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Abstract
Medulloblastoma (MB) is the most common malignant 
primary intracranial neoplasm diagnosed in childhood. 
Although numerous efforts have been made during the 
past few years to exploit novel targeted therapies for 
this aggressive neoplasm, there still exist substantial 
hitches hindering successful management of MB. Lately, 
progress in cancer biology has shown evidence that a 
subpopulation of cells within the tumour, namely cancer 
stem cells (CSCs), are thought to be responsible for 
the resistance to most chemotherapeutic agents and 
radiation therapy, accounting for cancer recurrence. 
Hence, it is crucial to identify the molecular signatures 
and genetic aberrations that characterise those CSCs 
and develop therapies that specifically target them. In 
this review, we aim to give an overview of the main 
genetic and molecular cues that depict MB-CSCs and 
provide a synopsis of the novel therapeutic approaches 
that specifically target this population of cells to attain 
enhanced antitumorous effects and therefore overcome 
resistance to therapy.

Introduction
Medulloblastoma (MB) is the most common malig-
nant primary intracranial neoplasm in children, 
accounting for around 20% of all paediatric brain 
tumours.1 It is a primitive neuroectodermal malig-
nancy of the central nervous system that is believed 
to arise from neural stem cell precursors in the 
granular cell layer of the cerebellum.2 Specifically, 
many studies demonstrate that it originates from 
the remnants of the primitive neuroectoderm in 
the germinal matrix of the fourth ventricle roof,3 4 
while other studies have reported a different origin 
for this invasive neoplasm: the external granular 
layer precursor cells.5 6 MB is subdivided into four 
major entities at the molecular level7: MBWNT-

activated, MBSHH-activated,TP53-mutant, MBSHH-activated,TP53-

wildtype and MBnon-WNT/non-SHH (includes MBnon-WNT/

non-SHH, Group3 and MBnon-WNT/non-SHH, Group4).
The incidence of MB ranges from 0.53 (children 

aged 0–4 years) to 0.16 (adolescents aged 15–19 
years) per 100 000 population in patients up to 
19 years old, and affects males more than females 
(1.7 times more frequently in the age group 0–14 
years)8 and white people more than black (1.7 
times).9 The incidence continues to decline with 
age, reaching 0.06 per 100 000 person-years by 
55–64 years of age.9 The peak age at diagnosis of 
MB is 7 years, with more than 70% of all cases 
observed among children younger than 16 years 
of age,10 11 and 10%–15% of patients diagnosed in 
infancy.9 Although aggressive, the 10-year survival 

for patients with MB in the USA was found to be 
64.9%.8 This could be attributable to the multimo-
dality treatment approach including surgical inter-
vention, radiation therapy (RT) and chemotherapy.3

During the past decade, increased interest in 
understanding the molecular basis of MB has 
revealed new insights into the different molecular 
and signalling pathways that might contribute to 
the tumour’s formation, progression and recur-
rence. In this regard, many articles have been 
published in the last few years tackling the role of 
cancer stem cells (CSCs) as principal drivers in MB 
initiation and relapse, and subsequently as potential 
therapeutic targets for this malignant neoplasm.12 
Indeed, the CSC concept has become increasingly 
prominent ever since it was first proposed four 
decades ago, based on their self-renewal ability, 
potential to differentiate into the different types of 
cells and uninhibited growth pattern contributing 
to resistance to conventional therapies.13 14

CSCs were first identified in leukaemias in 1973 
as a distinguished population of cells, embracing 
specific pro-oncogenic genetic signatures, that 
are capable of generating malignant haematopoi-
etic colonies.15 With time, CSCs have been grad-
ually identified in dedicated niches of many other 
tumours,14 including MB in 2003.16 Indeed, CSCs 
had been isolated from human and mouse MBs17 
and were shown to reside in a perivascular niche 
(PVN).18 The stem cell niche is referred to the 
microenvironment surrounding cancer cells, and is 
composed of supportive cells, extracellular matrix 
and factors needed to maintain cancer stemness.19 
Although the niche in MB tumours is still largely 
undefined,20 a recent report by Calabrese et al18 
revealed that CD133-positive MB-CSCs reside near 
endothelial cells and small vessels, and might func-
tion as a niche.

