized. 

While we have provided several representative cases, individual reviews are needed for each specific 

category. 

 

Nanoparticles 

 

 The BBB represents only part of the issue of CNS drug delivery as the drug can be limited to the 

extracellular space in a hydrophobic and electrostatically charged medium.47 Brain-penetrating 

nanoparticles (NPs) are coated in polyethylene-co-glycol (PEG) which has the advantage of superior 

stability in the bloodstream but has reduced exchange through the BBB, which makes it a great option in 

combination with low intensity focused ultrasound (LIFU) or convection enhanced delivery (CED), a 

form of direct brain delivery.47-49 Organic NP have been also explored from lipids which have higher 

biocompatibility and natural degradation processes.43 

Polymetric NPs have been a rising field of BBB access in which a therapeutic agent is encased in 

or bound to an NP for CNS penetration via adsorptive-mediated, receptor-mediated, or carrier-mediated 

pathways.6 These NPs have a wide array of compositions. Poly(alkyl cyanoacrylates) (PACA) NPs were 

some of the earliest, first developed in 1972, now with a known low toxicity and a good comprehension 

of its degradation by esterase, a process whose duration can be controlled by modifying the alkyl side 

chain length.6 Other copolymers are Poly(lactic-co-glycolic acid) (PLGA) and Poly-𝜖-caprolactone 

(PCL). PLGAs, PACAs and PCLs have been approved clinically in several different drug delivery 

systems and tested in animal models for CNS delivery but not yet completed phase III clinical trials for 

CNS delivery.6 Polyamidoamine dendrimers (PANAM)s are layered structures that can entrap drugs via 

hydrophobic cavities, usually smaller than 15 nm. Synthetic polymers have advantageous shape and size 

but can be restricting due to their cost and toxicity profiles. Thus, natural NPs have been explored 

including chitosan, a biodegradable cationic linear polysaccharide, and alginate, an anionic linear 

unbranched polysaccharide extracted from brown seaweed.6  

NP strategies for BBB-crossing have targeted specific size, shape, ligand-density, surface 

chemistry, and lipophilicity.10 For nanoparticles, the smaller sizes have been associated with higher BBB 

penetration but also with faster renal clearance for those smaller than 5 nm.50 Most nanoparticles range 

between 30-100 nm.10 Morphology varies significantly with some studies suggesting higher BBB 

penetration with rod shapes vs. sphere shape, but many studies hypothesizing higher penetration capacity 

with more complex shapes such as wires, wreaths, rings or plates.9 Surface alterations such as increased 

ligand density, particularly studied APO-E protein and coated particles, such as PEG and poly(lactic acid) 

coating have been shown to increase BBB penetration.10 
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NP advances have been diverse and extensive in the past decade. Much of the recent literature on 

crossing the BBB with NPs has been in conjunction with interventions to increase BBB permeability. 

Michael et al. and Kievit et al. both demonstrated multisystem interventions to improve drug delivery 

with CED, tumor targeting ligands, radiotherapy and immunotherapy.51, 52 There are many reviews on 

NPs alone. While we include mention of NPs here, an exhaustive review of NP role in achieving BBB 

penetration is beyond the scope of this review. 

 Similar to NPs, blood exosomes, naturally created vesicles from cells, have been utilized as a tool 

for delivering drugs. Zhan et al.53 demonstrated the delivery across the BBB of siRNA and metformin 

within exosomes preferentially accumulating in human derived GBM cells that expressed polymerase 1 

and transcript release factor. Exosome delivery is immunologically attractive over viral vectors as it has a 

low likelihood of triggering an immune response and do not cause any toxicities that can be seen with 

nanoparticles.2 This is a relatively new area for in vitro research that will likely be explored more 

extensively in the next couple years. 

