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CNS tumors represent the most common solid tu-
mor and the first cause of cancer death in child-
hood, adolescence, and young adulthood, and their 

incidence varies from 1 to 5 cases per 100,000 persons.31 
Although there have been significant advances in under-
standing these tumors, their prognosis remains variable 
depending on the type of tumor. For example, all children 
diagnosed with diffuse intrinsic pontine glioma (DIPG) 
eventually die from their tumor, with a median overall sur-
vival (OS) of less than 1 year,25 and for high-risk medul-
loblastoma the 5-year OS is less than 50% with standard 
treatments.54 Conversely, malignant germ-cell tumors and 
low-grade gliomas have a 5-year OS above 90%.

The failure of standard treatments is, in part, explained 

by the low penetration of drugs through the blood-brain 
barrier (BBB), which protects the brain from the circulat-
ing blood flow and restricts approximately 98% of small-
molecule drugs (< 0.5 kD) and 100% of large-molecule 
drugs from crossing the intact BBB.51 Drug delivery to the 
brain is restricted by both a mechanical function of the 
BBB, especially via the tight junctions, and a functional 
activity through a complex system of endogenous efflux 
transporters, particularly the ATP-binding cassette (ABC) 
transporters.

Several strategies have been assessed in order to by-
pass the BBB and increase drug delivery to brain tumors. 
High-dose chemotherapy is still used in current clinical 
protocols but is marked by high systemic toxicity of the 
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Pediatric brain tumors are the most common solid tumor and the first cause of cancer death in childhood, adolescence, 
and young adulthood. Current treatments are far from optimal in most of these tumors and the prognosis remains dismal 
for many of them. One of the main causes of the failure of current medical treatments is in part due to the existence 
of the blood-brain barrier (BBB), which limits drug delivery to tumors. Opening of the BBB with low-intensity pulsed 
ultrasound (LIPU) has emerged during the last 2 decades as a promising technique for enhancing drug delivery to the 
brain. In preclinical models, enhanced delivery of a wide range of therapeutic agents, from low-molecular-weight drugs, 
to antibodies and immune cells, has been observed as well as tumor control and increased survival. This technique has 
recently entered clinical trials with extracranial and intracranial devices. The safety and feasibility of this technique has 
furthermore been shown in patients treated monthly for recurrent glioblastoma receiving carboplatin chemotherapy. In 
this review, the characteristics of the BBB in the most common pediatric brain tumors are reviewed. Then, principles and 
mechanisms of BBB disruption with ultrasound (US) are summarized and described at the histological and biological 
levels. Lastly, preclinical studies that have used US-induced BBB opening in tumor models, recent clinical trials, and the 
potential use of this technology in pediatrics are provided.
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drugs.7 Intraarterial chemotherapy injection consists of lo-
coregional delivery of the drug via the cerebral arteries; a 
systematic review and meta-analysis has shown that this 
invasive approach is not superior to intravenous chemo-
therapy in terms of efficacy and OS.12 Osmotic disruption 
of the BBB is performed using hypertonic agents, such 
as mannitol, injected into a cerebral artery. Although it 
can increase delivery of drugs into the brain compared to 
systemic injection alone, the delivery is largely reversed 
within 10 minutes and not targeted to the tumor, and this 
technique may induce seizures and increase intracranial 
pressure. Moreover, osmotic disruption of the BBB in as-
sociation with carboplatin was inactive in pediatric high-
grade and brainstem gliomas.70 The functional activity of 
the BBB can also be targeted by inhibition of the drug 
efflux transporter system. Inhibition of P-glycoprotein 
with cyclosporin A was evaluated in patients with DIPG 
in association with etoposide, vincristine, and radiation 
therapy, but the regimen proved excessively toxic.23 Con-
vection-enhanced delivery has been largely studied dur-
ing the last decades, including in patients with DIPG. The 
first clinical data are encouraging, but volumes of deliv-
ery with this invasive technique are still limited.26 BBB 
disruption (BBBD) using low-intensity pulsed ultrasound 
(LIPU) in animals has recently emerged as a promising 
technique.29 This technique has been widely assessed in 
preclinical studies and was first translated to clinical trials 
in 2014.9 Encouraging results have since been observed in 
adult patients treated for recurrent glioblastoma.30,40

