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Abstract

Angiogenesis is a hallmark of glioblastoma (GBM) and remains an important therapeutic target in 

its treatment, especially for recurrent GBM. GBMs are characterized by the release of vascular 

endothelial growth factor (VEGF), an important regulator and promoter of angiogenesis. 

Therefore, antiangiogenic therapies (AATs) targeting VEGF or VEGF receptors (VEGFRs) were 

designed and thought to be an effective tool for controlling the growth of GBM. However, recent 

results of different clinical trials using humanized monoclonal antibodies against VEGF 

(bevacizumab), as well as tyrosine kinase inhibitors (TKIs) that target different VEGFRs alone or 

in combination with other therapeutic agents demonstrated mixed results, with the majority of 

reports indicating that GBM developed resistance against antiangiogenic treatments.
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Introduction

Gliomas of astrocytic, oligodendroglial, and ependymal origin account for more than 80% of 

malignant brain tumors. Patients with these tumors who progress to grade IV glioblastoma 

(GBM), the most malignant histological subtype [1], have the poorest prognosis for survival, 

with high potential for fatal outcome [2]. GBM constitutes about 57% of the average annual 

age-adjusted incidence rate of all neuroepithelial tumors and about 48% of all malignant 

brain and CNS tumors [3,4]. Current treatment options include surgery, radiotherapy (RT), 

and chemotherapy (temozolomide). Unfortunately, prognosis remains extremely poor and 

the median survival of 12 to 15 months in GBM with optimal treatment, including resection, 

radiotherapy (RT), and chemotherapy has not changed much over 3 decades. Without 

resection, the mean survival time continues to be 3 months. Therapeutic options are limited 

and must address the infiltrative nature and prominent angio- and vasculo-genesis of these 

aggressive tumors to develop an effective therapeutic approach with a uniform outcome for 

all patients [5]. Herewith, we review the current focus on therapeutic targets – angiogenesis 

and tyrosine kinase (TK) pathways and how these targets are manipulated in 
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chemotherapeutic development, and other novel therapeutic approaches for the treatment of 

GBM.

Results and Discussion

Angiogenesis and increased vascularization are essential for the survival and proliferation of 

glioma cells [6]. On the other hand, malignant gliomas are characterized by the release of 

vascular endothelial growth factor (VEGF), an important regulator and promoter of 

angiogenesis [7]. The normal VEGF pathway starts when cells are lacking oxygen, which 

leads to the production of the hypoxia- inducible factor. This leads to releasing of VEGF 

followed by binding of the VEGF to VEGF receptors (VEGFRs), stimulating the tyrosine 

kinase pathway and ultimately resulting in angiogenesis [8,9]. Therefore, anti-angiogenic 

therapies targeting VEGF or VEGFRs have been designed and expected to be an effective 

strategy for controlling the growth of malignant gliomas. FDA approved Bevacizumab, a 

humanized monoclonal antibody against VEGF for recurrent GBM in 2009[10,11]. A 

subgroup of the patient population was benefitted when bevacizumab was combined with 

cytotoxic drug lomustine. Although anti-VEGF therapy has shown benefits in the reduction 

of vasogenic edema [9], several studies indicated that bevacizumab was not effective to 

improve overall survival in newly diagnosed GBM patients [12,13].

Other anti-angiogenic agents have been proposed for GBM treatment, such as VEGF 

receptor tyrosine kinase inhibitors. However, recent results of early clinical trials using 

small-molecule tyrosine kinase inhibitors (TKIs) that target different VEGFRs alone or in 

combination with other therapeutic agents [7,14,15] demonstrated mixed results, with the 

majority of reports indicating that gliomas developed resistance to the employed anti-

angiogenic therapies [14,16,17]. Recently, VEGF-independent tumor vascularization and 

resistance to Bevacizumab have also been reported for patient-derived GBM model [18]. 

Our work [19] in a rat orthotopic human glioma model indicated paradoxically increased 

production of VEGF at the peripheral part of tumors, as well as, the elevated expression of 

hypoxia- inducible factor-1α (HIF-1α) and SDF-1 (Figure 1). Therefore, we extended our 

studies using broader tyrosine kinase inhibitors that affect not only the VEGFR tyrosine 

kinase but also other tyrosine kinases as well. One such drug is sunitinib, a small molecule 

multitarget receptor tyrosine kinase inhibitor, which is known to inhibit signaling through 

multiple receptors such as platelet-derived growth factor receptors (PDGFRs), VEGFRs, c-

KIT, colony-stimulating factor-1 receptor, and fetal liver kinase 3-internal tandem 

duplication (FLT3-ITD). However, sunitinib treatment outcome was also not satisfactory 