 

INCREASING BBB PERMEABILITY 

 

Low Intensity Focused Ultrasound (LIFU) 

 

Magnetic resonance imaging guided focused ultrasound (MRgFUS) uses ultrasonications and MR 

thermography monitoring to cause tissue disruption through microimplosions, resulting in cavitations that 

disrupt tight junctions on the endothelial surface.54, 55 This mechanism of action has been known for 

decades and utilized in the treatment of tumors across the human body as well as a more recent 

application utilizing a high intensity form of ultrasound to create permanent intracranial lesions.55, 56 

High-intensity focused ultrasound (HIFU) is FDA-approved for thalamotomy for essential tremor 

utilizing 650-kHz that produces temperatures of 56°C that causes coagulative necrosis.57 While BBB 

breakdown has been demonstrated in HIFU since 1990, further refinements have discovered BBB 

breakdown without damage to adjacent neural tissue with lower frequencies.58 From these discoveries, 

further research in low intensity focused ultrasound (LIFU) led to a recognition that lower intensities are 

not ablative to neurological tissue but still are useful for creating BBB disruption.59 For some 

technologies that perform LIFU, the intensities are too low to produce cavitation-induced microbubbles; 

instead, the microbubbles must be provided, typically via IV injection.  Other technologies do not require 

the use of infused microbubbles (see below).   In either case, temporary BBB breakdown occurs by 

intravascular microbubble cavitation-induced tight junction disruption and the consequent paracellular 

transport that permits passage of molecules for ~ 4-8 hours.58, 60 However, the BBB mechanism of 

disruption is dependent on the intensity of the sonication and not yet fully understood.61 

Both LIFU and HIFU work by applying a silicone barrier to the head, sealing cooled gasless 

water in the transducer cavity; the head is often shaved to prevent thermal damage and hair interference. 

Sonications have predominantly been applied with passive cavitation detectors and MR thermometry to 

monitor response and prevent injury to adjacent structures, however several newer ultrasound delivery 

devices are utilizing neuronavigation without MR thermometry given the lower risk of neural injury with 

low intensity ultrasound.62-64 While HIFU has been applied in many human clinical trials predominantly 

for movement disorders, intracranial application of LIFU is just now being utilized in clinical trials.65, 66 
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 The clinical significance of LIFU for BBB disruption has been demonstrated in numerous animal 

models showing enhanced delivery of systemically administered agents to intracranial tumors including 

temozolomide, doxorubicin, paclitaxel, methotrexate, cisplatin, bevacizumab and carmustine for a range 

of tumors.34, 62, 67-75 In addition to chemotherapy agents, other agents including targeted therapies, 

immunotherapies and large molecules have been shown to have higher CNS concentrations after LIFU 

BBB.47, 76, 77 In these animal models, the BBB disruption occurs immediately and resolved within eight 

hours, while clinical studies suggest this BBB repair may occur within the first hour.62, 78 The true range 

of the BBB disruption may be patient- or pathology- specific and further studies to define the 

characteristics are still to be determined. 

While recognition of the effect of ultrasound on tissue disruption has been present for decades, 

the application of LIFU to produce BBB breakdown was first introduced by McDannold et. al in rabbits 

in 2006.79, 80 After further investigation of this approach in numerous small rodent models,81-86 Rezai et al. 

demonstrated BBB disruption in six patients with Alzheimer’s disease (AD) reporting the safety, 

feasibility, and reversibility of in vivo human use of LIFU for BBB disruption.87 BBB disruption was 

utilized in vivo for drug delivery in AD and Parkinson’s disease (PD) prior to its application for tumor 

drug delivery.88, 89 This has been an active area of research with recent publication showing reduction in 

amyloid and progression of disease in patients with dementia.90, 91 LIFU use in tumor drug delivery has 

been applied in a multifactorial manner with nanoparticles to enhance drug delivery in a number of 

models, with one of the earliest by Wang et al. demonstrating enhanced drug deliver to tumor cells across 

the BBB.92 While there are no large scale published human in vivo studies on BBB disruption for tumor 