In this review, the characteristics of the BBB in the 
most common pediatric brain tumors are reviewed. Then, 
we focus on ultrasound (US)–induced opening of the BBB 
to review the principles, mechanisms, and histological and 
biological effects of BBBD with US; we summarize pre-
clinical studies that have used US-induced BBB opening 
on tumor models; and we report recent clinical trials that 
have been initiated.

Methods
A comprehensive review of the literature was per-

formed using a PubMed search and the ClinicalTrials.
gov website (https://clinicaltrials.gov) with the following 
keywords: (blood-brain-barrier, blood-tumor barrier) / 
(ependymoma, medulloblastoma, glioma, diffuse intrinsic 
pontine glioma, brain tumor) / (pediatric, children) and 
(blood-brain barrier, blood-tumor barrier) / ultrasound / 
(disruption, opening). Relevant articles published in En-
glish were selected based on individual merit and included 
basic science research, human subjects research, clinical 
trials, and reviews. The reference lists of included articles 
were searched for additional studies.

The BBB in Pediatric Brain Tumors
Although few studies have focused on specific features 

of the BBB in pediatric brain tumors, this certainly plays 
a major role in drug resistance and may explain the dis-
crepancies between some encouraging preclinical in vitro 
results and failure of treatments once translated into clini-
cal practice.

Diffuse gliomas are very invasive tumors character-

ized by their capacity to infiltrate the brain parenchyma. 
In both DIPG and supratentorial malignant gliomas, tu-
mor cells can be mixed with normal brain parenchyma, 
distant from the primary tumor mass.24 These tumors 
generally show little or no contrast enhancement on MRI, 
indicating an intact BBB. As many as 82.4% and 17.7% 
of WHO grade III and IV pediatric high-grade gliomas 
(pHGGs), respectively, do not exhibit enhancement,68 and 
contrast enhancement only involves 0%–25% of the tumor 
volume on average in DIPG.4 The extent of tumor infiltra-
tion compared to the small amount or absence of contrast-
enhancement implies that tumor cells can infiltrate brain 
areas protected by an intact BBB that prevents efficient 
delivery of systemically administered drugs to tumor cells 
and the microenvironment. Based on a theoretical model, 
it was estimated that only 15% of drugs currently admin-
istered to patients with DIPG may be likely to spontane-
ously cross the BBB and reach therapeutic concentration 
through an intact BBB.20 Different factors may affect BBB 
permeability in pHGG, and the microenvironment likely 
plays an important role. The heterogeneity of BBB perme-
ability was confirmed in a genetic mouse model of pHGG, 
where it was shown that BBB permeability is 67% higher 
in cortical pHGG compared to brainstem pHGG. Permea-
bility was not significantly affected by H3.3-K27M muta-
tions, but was significantly correlated with tumor volume.61 
Clinicians hypothesize that the low permeability observed 
in brainstem gliomas may explain the poor prognosis of 
these tumors. A similar observation was inferred from a 
clinical series of DIPGs in which contrast enhancement 
differed from tumor to tumor, and was more often associ-
ated with H3.1-K27M tumors, which have a better prog-
nosis compared to H3.3-K27M tumors.10 ABC drug efflux 
transporters are expressed in both brain endothelial cells 
and glioma cells and transport their substrates from these 
cells back into the blood circulation, leading to a reduced 
delivery of many drugs in gliomas.17 All three major ABC 
efflux transporters—P-glycoprotein (ABCB1), breast can-
cer resistance protein (BCRP; ABCG2), and multidrug 
resistance-associated proteins (ABCC1)—are present in 
the microvasculature of pHGG, including DIPG.69 It has 
been suggested that both P-glycoprotein and BCRP limit 
the efficacy of dasatinib in a genetic brainstem glioma 
mouse model.49

