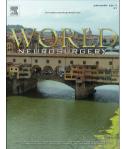

The 100 Most Influential Publications on Medulloblastoma: Areas of Past, Current, and Future Focus

Nolan J. Brown, BS, Bayard Wilson, MD, Shane Shahrestani, MS, Elliot H. Choi, MS, Brian V. Lien, MS, Anushka Paladugu, BS, Katelynn Tran, BS, Seth C. Ransom, BS, Ali R. Tafreshi, MS, Ryan Chase Ransom, MD PhD, Ronald Sahyouni, MD MS PhD, Alvin Y. Chan, MD, Isaac Yang, MD

DOI: https://doi.org/10.1016/j.wneu.2020.11.038


Reference: WNEU 16309

- To appear in: World Neurosurgery
- Received Date: 18 August 2020
- Revised Date: 7 November 2020
- Accepted Date: 7 November 2020

Please cite this article as: Brown NJ, Wilson B, Shahrestani S, Choi EH, Lien BV, Paladugu A, Tran K, Ransom SC, Tafreshi AR, Ransom RC, Sahyouni R, Chan AY, Yang I, The 100 Most Influential Publications on Medulloblastoma: Areas of Past, Current, and Future Focus, *World Neurosurgery* (2020), doi: https://doi.org/10.1016/j.wneu.2020.11.038.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Inc. All rights reserved.

The 100 Most Influential Publications on Medulloblastoma: Areas of Past, Current, and Future Focus

*Nolan J. Brown BS¹, *Bayard Wilson MD¹⁰, *Shane Shahrestani MS^{2,3}, Elliot H. Choi MS⁴, Brian V. Lien MS¹, Anushka Paladugu BS¹, Katelynn Tran BS⁵, Seth C. Ransom BS⁶, Ali R. Tafreshi MS⁷, Ryan Chase Ransom MD PhD⁸, Ronald Sahyouni MD MS PhD⁹, Alvin Y. Chan, MD¹, Isaac Yang MD¹⁰

*The authors contributed equally to the present manuscript

¹Department of Neurological Surgery, University of California, Irvine, Orange, CA, USA
 ²Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
 ³Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
 ⁴School of Medicine, Case Western Reserve University, Cleveland, CA, USA
 ⁵University of Southern California, Los Angeles, CA, USA
 ⁶College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
 ⁷Department of Neurological Surgery, Geisinger Health System, Danville, PA, USA
 ⁸Department of Neurological Surgery, University of California, San Diego, La Jolla, CA, USA
 ⁹Department of Neurological Surgery, University of California, Los Angeles, CA, USA

Key Words: Medulloblastoma; cerebellar primitive neuroectodermal tumor; PNET

Short running title: Medulloblastoma: A Bibliometric Analysis

Corresponding author:

Nolan J. Brown, B.S. Department of Neurological Surgery University of California, Irvine Email: nolanb@uci.edu

1 Abstract

2

Background: This article is the first to identify the most influential papers on medulloblastoma

4 using the citation analysis methodology.

5 **Objective:** To perform a bibliometric analysis of the 100 most cited articles on

6 medulloblastoma.

7 Methods: Using the Web of Science (WoS) database, search criteria included the title-specific

8 keyword "medulloblastoma" OR "cerebellar primitive neuroectodermal tumor (PNET)" OR

9 "cerebellar PNET". Publications from 1900-2020 labelled "article", "review", "data set", or

10 "clinical trial" were chosen and ranked based on total number of citations in descending order.

11 Outcome Measures: Each article was evaluated based on the following variables: total citations,

12 average citations per year (CY), first author, institution of first author, title, publication year,

13 country of origin, SCImago Journal Rank, and Scopus SNIP (Source Normalized Impact per

14 Paper).

Results: Our search yielded 4,928 publications on medulloblastoma. The 100 most-cited
publications ranged from 1925-2017 across 42 unique journals; The Journal of Clinical
Oncology accounted for the most publications (16%). Paul A. Northcott first-authored the most
papers on the list (n=7.7%), while the most widely cited paper was entitled "Altered neural cell
fates and medulloblastoma in mouse patched mutants", authored by Goodrich et al. in *Science*(1997).