Highly tumourigenic MB cells have been shown 
to display features imitating those of neural stem 
and progenitor cells, such as upregulation of 
CD133, Nestin and Musashi (MSI1)21 (MSI122 
and Nestin are evolutionally conserved markers 
for central nervous system (CNS) progenitor cells 
and neuronal stem cells), as well as developmen-
tally related genes, such as Ebfs.23 Here, we discuss 
the latest discoveries related to MB-CSC genetic 
signatures and the novel therapies that specifically 
target those cells based on the molecular cues they 
harbour.

Methodology
This review was conducted using the ‘Preferred 
Reporting Items for Systematic Reviews and Meta-
Analyses’ (PRISMA) 2009 guidelines. We performed 
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a comprehensive search using two databases, namely OVID/
Medline and PubMed, for mesh terms, keywords and combi-
nations related to ‘cancer stem cells’ and ‘medulloblastoma’. 
Complete search strategy is provided in online supplementary 
appendix S1. In total, 248 articles were retrieved through data-
base search from inception to 15 September 2019. We inserted all 
articles into EndNote V.X8 referencing program, and excluded 
duplicates, abstracts, case reports, non-English articles, reviews, 
commentaries and editorials. As a result, a total of 105 articles 
were considered for full-text qualitative analysis and inclusion in 
the final review. Online supplementary appendix S2 illustrates 
the study flow chart of the review process according to PRISMA 
2009 flow diagram guidelines.

MB classifications and CSCs
Histologically, MB is classified into four main WHO-defined 
subsets24: classic MB, large-cell anaplastic, desmoplastic MB and 
MB with extensive nodularity (other variants such as medullo-
myoblastoma and melanotic do exist but are extremely rare).2 At 
a molecular level, and according to the latest consensus nomen-
clature, MB is subdivided into four major entities7: (1) MBWNT-

activated (thought to originate from the lower rhombic lip),25 26 (2) 
MBSHH-activated,TP53-mutant and (3) MBSHH-activated,TP53-wildtype (sonic 
hedgehog (SHH); arises from granular neuron progenitors in 
the external germinal layer),27 28 and (4) MBnon-WNT/non-SHH which 
comprises MBnon-WNT/non-SHH, Group3 (develops from cerebellar stem 
cells with high levels of MYC amplification and is considered 
the most aggressive among all subgroups)29 30 and MBnon-WNT/non-

SHH, Group4 (the most prevalent yet still of unknown origin).31 32 
Noteworthy, genes that are mainly deregulated in MB, such as 
WNT, SHH and Notch, as well as the proto-oncogenes RTK 
(receptor tyrosine kinase) and MYC, are central to molec-
ular pathways controlling cell cycle and growth of CSCs.33–35 
Moreover, reports from retrospective studies reveal that several 
molecular and genetic aberrations that correlate with MB prog-
nosis and outcome36–41 are also involved in the control of CSC 
stemness,42–47 including neurotrophin-3 receptor,48 CD15,49–51 
PTEN,52 MYC,53–55 ErbB2,56 β-catenin,57 58 survivin59 60 and 
p53.61

Further exploration showed that other markers linked to 
CSCs might have a pivotal role in MB tumour formation and 
progression.62 For instance, Singh et al17 were the first to reveal 
a role of CSC markers in MB, where they found that injecting 
a small number as low as 100 CD133+ cells into immunodefi-
cient mice could yield MB tumour formation in vivo, whereas 
tumour failed to develop with CD133− cells even on increasing 
the number of injected cells to 100 000 cells. In this regard, 
high mRNA levels of CD133 had been correlated with poor 
prognosis and increased likelihood of metastases in paediatric 
MB.63 This demonstrates the importance of identifying novel 
CSC biomarkers and genetic signals and incorporating them 
altogether with the currently available parameters to create new 
stratification schemes for MB.64 Such schemes may help to refine 
the management approaches for the different histological and 
molecular entities of this tumour.65–68 We will elaborate more on 
the various studied molecular signatures and therapeutic targets 
pertaining to MB-CSCs.