The permeability of the BBB is very variable as well 
in medulloblastomas. Signal enhancement after contrast 
injection varies from 85% to 100% of patients and can 
be subtle and heterogeneous (see review in Dangouloff-
Ros et al.16). Group 4 medulloblastomas generally lack or 
have minimal enhancement42 and have a poor prognosis; it 
was also observed that non-Wnt/non–sonic hedgehog tu-
mors with extensive gadolinium enhancement had a worse 
prognosis in comparison with tumors with no or weak 
enhancement.37 However, gadolinium is a small molecule 
that can pass easily through a damaged BBB. Thus, con-
trast enhancement may overestimate BBB permeability 
and give a false appreciation of the ability for drugs to be 
delivered to a tissue. It has been recently described that 
Wnt-medulloblastomas, curable tumors even when meta-
static, present BBB features that could explain their better 
prognosis.53 These tumors have significant hemorrhagic 
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features compared to other types, both at surgery and in 
genetic mouse models. In particular, they develop dense 
aberrant vascular networks and their endothelium exhib-
its genotype (downregulation of Cldn5 and Slc2a1) and 
phenotype (fenestrations and disrupted tight junctions) 
characteristics of peripheral endothelium. These features 
are driven by Wnt-medulloblastoma paracrine signals and 
render Wnt tumors BBB porous to systemic chemotherapy. 
These observations indicate the importance of the BBB 
in medulloblastoma treatments. Minimal data exist on 
ependymomas. Although most supra- and infratentorial 
ependymomas enhance after gadolinium injection,56 both 
P-glycoprotein and BCRP are associated with ependymo-
mas vessels, and may participate in transporter-dependent 
drug efflux in these tumors.22

Concept and Mechanisms of US-Induced 
BBBD

BBBD using LIPU in combination with injection of US 
resonators (preformed gas microbubbles) has been in pre-
clinical development for more than 20 years.29 BBBD mag-
nitude varies depending on acoustic parameters (acoustic 
pressure, frequency, burst length)11,45 and microbubble size 
and concentration.14,47 BBBD is transient and the integrity 
of the BBB has been shown to be rapidly restored after 
sonication; it begins to close immediately after disruption 
and is fully closed in 6–24 hours.29,57

When US stimulates systemically administered micro-
bubbles (1–10 mm size), the bubbles expand and contract, 
resulting in mechanical stretching of the vessel walls in 
capillaries. This leads to endothelial cell modification 
with increased transcytosis activity, formation of transen-
dothelial fenestration, and opening of the tight junctions, 
particularly occludin and claudin-5 proteins.57,58 Beyond 
modification of the physical barrier, US and microbubbles 
may also modify the functional aspect of the BBB. P-gly-
coprotein expression is inhibited up to 48 hours after soni-
cation, confirming an effect of US on drug efflux mecha-
nisms,3 without the functional impairment of endothelial 
cells.13 These different mechanisms appear progressively 
in time, and BBBD occurs in two different phases with 
early/fast leakage, and late/slow leakage.55 Figure 1 rep-
resents mechanisms underlying US-induced BBBD with 
LIPU.

Preclinical Evaluation of US-Induced BBBD 
Safety

The safety of BBBD has been assessed through preclin-
ical studies in both small and large animal models. The 
impact of US and microbubbles in the brain parenchyma 
depends on US parameters. BBBD has been obtained with 
acoustic pressures up to 0.5 MPa with few extravasated 
erythrocytes and very scarce ischemic neurons or apop-
totic cells in the sonicated area with a frequency of 690 
kHz suitable for transcranial sonication.28 Few erythro-
cyte extravasations without ischemic lesions were also ob-
served after sonications in rabbits with acoustic pressures 
up to 0.6 MPa with a skull-implantable nonfocused 1-MHz 
US device.5 A sterile inflammatory response mediated by 