Conclusion: As medulloblastoma represents the most common form of pediatric cancerous brain
tumor, it is important to identify works that have significantly contributed to the body of
knowledge regarding this disease. The 100 most-cited medulloblastoma articles comprise a

- 24 significant collection of data regarding the histopathological and molecular classification of
- 25 medulloblastoma as well as clinical outcomes of therapeutics used to treat this disease.
- 26

Journal Prevention

27 Introduction

Medulloblastomas are primitive neuroectodermal tumors (PNETs), and due to their 28 location in the cerebellum, are sometimes specifically referred to as cerebellar PNETs.¹ Although 29 these tumors occur in patients of all ages, they are the most prevalent malignant brain tumors in 30 children, with slightly greater prevalence in males, and comprise only 1-2% of adult brain 31 tumors.^{2,3} Medulloblastomas typically present with increased intracranial pressure due to their 32 characteristic location within the fourth ventricle.² Additionally, as medulloblastomas tend to 33 34 metastasize, secondary central nervous system (CNS) tumors develop in roughly one-third of patients, and a small subset of patients exhibit extraneural metastases.⁴ 35 36 Medulloblastoma is often treated with a multi-modal combination of surgery, radiation, or chemotherapy.⁵ Due to advances in surgical approaches, nonsurgical therapies, and diagnostic 37 imaging modalities, medulloblastoma is currently curable in approximately 70% of children.⁶ 38 39 However, progression-free survival is less than 50% for children with high-risk medulloblastoma, which remains a significant cause of mortality.^{4,7,8} For children with non-40 disseminated medulloblastoma, five-year survival rate is approximately 80% and many who 41 survive achieve remission.³ Nonetheless, as many survivors experience significant neurological 42 43 and cognitive deficits, there is a great need for advancements in the understanding of medulloblastoma biological dynamics and tumor stratification so that treatments can be 44 optimized and individualized in the future.³ 45 Histologically, medulloblastomas are categorized based on morphology: classic (CLA), 46 large cell/anaplastic (LCA), desmoplastic/nodular (DN), and medulloblastoma with extensive 47 nodularity (MBEN).⁹ Alternatively, as increased grade and extent of anaplasia have been 48

49 associated with poorer clinical outcomes, a two-tiered anaplastic versus non-anaplastic grading

50 system has been proposed, and infant medulloblastomas are often stratified by the presence or absence of desmoplastic morphology.^{10,11} Furthermore, genomic studies have indicated that there 51 52 exist 4 subgroups of 12 different medulloblastoma subtypes, including 2 Wnt, 4 Shh, 3 group 3, and 3 group 4 groups - each with their distinct copy-number variations, signaling pathways, and 53 clinical outcomes.^{10,12} Although the four subgroups are well-accepted, the degree of overlap 54 between subgroups and the diversity within them is not as well-established.⁹ Currently, there are 55 56 risk stratification biomarkers and clinical trials for therapeutics that incorporate each of the 4 57 molecular subgroups, however further research is needed to refine management strategies which include chemotherapy, surgical resection, and cranio-spinal irradiation - for each of the 58 different subtypes.¹⁰ 59

Over recent years, bibliometric analyses have been used to identify the most influential 60 publications to maximize educational resources for translational scientists and evidence-based 61 62 practices for clinicians. These analyses measure scholarly impact of individual studies based on the quantity of citations, citation rates, research trends/themes, and the relative impact of both 63 basic science and clinical studies.¹³ Prior studies in the neurosurgical and neuro-oncology fields 64 have found that for diffuse intrinsic pontine glioma, clinical progress has been greatly hampered 65 by a still-developing basic science knowledge base¹³; additionally, they have helped analyze 66 trends in tumor immunotherapy and brought those therapies with the greatest potential into 67 focus¹⁴, and have revealed that the past two decades of pediatric neurosurgery research have 68 69 been centered on "big data" trend/cost analyses, which are often less useful (relative to studies comparing the effectiveness of interventions) for clinical decision-making.¹⁵ By using methods 70 similar to those employed in these informative studies, we aim to perform a bibliometric analysis 71 on medulloblastoma to understand the current state of medulloblastoma research - including a 72

73 benchmark of strengths and targets of future focus - and to point towards important

74 developments in our understanding of the disease pathogenesis.