(Figure 2). Therefore, it was thought that another probable mechanism of AAT resistance 

could include SDF-1 pathway-mediated mobilization of bone marrow-derived endothelial 

progenitor cells through CXCR4 receptors on these cells. A recent study shows that 

depleting bone marrow cells or CXCR4 interaction can potentiate the effect of vatalanib to 

some extent, but the overall therapeutic benefit is not significant [20]. SDF-1 is a strong 

chemoattractant for CXCR4 positive cells and hindering the interaction of SDF-1/CXCR4 

could be a viable mechanism to prevent vasculogenesis. Continuous treatment with 

AMD3100, which is a potent CXCR4 receptor antagonist, or similar CXCR4 receptor 

antagonists can inhibit tumor growth by preventing vasculogenesis.
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We then further examined the effects of CXCR4 antagonists and TKIs on tumor growth and 

angiogenesis using a rat glioma model [21]. Although, the AMD3100-treated group 

demonstrated moderate tumor growth inhibition, significant changes in vascular density was 

not observed. Sunitinib-treated animals showed significantly higher migration of the invasive 

cells at the peripheral part of the tumor. However, both vatalanib- and AMD3100-treated 

animals, the invasive cell migration distance was relatively lower compared to that of control 

in the tumor boundary. None of these treatment options induced necrosis at the core of the 

tumor. But yet, tumor growth and the blood vessel development were continued with the 

overexpression of a series of pro-angiogenic factors [22]. Whole-genome exon sequencing 

studies implicate mutations in the receptor tyrosine kinase pathways (RTK) for driving 

tumor growth in over 80% of GBMs. In spite of various RTKs being mutated or altered in 

the majority of GBMs, clinical studies have not been able to demonstrate the efficacy of 

molecularly targeted therapies using TKIs in GBMs [23]. In addition, other anti-angiogenic 

agents including an RGD peptide (Cilengitide) that binds αvβ3 and αvβ5 integrins 

upregulated on tumor neovasculature also failed in clinical trials. Therefore, angiogenesis 

inhibitors, which attempt to prevent new blood vessels from forming (neovascularization) 

and do not generally target preexisting blood vessels are not sufficient to inhibit tumor 

angiogenesis [24,25]. Nevertheless, both AATs and TKIs induced hypoxia [26] as a 

compensatory effect of the applied therapies. One of the resistance mechanisms for AATs 

and TKIs therapies is the induction of hypoxia and subsequent up regulation of downstream 

genes.

Targeting of epidermal growth factor receptor (EGFR) with small molecules or monoclonal 

antibodies has been reported to offer no survival benefit, [27] despite the fact that EGFR is 

the most common genomically altered oncogene in GBM and targeting EGFR has shown 

benefit in other cancers. Multiple kinase pathways are activated in GBMs and sorafenib is a 

small molecule multiple kinase inhibitor that inhibits RAF, VEGFR, PDGFR, c-KIT, and 

FMS-like tyrosine kinase-3 targets [28]. However, a phase III clinical trial of sorafenib alone 

also failed recently. Alternative therapies known as tumor-vascular disrupting agents diverge 

from anti-angiogenic strategies and directly target established tumor vasculature. We then 

investigated the therapeutic effect of the tumor-vascular disrupting agent nanocombretastatin 

(G3-CA4) in an orthotopic glioma model with MRI monitoring. Intravenous delivery of G3-

CA4 across blood-brain tumor barrier (BBTB) showed a significant tumor blood flow 

decrease in an experimental rat model of glioma. In addition, G3-CA4 induced intratumoral 

blood vessels collapse leading to necrosis at the core of the tumor while the blood vessels at 

the periphery were alive [29].

Conclusion

A potent antiangiogenic strategy for controlling tumors has developed with endothelial cells 

in the tumor vasculatures as the target. The strategy can work either by delivery of drug 

substances inhibiting the pro-angiogenic factors that induce proliferation and migration of 

these cells to form blood vessels or by simply killing these cells but the latter has much 

greater risks if selectivity is inadequate. Inhibition of angiogenic factors such as VEGF, 

basic fibroblast growth factor, or their cognate receptors in endothelial cells of the growing 

vasculature is not sufficient to inhibit tumor angiogenesis. Both AATs and TKIs induced 
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hypoxia [26] as a compensatory effect of the applied therapies. One of the resistance 

mechanisms for AATs and TKIs therapies is the induction of hypoxia and subsequent 

upregulation of downstream genes. Therefore, targeting hypoxia as well as hypoxia-

regulated downstream genes may enhance the outcome of AATs, TKIs, and radiotherapy.
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Figure 1. 
Expression of different angiogenic factors (tumors from representative cases at the 

peripheral (P), central part of the tumors (C) and contralateral brains (B). Note the increased 

expression of VEGF, SDF-1 and HIF- 1α on western blot in tissues collected from 

peripheral part of the tumors, left panel) in the vehicle- and PTK787-treated part of PTK787 

treated tumors. Right panel shows the densitometry analysis of the blot (%β-actin and 

normalized to contralateral brain). The analysis also confirmed the finding of the blot. Ali 

MM, Janic B, Babajani-Feremi A, Varma RS, Iskander ASM, et al. (2010) Changes in 

vascular permeability and expression of different angiogenic factors following anti-

angiogenic treatment in rat glioma [19].
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Figure 2. 
Effect of antiangiogenic treatment in U251 tumor determined by MRI. Postcontrast T1WI 

(A) and T2WI changes (B) after 2 weeks of antiangiogenic treatment with vatalanib, 

sunitinib, and AMD3100; tumor volumes measured after vehicle and drug treatment (C). 

Tumor volumes measured from post-contrast T1WI images are shown in Figure 2C. 

Compared to the control, tumors treated with vatalanib showed significantly increased 

volume following treatment (P < .01) indicating that tumor activate alternative pathways for 

survival and growth. However, both sunitinib and AMD3100 treatments resulted in a 

nonsignificant decrease in the tumor size, compared to the vehicle treatment (P = 0.25 and P 

= 0.45, respectively) [22]. Therefore, U-251 human malignant glioma tumors become 

refractory to anti-angiogenic therapy with VEGFR inhibitors [22].
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