the NF-κB pathway has been described up to 24 hours 
after sonication in the rat brain;36 however, this response 
is dependent on microbubble dose. Safe sonications with-
out induction of the NF-κB signaling pathway have been 
performed in the same animal at lower microbubble dos-
ages.47 Moreover, no microgliosis or astrocytosis has been 
observed up to 6 months after US-induced BBBD and 
adeno-associated virus delivery.60 Repeated BBBDs ap-
pear to be as safe as single sessions,34 and multiple studies 
have confirmed the feasibility and safety of the technique 
in nonhuman primates (NHPs) with different US devices. 
Feasibility of transcranial, cavitation-guided disruption of 
the BBB in NHPs was first described in the visual cor-
tex with a 500-kHz focused single-element transducer.41,67 
McDannold et al. used a noninvasive multi-array 1024-el-
ement device and demonstrated that multiple transcranial 
BBBDs are safe in deep and superficial targets. Animals 
repeatedly sonicated in the visual cortex recovered from 
each session without behavioral deficit or loss in visual 
acuity, and no signs of brain damage were observed in 
histological and MRI studies.43 Finally, a multiparamet-
ric study assessing behavioral, neurophysiological, imag-
ing, and histological parameters proved that safe repeated 
BBBDs are possible with an implantable US device placed 
into the skull of NHPs in front of eloquent brain areas.27 
BBBD can be observed on MRI as a pressure-dependent 
contrast enhancement after gadolinium injection in T1-
weighted sequences.29

US-Induced BBBD and Preclinical Tumor 
Models

BBBD with LIPU has been shown to enhance the deliv-
ery of a wide variety of agents into the brain in preclinical 
models. Chemotherapeutic drugs used in current neuroon-
cological protocols such as doxorubicin,65 temozolomide,6 
irinotecan,6 carboplatin,19 BCNU,39 cytarabine,75 or meth-
otrexate48 have been delivered in significant amounts after 
US-induced BBBD. Larger molecular weight molecules, 
such as monoclonal antibodies (trastuzumab33), as well as 
cells (neuronal stem cells,8 natural killer [NK] cells1) have 
also been significantly delivered to rodent healthy brain 
parenchyma and metastases in the brain after BBB per-
meabilization. Different strategies have been developed 
to improve local drug/cell delivery and efficacy after US-
induced BBBD. These strategies include the use of lipo-
somes,73 nanoparticles,63 drug-loaded microbubbles,21 or 
magnetic attraction of cells.59

BBBD with LIPU was evaluated in preclinical mod-
els of metastasis in the brain. Although results were not 
uniform, a complete disappearance of tumors has been 
observed in rats treated by trastuzumab associated with 
US and microbubbles in a breast cancer brain metastasis 
model (BT-474 HER2-positive human breast ductal car-
cinoma cells).52 Growth control was also obtained in an 
MDA-MB-361 HER2-positive model after weekly treat-
ments of rats with trastuzumab and pertuzumab associ-
ated with BBBD. Results were also heterogeneous, and no 
complete response was observed in this study.35 The het-
erogeneity observed in these studies may be due to varia-
tions in tumor vasculature or in the US distribution. In the 
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same MDA-MB-361 HER-2 positive model, a reduction 
in tumor volume and an increase in survival time after 
applying multiple sonications were observed when HER2-
specific NK cells were injected intravenously in associa-
tion with US.2

A large panel of rodent glioma models has also been 
studied. Tumor control and improved survival was ob-
tained in C6 glioma models treated with BCNU and 
BCNU-loaded microbubbles,39,64 in 9L gliosarcoma and 
glioblastoma (GBM) 8401 models treated with liposo-
mal doxorubicin,66,74 in a 9L glioma model treated with 
temozolomide,71 and in a U87 model treated with beva-
cizumab.38 All of these later studies were performed with 
focused US devices. Recently, significantly increased sur-
vival with a trend for tumor growth control was observed 
in U87 and patient-derived GBM cell-line models in mice 
treated with carboplatin and BBBD with an unfocused US 
device.19

Clinical Translation of US-Induced BBBD
This emerging technique has recently been translated 

to the clinic, with either extracranial noninvasive devic-
es or minimally invasive implantable devices (Table 1). 
In both cases, the skull represents the main obstacle for 
the application of US in the field of neurooncology, be-
cause bone induces distortion and attenuation of the US 
and causes rapid heating inside the skull.62 Three external 
US systems and 1 implantable US system are currently 
in clinical trials, as reviewed below (Fig. 2). Presently, no 
children have been included in clinical trials assessing 
US-induced BBBD.