drug delivery, there are a number of clinical trials for this topic as well as BBB disruption for liquid 

biopsies of central nervous system (CNS) tumors.93  

Ultrasound has been a rich area of exploration beyond only BBB breakdown with liquid biopsy 

and sonodynamic therapy. Liquid biopsy enhancement with LIFU has been demonstrated in animal 

models in which LIFU opens the BBB allowing for tumor makers to be identified from the venous 

system.62, 77, 94 Sonodynamic therapy, which couples LIFU with 5-aminolevulinic acid (5-ALA) triggers 

production of high volume of reactive oxygen species that act to kill tumor cells.95 This approach has 

already been implemented for high grade glioma animal models with promising overall survival 

outcomes.96, 97 Sonodynamic therapy has also demonstrated some BBB breakdown effects similar to LIFU 

that may be a popular area of exploration in the upcoming research.98  

Utilizing a similar mechanism of action of producing cavitations via ultrasound, an implantable 

ultrasound device that can be activated on-demand has been developed with the goal of bypassing 

technical challenges that arise with noninvasive ultrasound delivery to deliver ultrasound without needing 

to transverse higher density areas of tissue not within the target.63, 64 While this method is more invasive, 

requiring a craniotomy to create a window through the skull to deliver ultrasound, this device remains in 

an investigational phase at this time.63 This implanted device uses a similar process to LIFU called low 

intensity pulsed ultrasound (LIPU), which provides an intermittent version of ultrasound that provides a 

more diffuse opening of the BBB that does not require MR guidance.99, 100 LIPU is advantageous in not 

requiring an MRI, and trials have shown significant CNS drug uptake and speedy BBB recovery. 

However, the effects of diffuse LIPU to the brain are not fully understood.39, 101-103 While MR 

thermometry is an important tool for safe treatment in HIFU, other methods of neuronavigation have been 

utilized to allow for accurate BBB disruption without the need for MR during ultrasound delivery (e.g., 

NaviFUS).104  
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Laser Interstitial Thermal Therapy (LITT) 

 

 Laser interstitial thermal therapy (LITT) has existed for decades but its use intracranially for 

tumor treatment is relatively new. LITT has been used in a tissue ablation manner since 1966, but was not 

approved for neurosurgical ablation until 2007.105 LITT utilizes optical radiation from a laser probe to 

heat surrounding structures. The probe is placed stereotactically with submillimeter accuracy, and MR-

thermography is used to monitor temperature elevation in nearby non-target tissue, allowing for safe and 

accurate target ablation.105, 106 LITT has been utilized for various pathologies including epilepsy, cancers, 

radiation necrosis, cavernous malformation, and other benign intracranial lesions.106 The role of LITT in 

exclusively disrupting BBB has not been extensively explored, but several studies have demonstrated its 

potential role in applied chemotherapeutic agents after utilizing LITT for tumor ablation.105, 107 

Specifically, there are several studies showing improved glioma outcomes in patients who underwent 

LITT, in which the authors speculate the BBB breakdown may be a contributing factor.108, 109 

Other studies have demonstrated radiographic and laboratory evidence of BBB disruption. 

Leuthardt et al. demonstrated BBB disruption in fourteen patients with high grade gliomas by for up to 

four weeks post-LITT by measuring peripheral blood CNS biomarkers and radiographic evaluation of 

BBB disruption.110 Similar mouse models have demonstrated improved survival with doxorubicin in 

combination with LITT is now being explored in two clinical trials.111-114 Further clinical benefits of LITT 

have been postulated as eliciting an immune response to augment immunotherapies.115 

 