MB-CSCs: from genes to therapies
Ever since the first MB-CSCs were isolated from human tissues 
in 2003 (CD133+⁄Nestin+) showing improved proliferation, 
self-renewal and differentiation in vitro,16 subsequent research 
has elucidated the genetic aberrations and molecular signatures 

pertaining to those CSCs, paving the way for novel therapeutic 
targets in this aggressive intracranial tumour.

CD133 and its relation to other molecular signatures
CD133 (prominin-1) is the most common cell surface antigen 
used to detect and isolate CSCs from various solid tumours.69 
Physiologically, it induces WNT/β-catenin signalling70–73 and has 
also been described as an important regulator of PI3K/Akt signal-
ling in CSCs.74 75 The use of this marker to identify MB-CSCs in 
paediatric tissue samples was first described by Singh et al,16 17 
and the isolated CD133+ cells were termed brain tumour stem 
cells. These cells had the ability to grow into neurosphere-like 
clusters in vitro and to produce massive tumours on intracra-
nial transplantation into NOD-SCID mice forebrains in vivo, 
expressing neural stem cell markers such as nestin.16 An alter-
native method for culturing MB-CSCs, other than the three-
dimensional (3D) neurospheres technique, has been proposed 
by de la Rosa et al76 using laminin-precoated flasks that enable 
dedifferentiation of cells and enrich the stem-like cell popula-
tion. Based on their high expression of CD133, CSCs possess the 
ability to resist apoptosis as well as RT77 and chemotherapeutic 
drugs.78

A study by Annabi et al79 demonstrated that members of the 
low-density lipoprotein receptor-related protein (LRP) family, 
including LRP-1, LRP-1b, LRP-5 and LRP-8, regulate the adap-
tive phenotype associated with CD133+ MB-CSCs. Another 
study by the same research group revealed that matrix metal-
lopeptidase 9 and membrane type I-matrix metalloproteinase, 
which are major players in cancer cell invasion, metastasis and 
resistance to therapy, have crucial roles in maintaining the inva-
sive phenotype of CD133+ neurosphere-derived MB cells, while 
targeting those two molecules may reduce the formation of brain 
tumour stem cells.80

Inflammatory mediators such as cyclooxygenase-2 (COX-
2), an enzyme that converts arachidonic acid to prostaglan-
dins, have been shown to be overexpressed in a variety of 
tumours,81 82 including MB.83 COX-2-derived prostaglan-
dins have also been implicated in tumour growth and angio-
genesis.84 Henceforth, the role of anti-inflammatory drugs in 
targeting MB-CSCs has recently been assessed, whereby a study 
was conducted by Chen et al85 and Yang et al86 to assess the 
enhancing effects of celecoxib on ionising radiotherapy (IR) of 
CD133+ MB cells. Results demonstrated that celecoxib signifi-
cantly enhanced radiosensitivity of those MB cells in vitro and 
in vivo.85 86 In the same milieu, resveratrol, a natural polyphenol 
derived from red wine, has been shown to inhibit proliferation 
and tumourigenicity of MB-CSCs and enhance radiosensitivity 
in treated MB-CSCs.87

One of the mechanisms contributing to chemotherapeutic 
resistance in many tumours is upregulation of X linked inhib-
itor of apoptosis protein and cellular inhibitor of apoptosis 
1/2.88 This applies to CD133+ MB CSCs, which displayed 
higher levels of both proteins and demonstrated hypersensi-
tivity to treatment with small-molecule inhibitors of apoptosis 
proteins (IAP) inhibitors LCL161 and LBW242.88 Another 
pathway that plays a role in the maintenance of CD133+ 
MB CSCs was described by Chang et al,89 who treated those 
cells with a potent STAT3 inhibitor, cucurbitacin I. Results 
revealed that the latter treatment suppressed the CSC-like 
properties and stemness of MB-derived CD133+ cells and 
increased the apoptotic sensitivity of those cells to RT and 
chemotherapeutic drugs.89 Similarly, Garg et al and others 
showed that signal transducers and activators of the STAT3 
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pathway are activated in CD133+ MB-CSCs through regu-
lation of c-MYC, a key genetic driver of MBnon-WNT/non-SHH, 