- 75
- 76 Methods

On March 28, 2020, a title-specific keyword search was performed using the Web of 77 Science (WoS) database to identify the most influential articles on medulloblastoma. As this 78 79 disease is sometimes termed "cerebellar primitive neuroectodermal tumor (PNET)", the following search criteria were used for the years 1900 to 2020: "medulloblastoma" OR 80 "cerebellar primitive neuroectodermal tumor" OR "cerebellar PNET". After these terms were 81 82 searched using the WoS "All databases" option, the results were arranged according to the number of times each article was cited in descending order. In order to avoid the subjective 83 exclusion of studies from this analysis, all papers from the search were included if they were 84 85 ranked 1 to 100 in terms of number of total citations. The following variables were then extracted for each article: total number of citations and average number of citations per year 86 (CY), article title, publication year, total citations for each article, article country of origin, and 87 name and institution of first author. In order to quantify relevance, the average citations per year 88 89 (CY) for each article was calculated as previously described by Jani and colleagues in January 2020, and SCImago Journal Rank (a journal prestige and influence metric) and Scopus SNIP 90 (Source Normalized Impact per Paper), which represents the ratio of a source's average citations 91 per paper to the citation potential in that source's specific field ¹⁶, were obtained.¹⁷ Previous 92 93 bibliometric analyses have reported using CY to calculate citation frequency relative to article age in order to correct for the time advantage of older studies.^{16,17} Furthermore, articles were 94 classified as belonging to one of three possible categories: basic science, clinical, or literature 95

96 review. Basic science papers included those that focused on tumorigenesis in medulloblastoma
97 as well as its molecular classification, while clinical papers reported histopathological results
98 involving patient outcomes in the clinical setting. Any inconsistencies that arose were resolved
99 through clarification with the senior author (RS) and a thorough investigation of the article in full
100 text.

101

102 **Results**

103 The WoS search for the present study yielded 4,928 publications involving 104 medulloblastoma. The 100 most-cited articles were then selected for review using the "Times 105 Cited" filter on WoS (Table 1). These articles ranged in publication year from 1925-2017; the 106 year which exhibited the greatest number of top 100 cited papers was 2012 (11% of top 100 cited publications) (Figure 1). Notably, a significant proportion of the top 100 papers was published 107 108 after 1990 (86%); only four papers on the list were published prior to 1970. Additionally, only 109 one paper on the list – published in the year 1925 – is from before 1950. Sorting by decade, the 2000s yielded the most publications (46%), followed by the 2010s (25%) and the 1990s (15%) 110 111 (Table 2). The top 100 articles on medulloblastoma have been cited a combined a total of 30,873 112 times, with an average of 308.7 citations per article (Table 1), and a median of 15.6 citations per 113 year (range, 3.14-87.22). Overall, the United States contributed the majority (63%) of articles on 114 this list, followed by Germany (12%), and then Canada (10%) (Figure 2). Notably prolific 115 academic centers included St. Jude Children's Research Hospital (14%), the University of 116 Toronto/ TheHospital for Sick Children (9%), and the German Cancer Research Center (8%). 117 When examining the top 10 articles specifically, citations numbers ranged from 487-1267 118 citations, and all by one were published after the year 2000.