Superselective intraarterial cerebral infusion (SIACI) 
While there are a number of external devices aimed at increasing BBB permeability, there are 

also pharmacologic means such as superselective intraarterial cerebral infusion (SIACI). Intraarterial (IA) 

delivery of medications for CNS tumors was initially utilized to reduce systemic side effects, but over 

time IA hyperosmolar therapies demonstrated a reversible disruption of BBB tight junctions.116 A number 

of chemotherapeutic agents including bevacizumab, temozolomide and cetuximab have been utilized in 

conjunction with mannitol leading to higher drug concentration in the tumor.117 Hyperosmotic mannitol 

has been utilized to create an osmotic BBB disruption via transient shrinking of the endothelial cells and 

opening of the tight junctions.7, 118 This has even been further refined with endovascular local delivery of 

IA medication via distal arterial branches to the tumor. 119 Mannitol has been predominantly explored as 

the drug delivered to incite BBB breakdown with currently dozens of clinical trials exploring its 

applications.116, 119 

 

DIRECT DELIVERY 

 

Multiple approaches have been taken to directly administer therapeutic agents to the CNS:  1) 

intrathecal (into the cerebrospinal fluid, CSF), 2) intracavitary (via passive release), 3) injection 

(stereotactic or hand injection via a surgical cavity), and 4) convection enhanced delivery (transcranial 

over hours to days).  While intrathecal delivery has been shown to be clinically effective for cancer cells 

that spread to the CSF,120 it does not produce pharmacologically meaningful distribution into the brain 

parenchyma and the intrathecal and intercellular spaces function as distinct compartments with poor 

exchange kinetics.121, 122  The intracavitary approach has been successful as demonstrated by FDA-
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approval of carmustine wafers in the mid-1990’s.123  However, the clinical benefit was small and these 

studies were done prior to the advent of an oral chemotherapy (temozolomide), which showed greater 

efficacy for treating GBM.124-126 The kinetics of intracavitary delivery are challenging in that they rely on 

the passive mechanism of diffusion and the exponential decay in concentration as a function of distance.  

With this delivery mechanism, the concentration of agent at the surface of the cavity is limited by toxicity 

and there is an exponential decay in the concentration which can lead to subtherapeutic concentrations 

within millimeters of the cavity wall.  Currently, the intracavitary approach provides a short duration of 

treatment as the delivery substrate becomes depleted of drug within weeks.    

 

Intraoperative Delivery 

 

  Intraoperative drug delivery has been explored as a means of bypassing the BBB and largely as 

an adjuvant to surgical resections. One of the most well-known was carmustine wafers which in 2 

prospective randomized studies showed a small survival benefit but which was associated with high 

complications rates.125, 127, 128  These results led to FDA approval of this new therapy; yet, the relatively 

small benefit was in the pre-temozolomide era and the combination of radiotherapy and temozolomide 

supplanted the use of carmustine wafers.  Nevertheless, they remain an important proof of principle of the 

potential benefit associated with loco-regional therapeutic delivery. Although carmustine wafers may be 

the most well-known study, many other intraoperative medications have reached clinical trials. 

Vocimagene amiretrorepvec with flucytosine reached phase 2 trials for post-surgical resection cavity 

injection, but did not show an overall survival benefit in high grade gliomas.129 Other studies have 

focused on injecting therapeutics directly into the tumor after a biopsy without any surgical debulking.130 

Specifically, the use of recombinant viruses and combination therapies have shown potential in high 

grade glioma survival rates.130, 131 The use of oncolytic virus-based cancer immunotherapy has been 

extensively studied and are now being applied to intraoperative delivery and in conjunction with other 

immune system inhibitors.132 

 

 

Convection Enhanced Delivery 

 Convection Enhanced Delivery (CED) is a technique of delivering drugs by bypassing the BBB 

directly to the CNS via a catheter.133, 134 Differing from intrathecal delivery, these catheters are directly 

implanted into parenchyma. This method was pioneered at the National Institute of Health by Edward 