The ExAblate system, developed by InSightec,44 was 
first designed for thermal ablation applications and then 

extended for use in BBBD. Planning and monitoring of 
BBBD with this device can be performed using the dual-
mode hemispheric array.15 Several ongoing clinical trials 
are evaluating the safety and feasibility of BBBD with 
the ExAblate system in adult patients with high-grade 
gliomas (www.clinicaltrials.gov nos. NCT03551249, 
NCT03616860, NCT03712293, NCT02343991), and breast 
cancer brain metastases (no. NCT03714243). Recently, 5 
patients with malignant brain tumors were treated in a 
phase I, single-arm study40 (study no. NCT02343991). 
BBBD was observed at tumor margins, in volumes ranging 
from 972 to 2430 mm3. The BBB integrity was confirmed 
to be restored 20 hours later. The procedure was well tol-
erated with no new or worsening symptoms during the 24 
hours following the sonication, and no significant intrace-
rebral hemorrhage or edema on control MRI. Two patients 
were previously treated with either oral temozolomide or 
intravenous doxorubicin, and increased concentrations of 
temozolomide and, to a lesser extent, doxorubicin were 
measured in sonicated tissue relative to unsonicated tissue 
(3.47 × 10-4 ng/mg vs 0.45 × 10-4 ng/mg for temozolomide 
and 0.22 ng/mg vs 0.15 ng/mg for doxorubicin, respective-
ly). NaviFUS, a Taiwanese biotech company, has designed 
an external, multichannel hemispheric phased-array US 
system, the NaviFUS System. The system has been re-
cently assessed in a single-arm dose escalation study in 
patients with recurrent GBM (study no. NCT03626896). 
Results have not yet been published. Finally, a single-el-
ement, transcranial, focused US system has recently been 
approved by the FDA for a pilot clinical trial for Alzhei-
mer’s disease (Columbia University). The treatment pro-
cedure is guided and controlled by neuronavigation and a 
passive cavitation detection device.18 To improve the safety 
of BBBD with extracranial devices, real-time monitoring 

FIG. 1. Mechanisms underlying US-induced BBBD with LIPU. Left: Circulation of microbubbles (1) in the US beam (2) creates 
cavitation. This induces modifications of the endothelial cells (3) and opening of the BBB via different ways. Closed tight junctions 
(4) are transiently opened, creating intercellular routes (5). Transcellular transport is activated, with formation and movement of 
vesicles from luminal to abluminal surfaces (6). Vesicles can also merge and form large fenestrations and then form transendo-
thelial channels (7). Drugs (8) can cross the BBB through these intercellular and transcellular ways, and thus be delivered to the 
brain parenchyma. Inhibition of efflux transporters from sonications may prevent drugs from being transported back into the blood, 
enhancing accumulation (9). Right: Opening of the BBB in a mouse brain with an unfocused US device. Targeted BBB opening 
appears as blue staining (Evans Blue) in the right hemisphere. 
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TABLE 1. Clinical trials on BBBD with LIPU indexed in https://clinicaltrials.gov in the field of neurooncology 

Study Title PI Location Status Condition US Device Drug NCT No.
The use of focused ultrasound and 

microbubble infusion for altering 
brain perfusion and the blood brain 
barrier

Santa Monica, 
CA, USA

Not yet recruiting Low-grade glioma of 
brain

— — NCT04063514

Safety and efficacy of transient open-
ing of the blood-brain barrier (BBB) 
with the SonoCloud-9

Paris, France Recruiting Glioblastoma SonoCloud-9 Carboplatin NCT03744026

Blood-brain barrier disruption using 
transcranial MRI-guided focused 
ultrasound