119	The most frequently cited article on medulloblastoma is "Altered neural cell fates and
120	medulloblastoma in mouse patched mutants," a basic science study which was published in
121	Science in 1997 and has been cited 1,267 times (Table 1). The most prolific author on the top
122	100 list is Northcott, PA, who has authored seven articles on the top 100 list (Table 3).
123	
124	Journal of Publication
125	The list of 100 most cited articles on medulloblastoma includes contributions from 42
126	different journals, 15 of which have published two or more works related to this topic. The
127	journals that have published the most top cited articles on medulloblastoma include Journal of
128	Clinical Oncology (16%), Nature (9%), Cancer Cell (7%), and Journal of Neurosurgery (6%)
129	(Table 4).
130	
131	Countries and Institutions
132	Eleven countries were listed as the location of correspondence for the top 100 articles.
133	The country with the highest contribution of articles was the United States with 63 (63%),
134	followed by Germany (12%) and Canada (10%) (Table 5). The top 3 institutions with the most
135	contributions among the top 100 articles were St. Jude Children's Research Hospital with 14
136	articles (14%), University of Toronto/The Hospital for Sick Children with 9 articles (9%), and
137	German Cancer Research Center with 8 articles (8%) (Table 6).
138	
139	Article Category
140	Among the top 100 articles, most were categorized as basic science (n=47), followed by
141	clinical (n=42) and then literature review (n=11) (Table 7, Figure 3). Of the top 10 articles, 5

142	were categorized as basic science, 4 as clinical, and 1 as a literature review. The most-cited basic
143	science article was also the most cited article overall (previously mentioned above), and ranked
144	6th in CY with 52.8. The most-cited clinical article was "Brief Report: Treatment of
145	Medulloblastoma with Hedgehog Pathway Inhibitor GDC-0449" published in New England
146	Journal of Medicine, and it ranked 3rd overall in both total citations (727) and CY (60.58) (Table
147	1). The top 100 articles were also classified according to the following topics: 1) cellular and
148	molecular biology (Table 8), 2) genetics (Table 9), and therapeutics and/or clinical outcomes
149	(Table 10).
150	
151	Authors

In an analysis of the top 100 articles, the most prolific author was Paul A. Northcott, who
published 7 articles, followed by Roger J. Packer (who published 4), and RJ Gilbertson (3)
(Table 3). Of Northcott's articles, 1 (14.3%) was clinical, 5 (71.4%) were basic science, and 1
(14.3%) was a review. A majority of his articles (n=5, 71.4%) were published in a Nature family
journal and discussed the genetic correlates of medulloblastoma.

157

158 Discussion

Bibliometric analyses can help provide insight into the status of research within a particular field, identify strengths of research and areas where it is lacking, and highlight articles that can assist researchers, trainees, and clinicians.¹⁶ To the authors' knowledge, the present study is the first bibliometric analysis to identify the most impactful studies, individuals, institutions, and research disciplines with respect to medulloblastoma. It identifies the top 100

164	articles based on citation count, and evaluates the publication impact of each by calculating
165	additional metrics including CY, SCImago Journal Rank, and Scopus SNIP.
166	It is unsurprising that the top 100 articles on medulloblastoma are published across 42
167	unique journals, as research on medulloblastoma comprises a complex, dynamic, and
168	multidisciplinary field. The most cited study overall – Goodrich et al's "Altered neural cell fates
169	and medulloblastoma in mouse patched mutants," – was published in Science in 1997 and
170	received the 6th most CY (52.79). ¹⁸ While total citation count might indicate that an article has
171	historical – but not recent – importance, CY is the primary measure of current relevance
172	independent of an article's time in circulation. ¹⁶ Because Goodrich's 1997 study is 6th highest in
173	CY, its total citation count likely stems from both its current and historical relevance. This basic
174	science article examines the effects of inactivating PATCHED (PTC) gene mutations on
175	embryogenesis and tumorigenesis in mice. Interestingly, PTC is a human tumor suppressor gene
176	(and component of the Hedgehog (SHH) signaling pathway) that, when mutated, increases risk
177	of developmental defects, basal cell carcinoma, and brain tumors in patients with basal cell nevus
178	syndrome (BCNS). ¹⁸ In Goodrich's study, homozygous PTC mutations proved fatal, while mice
179	heterozygous for the mutant allele displayed a phenotype similar to that seen in BCNS,
180	including limb defects and cerebellar medulloblastomas. ¹⁸ As such, Goodrich and colleagues
181	reported that PTC is a key regulator of growth and pattern formation during neurogenesis and in
182	the adult cerebellum, and that the SHH-PTC pathway could be of direct relevance to
183	medulloblastoma diagnostics and therapeutics. ¹⁸ Ultimately, their pioneering work is among the
184	original works which eventually lead to identification of the SHH medulloblastoma subgroup; it
185	has since been found that germline PTC mutations are responsible for Gorlin syndrome, which
186	predisposes individuals to medulloblastoma. ¹⁹