Oldfield’s group in the early 1990s.133 CED specifically uses bulk flow via a pressure gradient rather than 

diffusion, which allows for drug delivery independent of molecular weight or diffusivity.134, 135 The 

interstitial pathways allow for convection transport independent of molecule size, but the pial surfaces can 

act as barriers limiting flow.133 However, CED has its own limitations including reflux along the 

implanted catheter affecting intended dose or flowing around catheter, white matter edema, air bubbles, 

challenges in ratio of infusion volume and flow rate. Since 1997 there have been over 20 completed trials 

involving CED for gliomas.133, 134 The PRECISE trial is the only phase III trial to have been completed 

and it compared CED of IL13-PE38QQR exotoxin to use of carmustine-impregnated wafers for patients 

with recurrent GBM undergoing an intended complete resection. PRECISE did not demonstrate any 

overall survival benefit but did show a PFS favoring CED by >5 months.136 Beyond interleukin receptor 
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targeting agents, topotecan, paclitaxel, carboplatin, and nonpathologic recombinant poliovirus have been 

trialed with mixed results.133, 137 While the current use of CED involves external catheters to mechanical 

pumps, future directions may involve a semi-permanent implantable, refillable system.134 

 

There are several significant challenges that have been recognized to limit the success of this 

delivery method.  While initial clinical trials focused on the delivery of existing or novel therapeutic 

agents, it was assumed that any existing catheter that is used in neurosurgical procedures would be 

sufficient to deliver into tumor or tumor infiltrated brain.  Also, there was no direct method to visual 

actual delivery into brain tissue – indirect imaging of the effects of delivery, via MRI, have intrinsic 

limitations.  Unfortunately, it was not until multiple trials failed to show clinical impact that the use of co-

infused imaging tracers made it obvious that the so-called “off the shelf” catheters have not produced 

reliable delivery. Subsequent development of catheters with tip designs that were optimized for delivery 

into brain tissue led to small studies that showed successful and predictable drug delivery to targeted areas 

in the brain.134, 135, 138 

 

CED has been utilized to test the efficacy of many known immunotherapies and gene therapies. 

While many of the studies are still in phase 1 trials, there are several promising publications after in 

human use via CED.138 OS2966 recently published a promising phase 1 utilizing humanized and de-

immunized monoclonal antibodies targeting CD29/B1 integrin via CED. MDNA55, an immunotherapy 

aimed at interleukin 4 receptor, has demonstrated acceptable safety profile and tumor control that is now 

being utilized in phase 3 trials.139 Additionally, CED is being utilized as adjuvant therapy by implanting 

into resection cavities in a similar paradigm studied with intraoperative injections but with a more 

prolonged therapeutic delivery such as cintredekin besudotox, which showed promising results in phase 

1.140 

 

While the currently used, CED-optimized devices have been shown to provide more reliable 

delivery, they all have the limitation of being implanted only temporarily (hours to days prior to removal).   

For infiltrative gliomas, however, where there is interest in a wider spectrum of therapeutics, it is unclear 

whether a single treatment session via CED will be adequate to produce a durable clinical response.  In 

contrast, there are currently multiple studies involving viral vectors engineered to provide gene therapy 

for neurodegenerative diseases.141-143  In that setting, virally-mediated gene delivery is performed to a 

small (~1 cc) target, which can be completely covered during a single surgical episode; repeat therapeutic 

administration may not be required in that setting. 

 

  A fully implanted CED system, which could be intermittently accessed over a prolonged period 

of time via a skull-implanted external port, was used in a UK-based clinical trial in patients with recurrent 

glioblastoma.  While this small, single armed trial showed that the approach was safe, and the study 

reported encouraging clinical outcomes, there was no imaging of delivery performed (via a tracer) to 

indicate the extent of distribution of the administered agents.141, 144-147 Currently, the device that was used 

for that study is not commercially available for more widespread use. 
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Intranasal drug delivery 

 Intranasal drug delivery for CNS penetration was first published in the late 1980s with a proposed 

mechanism of BBB bypass through the olfactory and trigeminal nerves.43, 148, 149 Intranasal route to the 