Group3.90 91

An orthotopic xenograft model, named MB3W1, was estab-
lished using cells derived from the malignant pleural effusions 
from a child with MBnon-WNT/non-SHH, Group3.92 This model displayed 
CSC characteristics such as the ability to form neurospheres, 
high aldehyde dehydrogenase (ALDH) activity, expression of 
CD133/CD15 stem cell markers and high tumourigenicity in 
NOD-SCID mice.92 In a similar study by Friedman et al,93 four 
human paediatric MB xenografts, mainly representing group 3 
tumours, were used to prove that hypoxia increases CD133 as 
well as primary HSV-1 (herpes simplex virus) entry molecule 
nectin-1 (CD111) expression. Interestingly, MB cells expressing 
CD111 were also found to be highly sensitive to killing by clin-
ically relevant oncolytic HSVs (G207 and M002) in vitro and 
in vivo.93

In a study by Lim et al,94 polymeric nanoparticle formulation 
of curcumin was used to assess its effect as a potential therapy 
for MB-CSCs. This compound is derived from the Indian spice 
turmeric and has been proven to harbour diverse effects on human 
diseases: proapoptotic, antiangiogenic, anti-inflammatory, 
immunomodulatory and antimitogenic effects.95 96 Treating MB 
cells with curcumin decreased anchorage-independent clono-
genic growth, reduced the CD133+ stem-like population, 
attenuated insulin-like growth factor and STAT3 pathways, and 
blocked SHH signalling, but did not affect Notch signalling.94

Hedgehog (SHH) pathway
The SHH entity of MB accounts for approximately 30% of 
all cases. It is driven by hedgehog ligands that undergo cova-
lent modification by cholesterol97 98 and bind to the Patched 
(PTCH1) transmembrane receptor99 to maintain tumour growth 
and stemness.100–102 In a recent study by Bell et al,100 the authors 
used biomimetic high-density lipoprotein (HDL) nanoparticles 
to deplete cholesterol from hedgehog-driven MB and Ewing 
sarcoma cancer cells, via binding to the HDL receptor, scavenger 
receptor type B-1, and thereby targeting the CSC populations in 
those tumours.

Among the other drivers of the SHH pathway is the protein 
patched homolog 1 (Ptch).103–105 A single tumour mouse 
model, namely the Ptch+/− model, has long been used to 
study the molecular and cellular mechanisms involved in MB 
formation, particularly MBSHH.106 107 Chow et al103 provided 
evidence that although MBs that form in Ptch+/− MB mice are 
composed of three entities, all of them contain long-term, self-
renewing stem cell-like cells that are responsible for tumour 
initiation on serial in vivo transplantations. Other studies were 
also published confirming this.107 108 Notably, high expres-
sion levels of PTCH2 were observed in human MB tissues 
and correlated with a worse prognosis34; although PTCH2 is 
a tumour suppressor gene that inhibits SHH activity,109 its role 
in MB might not necessarily be related to SHH pathway inhi-
bition but to GLI1 expression.34 110 This finding was further 
confirmed in a study by Po et al,105 where GLI1 and GLI2, the 
downstream effectors of SHH, were shown to bind to Nanog-
specific cis-regulatory sequences in stem cells. In this regard, 
SHH signalling was linked to two distinct MB entities: wild-
type TP53 (MBSHH-activated,TP53-wildtype) and TP53 loss (MBSHH-

activated,TP53-mutant), a central event in promoting stemness, which 
contributes to Nanog upregulation in stem cells derived from 
both postnatal cerebellum and MB.105

Notch pathway
Like the SHH pathway, Notch signalling is required for 
controlling growth and proliferation of neural stem/progenitor 
cells as well as embryonal brain tumours,111 such as MB.20 112–115 
Fan et al116 showed that MB stem-like cells exhibit higher levels 
of Notch signalling, which makes them more sensitive to this 
pathway inhibition. Indeed, Notch blockade with γ-secretase 
totally abolished CD133+ MB-CSCs, leading to loss of tumour-
forming capacity (due to depletion of stem-like cells).116 Another 
study by Pistollato et al117 revealed that hypoxic conditions 
promote Notch1 activation with its ligand Dll4 and lead to 
expansion of CD133+ and Nestin+ MB precursors.