187 In the time since Goodrich's basic science study, general consensus has formed around 188 the existence of four medulloblastoma subgroups. These four groups are outlined in the 2nd 189 most-cited study, "Molecular subgroups of medulloblastoma: the current consensus", and the 190 study with the 2nd highest CY, "Medulloblastoma Comprises Four Distinct Molecular Variants" by Northcott and colleagues. The former study, which was published by Taylor and colleagues in 191 192 Acta Neuropathologica in 2012, was the most cited literature review article in the top 100, with 193 785 total citations since 2012, and also exhibited the highest CY (87.22) of all studies. 194 Essentially, it contextualized and established the molecular classification scheme proposed by Northcott in their 2011 study.¹² Through a genomics and transcriptional profiling analysis, 195 196 Northcott and colleagues proposed a 4 subgroup tumor classification system based on variations in genetic events, immunohistochemistry, and prognosis: WNT, SHH, Group 3, and Group 4.¹² 197 Paul Northcott's contributions to the field both as a student and as an independent researcher 198 were significant because they laid the groundwork for the design of future risk-targeted therapies 199 based on the gene mutations and prognostic factors associated with each subgroup.¹² In the 200 literature review that followed, Taylor and colleagues solidified Northcott's classification 201 202 scheme by declaring consensus as to the existence of four molecular subgroups, which they predicted would continue to evolve and inform care for medulloblastoma patients.¹⁹ This review 203 article's high total citation ranking and CY suggests that it has been useful for researchers, 204 205 clinicians, and trainees alike, however this is also a reflection of the impact of prior 206 advancements contributed by primary clinical and basic science research articles that are lower 207 on the list. Including this 2012 study, Taylor has published two articles in the top 10 most-cited (2nd 208

and 7th overall). According to the article that ranks 7th by citation count, "Mutations in SUFU

210 predispose to medulloblastoma", germline SUFU (a negative regulator in the SHH-PTC 211 pathway) mutations genetically predispose infants to medulloblastoma in the first years of life 212 with worse prognosis than is normally observed for SHH subgroup medulloblastomas. Given 213 that SHH medulloblastomas are already categorized as high risk, Taylor et al suggested the use 214 of even more intensive chemotherapies for patients with the higher risk SUFU germline mutation.²⁰ At the time, SUFU was a newly-identified tumor suppressor gene, and this study 215 highlights the surge of basic science medulloblastoma research investigating molecular dynamics 216 that occurred following Goodrich's 1997 report on the SHH-PTL pathway.²⁰ Indeed, this surge 217 corresponds to the outpouring of medulloblastoma studies which occurred during the 2000s, the 218 219 most prolific decade to date with respect to medulloblastoma research.

Another important article to highlight is Packer and colleagues' "Phase III study of 220 craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-221 risk medulloblastoma", is the 10th most-cited study on medulloblastoma.²¹ Published in 2006 in 222 223 the Journal of Clinical Oncology, it was - at the time of its publication - the largest prospective randomized controlled trial ever performed for pediatrics medulloblastoma patients, and reported 224 a "favorable" event-free survival rate for pediatric non-disseminated medulloblastoma treated 225 with reduced-dose craniospinal radiation and chemotherapy.²¹ Additionally, Packer et al. 226 227 suggested the use of chemotherapy for all pediatric medulloblastoma patients, and their use of 228 reduced-dose radiation therapy has continued to inform risk-stratified clinical trials (which seek 229 to determine when craniospinal radiation can be avoided in pediatric patients) in the years after the establishment of the four medulloblastoma subgroups.^{21,22} 230

More recently, Cavalli and colleagues – in "Intertumoral Heterogeneity within
 Medulloblastoma Subgroups", which ranks 74th and 13th in total citations and CY, respectively –