Toronto, ON, 
Canada

Active, not 
recruiting

Brain tumors ExAblate Doxorubicin NCT02343991

Assessment of safety and feasibility of 
ExAblate blood-brain barrier (BBB) 
disruption

College Park, MD, 
USA

Recruiting High-grade glioma ExAblate Temozolomide NCT03551249

Safety of BBB opening with the 
SonoCloud

Paris, France Completed Glioblastoma SonoCloud Carboplatin NCT02253212

Assessment of safety and feasibility of 
ExAblate blood-brain barrier (BBB) 
disruption for treatment of glioma

Toronto, ON, 
Canada

Recruiting Glioblastoma ExAblate Temozolomide NCT03616860

Safety and efficacy of SonoCloud 
device combined with Nivolumab in 
brain metastases from patients with 
melanoma

Paris, France Not yet recruiting Malignant melanoma 
brain metastasis

Sonocloud Nivolumab 
alone or w/ 
ipilimumab

NCT04021420

Safety of BBB disruption using Navi-
FUS system in recurrent glioblas-
toma multiforme (GBM) patients

Taoyuan City, 
Taiwan

Completed Glioblastoma NaviFUS — NCT03626896

Blood brain barrier disruption (BBBD) 
using MRgFUS in the treatment of 
Her2-positive breast cancer brain 
metastases

Toronto, ON, 
Canada

Not yet recruiting HER2-positive breast 
cancer brain 
metastases

ExAblate — NCT03714243

ExAblate blood-brain barrier disruption 
for glioblastoma in patients under-
going standard chemotherapy

Seoul, Republic of 
Korea

Recruiting Glioblastoma ExAblate Temozolomide NCT03712293

NCT = National Clinical Trial; PI = principal investigator.

FIG. 2. Schematic representation of US devices developed for clinical application of BBBD with LIPU. A: Extracranial hemispheric 
focused US arrays (ExAblate, NaviFUS). B: Extracranial mono-element focused device. C: Implantable, unfocused single-emitter 
US device (SonoCloud-1). D: Implantable, unfocused 9-emitter US device (SonoCloud-9).
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of acoustic activity (microbubble cavitation) has been de-
veloped.50 This system allows for a stepwise increase of 
acoustic pressure during the procedure, based on the spec-
tral information received in real-time by an associated 
hydrophone, thus reducing variability of BBBD for trans-
cranial US devices where the in situ acoustic pressure is 
unknown.

Another strategy to overcome the bone interface con-
sists of inserting a US device into the skull. The Sono-
Cloud-1 device, developed by CarThera, is an implantable 
unfocused US device that can be placed in a burr hole 
and activated using a transcutaneous connection. The first 
clinical trial using the SonoCloud-1 technology has been 
performed in adults with recurrent GBM treated with in-
travenous carboplatin (study no. NCT02253212).9 Intra-
venous carboplatin injection was started on average 106 
minutes after sonication. The BBBD procedures were well 
tolerated, without severe adverse events, including when 
sonicating eloquent brain regions.30 Both median progres-
sion-free survival (PFS) and OS were increased relative to 
historical data (4.11 vs 2–3 months for PFS and 12.94 vs 
6–9 months for OS, respectively), and better tumor control 
in the sonication field was observed. Another clinical trial 
is underway to evaluate the safety and feasibility of BBBD 
using the SonoCloud-1 device in patients with melanoma 
brain metastases (study no. NCT04021420). The Sono-
Cloud-9 device has been designed to sonicate the tumor 
and surrounding infiltrative region for patients with GBM. 
The device, with 9 1-cm–diameter transducers arranged on 
an implantable grid, is currently being assessed in an inter-
national multicenter clinical trial in patients with recurrent 
GBM (study no. NCT03744026). The SONOKID trial is 
planned to start in 2020 in Paris (France), and will assess 
the safety and feasibility of BBBD using the SonoCloud-1 
device in association with intravenous carboplatin chemo-
therapy in recurrent supratentorial malignant primitive tu-
mors (any histological type) in the pediatric population. It 
will be the first clinical trial on US-induced BBBD in the 
pediatric population.