PI3K pathway
The phosphoinositide-3-kinase (PI3K)/AKT signalling pathway 
has been reported to play an important role in the renewal of 
embryonic stem cells.118 119 Recent studies also referred to the 
role of PI3K/AKT/mTOR pathway in growth and maintenance of 
CSCs in solid tumours, such as breast and prostate cancers.75 120 
In MB, Frasson et al119 revealed that PI3K/AKT inhibition with 
LY294002 yielded increased cell death of CD133+ MB-CSCs 
and spared the more differentiated cells via activation of the 
mitochondrial apoptotic cascade. In another study by Hambard-
zumyan et al,121 122 the authors demonstrated that PI3K pathway 
plays a crucial role in regulating survival of nestin-expressing 
MB-CSCs residing in the PVN, and inhibition of AKT signalling 
sensitises PVN cells to radiation-induced apoptosis.

MYC pathway
MYC proteins have been associated with several cancers, 
including MB tumours31 123 that harbour MYC, MYCN and 
MYCL1 amplifications.118 In this regard, somatic mutations of 
TP53 had been mostly found in WNT-MB and SHH-MB and are 
associated with MYCN rather than MYC amplification.124

A study from the Chesler’s group reported a genetically engi-
neered mouse model of MYCN-driven MB (the GTML mouse 
model: Glt1-tTA (glutamate transporter 1-tetracycline transac-
tivator), (TRE)-MYCN (tetracycline response element) and Luc 
(luciferase)),31 and later used this model to establish neuro-
sphere lines.32 Those spheres demonstrated robust prolifera-
tion and expressed neuronal markers such as Ngn1, Syp, Olig2 
and Sox9.125 Besides, when transplanted orthotopically into the 
brains of nude mice, the neurosphere lines were able to form 
massive tumours with morphology that mimicked human MB, 
including Homer Wright (neuroblastic) rosettes.32

Venkataraman et al126 conducted a study concluding that 
inhibition of a member of the bromodomain and extraterminal 
domain family, namely BRD4, effectively suppresses MYC-
driven MB through attenuating cancer cells self-renewal, stem 
cell signalling and induction of senescence in vitro and in vivo.126

Polycomb repressive complexes
Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) are 
evolutionarily conserved epigenetic regulators127 implicated in 
cancer.128 BMI1 (B cell-specific Moloney murine leukaemia virus 
integration site), the best studied PRC1 gene in oncology,129 130 is 
often overexpressed in cancer and has been implicated in main-
taining tumour stemness by serving as a key CSC regulatory 
gene.131 132 In MB, BMI1 is overexpressed across all subgroups, 
particularly MBnon-WNT/non-SHH, Group3.133 134 A study by Wang et 
al134 revealed that SHH modulates BMI1 to maintain MB-CSCs. 
Another study by Bakhshinyan et al used a small-molecule 
inhibitor to target BMI1 in MBnon-WNT/non-SHH, Group3 cell lines, 
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namely PTC-028, exemplifying significant reduction in stem 
cell properties in vitro and in vivo. BMI1 has also been shown 
to downregulate p53 in embryonal cancer precursor cells, such 
as neuroblastoma and MB, and subsequently promote MycN 
oncoprotein overexpression in those cells.135 Manoranjan et 
al136 studied the stem cell data gathered from genomic platforms 
and demonstrated that FoxG1 interacts with Bmi1 in MBnon-WNT/

non-SHH, Group3 to mediate stem cell self-renewal and tumour 
initiation.