233 expanded upon previous classifications to identify 12 medulloblastoma subtypes using their 234 similarity network fusion (SNF) cluster analysis of genome-wide DNA methylation and gene expression¹⁰. These included two WNT, four SHH, three group 3, and three group 4 subtypes.¹⁰ 235 As improved subtype characterization can aid clinicians and researchers in drug selection, 236 outcome prediction, novel therapeutic development, and risk stratification biomarker 237 238 identification, the Taylor and Cavalli classification studies have proven paramount to the development of clinical trials in recent years.^{10,19} For example, Robinson and colleagues recently 239 240 reported results of a multicenter, Phase II clinical trial which investigated the effect of a riskadapted therapeutic approach on survival in a large cohort of pediatric medulloblastoma 241 patients.²³ They reported that the SHH subgroup exhibited higher progression-free survival 242 compared to the group 3 subgroup, and that within the SHH subgroup, the iSHH-II subtype 243 showed improved progression-free survival (when not treated with radiation or 244 intraventricular/high-dose chemotherapy) as compared to the iSHH-I subtype.²³ By laying the 245 246 foundation for the development of risk-stratified therapies, the classification systems imparted but Taylor and Cavalli have demonstrated the importance of medulloblastoma molecular tumor 247 classification, possibly demonstrating why basic science studies have predominated to this point. 248 249 Of the top 10 most-cited articles, 5 were classified as basic science studies, 4 were clinical 250 reports, and 1 was a literature review. A similar trend was noted in the top 20 most-cited articles, 251 as 10 were basic science reports, 6 were clinical studies, and 4 were literature reviews. In total, 252 47% of all studies were classified as basic science research, highlighting the fact that the 253 molecular underpinnings of medulloblastoma - although largely identified - have not been resolved.⁹ As the DNA methylation patterns, histone modifications, chromatin remodeling 254 255 features, genomic structural variations, and proteomics of each subgroup are uncovered, clinical

studies investigating precision therapies will be increasingly well-informed going forward.⁹ In
fact, as a result of advances in cancer genomics, single-cell sequencing and tumor models⁹, they
will likely supplant basic science studies as the focus of medulloblastoma research becomes
increasingly translational (and they are already a close 2nd, comprising 42% of the 100 mostcited studies).

Finally, many of the oldest studies included in this analysis, including the 1925 study by Bailey et al., continue to be cited because they established the framework of medulloblastoma symptomology, etiology, and diagnosis. Landmark studies such as this have a great deal of historical significance and established clear diagnostic principles that continue to guide modern patient management.

266

267 Limitations

Due to the nature of this study's design, there are several possible limitations that must be 268 brought to light. First and foremost, it is important to acknowledge that citation number is not a 269 definitive measure of article importance or quality, and that this method can potentially lead to 270 bias. For example, an inherent bias associated with ranking the top 100 medulloblastoma papers 271 272 by citation is that it can skew results towards favoring earlier publications, as they have had more time to accrue citations than recent articles.²⁴ In response to this potential bias, CY (Table 1) for 273 274 each article have been reported, as these values may be more indicative of publication relevance.¹⁷ However, a potential confound that remains is due to the "obliteration by 275 incorporation" effect, in which well-established knowledge from older, original articles is no 276 longer cited.¹⁷ Next, the title-specific search performed through Web of Science in the present 277 278 study could have resulted in the erroneous exclusion of qualifying papers from the 100 most-

cited list, including those from non-indexed journals, books, and other reports.²⁵ More 279 280 specifically, the Web of Science is not all-encompassing and only contains journal articles 281 published in English; however, its use as a database for bibliometric analyses is well established.^{24,26} Additionally, the present study rests upon the logical assumption that any 282 publication relevant to medulloblastoma will contain the terms "medulloblastoma" or "cerebellar 283 284 primitive neuroectodermal tumor" or "cerebellar PNET" within its title. Finally, in evaluating 285 contributing authors and institutions, only first authors and their respective institutions were 286 included. As a result, our study may not have identified secondary authors and/or contributing 287 institutions in multicenter studies that have had a significant impact on medulloblastoma 288 research. Lastly, our review of medulloblastoma literature was comprehensive and ranged almost 289 a century. As a result, it is possible that some studies included in our review are legacy studies that may be cited through common practice and deference to our history. However, the authors 290 291 opted to include these studies because they highlight the evolution of medulloblastoma research 292 and spotlight trends in citation strategies within the field. Regardless of these potential 293 limitations, the present study remains, to the authors' knowledge, the only to perform 294 bibliometric analysis on medulloblastoma.