Both extracranial and implantable devices have advan-
tages and drawbacks. Extracranial devices are noninvasive, 
and can focus on deep and variable targets in the brain, 
but they imply shaving of patients, and long and immobile 
procedures (2–4 hours); sonication is limited to small brain 
volumes (1–4 cm3), with difficulties in targeting superficial 
lesions. Implantable devices allow for fast procedures (4–
15 minutes) and BBBD in larger volumes (4–140 cm3), but 
they imply the device has to be implanted during a tumor 
debulking or biopsy surgical procedure and the targeted 
volume is fixed in a 1 device/1 volume manner. Thus, clini-
cal use of these devices in the future may be complemen-
tary, depending on the particular indication to be treated. 
Large, superficial, and infiltrative lesions such as extensive 
high-grade glioma or DIPG may be good targets for im-
plantable devices, while smaller and deep-seated lesions, 
such as hypothalamic or basal ganglia lesions, may be ide-
ally treated with extracranial devices.

Conclusions and Perspectives in Pediatric 
Neurooncology

Although there have been significant advances in un-

derstanding the biology of pediatric brain tumors, the 
treatment of these rare neoplasms is still challenging for 
neurooncologists and neurosurgeons, in part due to limited 
drug delivery through the BBB. BBBD with LIPU may be 
a method to overcome this limitation. This technique has 
many advantages compared to other strategies: 1) non- or 
minimal invasiveness; 2) local and targeted disruption; 3) 
possible targeting of both superficial and deep lesions; 4) 
transient disruption; 5) possible delivery of large molecules 
or immune cells; and 6) proven safety in preclinical and 
clinical studies. BBBD with LIPU has recently entered 
clinical trials in adults, with encouraging results, and clini-
cal trials assessing the feasibility and safety of the tech-
nique in the pediatric population are planned to begin in 
the coming year. It will be the first step toward treatment 
of pediatric brain tumors with this technique in associa-
tion with standard drugs, and emerging therapies such as 
targeted or immune therapies.

Different treatment protocols have been described in 
preclinical studies, with variable results,2,75 and both deliv-
ery before and after sonication have been assessed in clini-
cal trials.30,40 The optimal treatment schedule is likely ther-
apy dependent. This implies taking into account the type 
of treatment (cell, molecule), the pharmacokinetics of the 
drug (if any) and its route of delivery (oral, intravenous), 
and the formulation of the treatment (loaded-microbubble, 
liposome). Thus, each treatment protocol will have to be 
adapted to the agent delivered.

Moreover, some obstacles specific to the pediatric pop-
ulation will have to be overcome. Skull bone is expected to 
be similar or have less attenuation to US in children com-
pared with adults, therefore the same transcranial US sys-
tems can likely be used. The feasibility of transcranial US 
ablation of centrally located tumors in pediatric patients 
performed with the Insightec ExAblate 4000 system is be-
ing evaluated (study no. NCT03028246). The thinner skull 
bone could be compensated for by adjusting the geometry 
of implantable devices and placing silicon spacers between 
the bone and the transducer. Anatomical considerations for 
deep-seated and posterior fossa lesions have to be taken 
into consideration with implantable devices. The US emit-
ter shape and frequency can be optimized to efficiently 
cover large and deep tumor areas, and design of the trans-
ducer and the connection system will need adjustment for 
implantation in the posterior fossa due to the orientation of 
the occipital bone and the cervical muscle insertions. Neu-
ronavigation systems may be needed to accurately insert 
the devices, especially for those targeting the brainstem. 
The lengthy procedure needed with extracranial systems 
can be a limitation in young children. Although constrain-
ing, general anesthesia is feasible under certain conditions 
without interfering with US-mediated disruption, as shown 
in preclinical studies.46 The overall transcranial treatment 
duration can also be reduced with advanced real-time mon-
itoring and rapid electronic beam steering techniques32 or 
by designing a single-element US emitter with a relatively 
large focal size associated with neuronavigation.72
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