CNS is advantageous in that the nasal cavity rapidly absorbs drugs, does not require sterile delivery, 

painless and convenient.43, 149 However, the studies on intranasal CNS drug delivery have not yet shown 

reliable reproducibility or not reached phase 3 trials.43, 150 Yet, there are recent studies complimenting 

intranasal drug delivery with chemotherapies in nanocarriers to enhance these methods.151-153 

 

Conclusions 

 

 The blood brain barrier is fortress preventing drug delivery to CNS tumors. Over the past thirty 

years, the means of bypassing or weakening the BBB have expanded significantly. While intranasal 

delivery and nanoparticle carriers continue to show improvements, more recently LITT and LIFU have 

made fast strides towards clinical trials. The various transcytosis methods are drastically growing from 

research in other non-CNS fields and area advantageous in that no invasive procedure is required but the 

time to clinical application may not be in the near future. While SIACI, CED, and LITT are all minimally 

invasive procedures they still have associated surgical risks. With many different therapies providing 

marginal results, researchers are now commonly combining these various methods to increase the efficacy 

which will be an important topic to follow in the future. While there are a wide array of topics being 

studied for CNS drug delivery penetration, this summary aims to provide a concise overview. 
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FIGURES 

 

Figure 1:  Overview of mechanisms to overcome BBB for treating CNS tumors 

 

Figure 2:  Procedures utilizing MR thermometry to create BBB breakdown 

 

Table 1: Techniques and Technologies for Enabling Treatment Delivery for CNS Tumors across the 

BBB 
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Table 1: Techniques and Technologies for Enabling Treatment Delivery for CNS Tumors across the 

BBB 

 

 

Technique Technology 

Types of 

Agents 

Delivered 

Current 

Status 
Publications* 

Representative 

Clinical 

Trials** 

Transcytosis 

Receptor-

Mediated 
Biologics 

Primarily 

Animal 

Models 

21 
NCT03053089 

NCT03071341 

Adsorptive-

Mediated 
Biologics 

Primarily 

Animal 

Models 

38 
NCT04528680  

NCT00313599 

Solute 

Carrier-

Mediated 

Drugs, 

Biologics 

Primarily 

Animal 

Models 

No 

representative 

published 

human trials 

found 

None actively 

recruiting 

Blood-

Brain-

Barrier 

Disruption 

LIFU 
Drugs, 

Biologics 
Investigational 57, 66, 73, 74, 87 

NCT05733312 

NCT05317858 

NCT05630209 

NCT05615623 

NCT05293197  

NCT04021420 

LITT 
Drugs, 

Biologics 
Investigational 107, 110, 113, 114 

NCT03277638 

NCT04181684 

NCT04699773 

SIACI 

Drugs, 

Biologics 

+/- 

mannitol 

Investigational 117, 119 
NCT05773326 

NCT05271240 

NCT02861898 

Direct Brain 

Delivery 

Carmustine 

Wafers 
Carmustine FDA approved 123 

NCT04222062 

NCT05083754 

Direct 

Injection 

Drugs, 

Biologics 
Investigational 129-131 NCT00479765 

CED 
Drugs, 

Biologics 
Investigational 136, 138-140 

NCT03500991 

NCT03638167 

NCT04185038 
*This list is meant to be a representative sample of the manuscripts published but is not extensive given 

there are many instances in which multiple modalities are utilized and in several instances the type of 

transcytosis is not clearly defined. 

**Some categories have >10 ongoing clinical trials and therefore the most relevant and active NCT’s 

were included as a representative sample of ongoing research. 
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Abbreviations LIFU: Low-Intensity Focused Ultrasound, LITT: Laser Interstitial Thermal Therapy, 

SIACI: Superselective IntraArterial Cerebral Infusion, CED: Convection Enhanced Delivery, FDA: 

Food & Drug Administration, NCT: National Clinical Trial  
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Figure 1 
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Figure 2 
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