295

296 Conclusion

As the only article which has identified the 100 most influential articles on medulloblastoma, the present study can aid researchers, trainees, and clinicians alike in selecting well-established sources related to this disease. Because medulloblastoma is the most common cancerous tumor in childhood, it will continue to be investigated by future researchers, who can reference our report in order to quickly retrieve relevant information. Reflecting nearly a century's worth of publications, the 100 most cited medulloblastoma articles were published in

303 42 unique journals, owing to the diverse and multidisciplinary nature of care for this disease.

304 Although basic science research has proven crucial in unearthing the complex molecular

305 classification of this extremely heterogeneous tumor, there is a great need for clinical trials to

306 eventually supplant basic science studies as the focus of medulloblastoma research. However,

307 until the four molecular variants and their numerous subtypes are better characterized, basic

308 science studies will continue to be instrumental in informing the next wave of targeted therapies.

309

310 **References**

- 311 1.Saran F, Baumert BG, Creak AL, et al. Hypofractionated stereotactic radiotherapy in the
- 312 management of recurrent or residual medulloblastoma/PNET. Pediatr Blood Cancer. 2008
- 313 Mar;50(3):554-556
- 314 2.Bartlett F, Kortmann R, Saran F. Medulloblastoma. Clinical oncology. 2013 Jan 1;25(1):36-45.
- 315 3.Packer RJ, Vezina G. Management of and prognosis with medulloblastoma: therapy at a
- 316 crossroads. *Arch Neurol*. 2008 Nov 10;65(11):1419-1424.
- 317 4.Gilbertson RJ. Medulloblastoma: signalling a change in treatment. Lancet Oncol. 2004 Apr
- 318 1;5(4):209-218.
- 319 5. Fan X, Eberhart CG. Medulloblastoma stem cells. *J Clin Oncol.* 2008 Jun 10;26(17):2821.
- 320 6. Leary SE, Olson JM. The molecular classification of medulloblastoma: driving the next
- 321 generation clinical trials. *Curr Opin Pediatr*. 2012 Feb;24(1):33.
- 322 7.Ellison DW, Clifford SC, Gajjar A, Gilbertson RJ. What's new in neuro-oncology? Recent
- 323 advances in medulloblastoma. Eur J Paediatr Neurol. 2003;7(2):53-66
- 324 8.Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma comprises four distinct molecular
- 325 variants. *J Clin Oncol.* 2011 Apr 10;29(11):1408.
- 326 9.Zou H, Poore B, Broniscer A, et al. Molecular Heterogeneity and Cellular Diversity:
- 327 Implications for Precision Treatment in Medulloblastoma. *Cancers*. 2020 Mar;12(3):643.
- 328 10.Cavalli FM, Remke M, Rampasek L, et al. Intertumoral heterogeneity within
- 329 medulloblastoma subgroups. *Cancer Cell*. 2017 Jun 12;31(6):737-754.
- 330 11.Eberhart CG, Kepner JL, Goldthwaite PT, et al. Histopathologic grading of
- 331 medulloblastomas: a Pediatric Oncology Group study. *Cancer*. 2002 Jan 15;94(2):552-560.