Another protein that represents the catalytically active compo-
nent of the PRC2 is enhancer of zeste homologue 2 (EZH2). 
This protein causes chromatin compaction and contributes to 
several biological processes, including differentiation, main-
taining cell identity and proliferation.137 It is shown to be highly 
expressed (more than twofold) in primary MB tissues and cell 
lines.138 Since it was proven that EZH2 maintains glioblastoma 
CSCs,139 Alimova et al evaluated the effects of knocking down 
EZH2 expression on MB-CSCs. Results showed that neuro-
sphere formation was attenuated after EZH2 knockdown along 
with a significant decrease in Myc and Sox2 activities and G2 
cell cycle arrest.138 The authors concluded that EZH2 might be a 
potential therapeutic target for MB and is important for MB cell 
growth and transformation of neural stem cells.138 In another 
study, an interaction between maternal embryonic leucine-zipper 
kinase and EZH2 was found in MB stem-like cells, representing 
an attractive therapeutic target and potential candidate for the 
diagnosis of MB.140

Other genetic aberrations
Urokinase-type plasminogen activator receptor (uPAR) is a cell 
surface protein that drives directed extracellular proteolysis on 
the surface of invading cancer cells promoting invasion, migra-
tion and metastasis.141 It is overexpressed in the tumour–stromal 
invasive microenvironment in many human cancers, including 
MB.142 Asuthkar et al143 showed that IR induces the expression 
of uPAR and other CSC markers, such as MSI1 and CD44, and 
triggers WNT-7a-β-catenin signalling, which in turn promotes 
cancer stemness in MB. Overexpression of uPAR post-IR also 
negatively regulates Hand-1 activity, promoting angiogenesis 
via hypoxia-inducible factor-1a upregulation.142 Henceforth, 
targeting uPAR in patients with MB undergoing IR might 
overcome potential therapy resistance and prevent IR-induced 
tumour angiogenesis.142 143

It is believed that in many tumours, drug resistance might 
be attributed to the efflux of chemotherapeutic drugs by key 
members of the ATP-binding cassette (ABC) transporter super-
family.144 Since a subpopulation of cells within tumours, namely 
CSCs, underlie tumour progression and relapse, those cells must 
express ABC transporters.145 Interestingly, in MB, significant 
correlation was found between ABCB1 expression and high-risk 
tumours among patients with poorer overall survival.146

Polo-like kinase 1 (PLK1), a protein kinase that promotes 
mitosis via phosphorylating cyclin B1 and CDK1,147 is shown 
to be overexpressed in a wide variety of cancers, including 
MB.148 Inhibiting PLK1 by small-molecule inhibitor BI 2536 
potently increased MB cellular apoptosis and sensitised cells to 
IR. It also reduced MB cell growth and CSC formation through 
decreasing the expression of SRY (sex determining region Y)-box 
2 (SOX2).148

Lastly, accumulating evidence demonstrates a crucial role of 
microRNAs in regulating and maintaining CSCs within different 
tumours. In MB, low expression of miR-466f-3p was found to 
sustain epithelial-to-mesenchymal transition in MBSHH-activated 

CSCs via Vegfa-Nrp2 signalling pathway.149 Also, Kaid et al150 
found that miR-367 enhances stemness features of MB cells, 
such as proliferation, 3D tumour spheroid cell invasion and 
the ability to generate CD133-expressing neurosphere-like 
structures. Other studied microRNAs included miR-135a,151 
miR-142–3 p,152 miR-218153 154 and miR-34a.155

Conclusions
The key for effective eradication of MB tumours and overcoming 
aggravating therapy resistance is the isolation of the MB-CSCs 
and identification of their specific molecular signatures and 
genetic aberrations. This eventually will lead to the development 
of novel therapeutic interventions and combinations to target 
aggressive MB stem cell-specific dysregulations.

Take home messages

►► Subpopulation of cells within the tumor, named cancer stem 
cells, are thought to be responsible for cancer recurrence in 
medulloblastoma.

►► The key for effective eradication of medulloblastoma tumors 
and overcoming aggravating therapy resistance is isolation of 
cancer stem cells.

►► Highly tumorigenic medulloblastoma cells display features 
imitating those of neural stem and progenitor cells, such as 
upregulation of CD133 and Nestin.
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