- 332 12.Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma comprises four distinct
- 333 molecular variants. *J Clin Oncol*. 2011 Apr 10;29(11):1408.
- 13.Lu VM, Power EA, Kerezoudis P, Daniels DJ. The 100 most-cited articles about diffuse
- intrinsic pontine glioma: a bibliometric analysis. Childs Nerv Syst. 2019 Dec 1;35(12):2339-
- **336** 2346.
- 14. Lu K, Yu S, Yu M, et al. Bibliometric analysis of tumor immunotherapy studies. *Med Sci Monit.* 2018;24:3405.
- 339 15.Oravec CS, Motiwala M, Reed K, et al. Big data research in pediatric neurosurgery: Content,
- 340 statistical output, and bibliometric analysis. *Pediatr Neurosurg*. 2019;54(2):85-97.
- 341 16.Ibrahim Burak Atci, Hakan Yilmaz, Mustafa Yavuz Samanci. The top 50 most-cited articles
- on low-grade glioma: a bibliometric analysis. *Br J Neurosurg*. 2019 Apr;33(2):171-175.
- 343 17.Jani RH, Prabhu AV, Zhou JJ, et al. Citation analysis of the most influential articles on
- traumatic spinal cord injury. *J Spinal Cord Med.* 2020 Jan 2;43(1):31-38.
- 345 18. Goodrich LV, Milenković L, Higgins KM, Scott MP. Altered neural cell fates and
- medulloblastoma in mouse patched mutants. *Science*. 1997 Aug 22;277(5329):1109-1113.
- 347 19. Taylor MD, Northcott PA, Korshunov A, et al. Molecular subgroups of medulloblastoma: the
- 348 current consensus. *Acta Neuropathol*. 2012 Apr 1;123(4):465-472.
- 349 20. Taylor MD, Liu L, Raffel C, et al. Mutations in SUFU predispose to medulloblastoma. *Nat*
- 350 *Genet*. 2002 Jul;31(3):306-310.
- 351 21. Packer RJ, Gajjar A, Vezina G, et al. Phase III study of craniospinal radiation therapy
- 352 followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin
- 353 *Oncol.* 2006 Sep 1;24(25):4202-4208.

- 354 22.Mynarek M, von Hoff K, Pietsch T, et al. Nonmetastatic medulloblastoma of early childhood:
- 355 Results from the prospective clinical trial HIT-2000 and an extended validation cohort. J Clin
- **356** *Oncol.* 2020 Apr; 38(18):2028-2040
- 357 23.Robinson GW, Rudneva VA, Buchhalter I, et al. Risk-adapted therapy for young children
- 358 with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, phase
- 359 2 trial. *Lancet Oncol.* 2018 Jun 1;19(6):768-784.
- 360 24. De la Garza-Ramos R, Benvenutti-Regato M, Caro-Osorio E. The 100 most-cited articles in
- 361 spinal oncology. *J Neurosurg*. 2016 May 1;24(5):810-823.
- 362 25.Samanci Y, Samanci B, Sahin E. Bibliometric analysis of the top-cited articles on idiopathic
- 363 intracranial hypertension. *Neurol India*. 2019 Jan 1;67(1):78.
- 364 26.Guo X, Gao L, Wang Z, et al. Top 100 most-cited articles on pituitary adenoma: a
- 365 bibliometric analysis. *World Neurosurg*. 2018 Aug 1;116:1153-1167.
- 366

367 Figure Legend

368	
369	Table 1. Top 100 papers on medulloblastoma by citation number
370	
371	Figure 1. Trends in the top 100 most cited medulloblastoma article publications by decade.
372	
373	Table 2. The number of publications per decade for the top 100 most highly cited articles.
374	
375	Figure 2. Percent distribution of the most cited articles by country of origin.
376	
377	Table 3. The frequency of authors who contributed 2 or more articles.
378	
379	Table 4. The journal of publications in which the top 100 most cited articles were published.
380	
381	Table 5. Countries of origin for the top cited papers on medulloblastoma.
382	
383	Table 6. Top contributing institutions based on first author
384	
385	Table 7. Category type of the 100 most cited articles.
386	
387	Figure 3. Percentage distribution by article category for the top 100 articles.
388	
389	Table 8. List of the studies investigating cellular and molecular biology
390	T-11. O. L'A - Caller at the interaction of the
391	Table 9. List of the studies investigating genetics
392	Table 10 List of the studies investigating theremostics and/or aligical outcomes
393 394	Table 10. List of the studies investigating therapeutics and/or clinical outcomes
394 395	
396	
397	
398	
399	
400	
401	
402	

Rank by Total Citations	Rank by Average Citations per Year	Title	Authors	Journal Title	Year of Publicatio n	Total Citations	Average Citations per Year	Country	Type of Study
1	6	Altered neural cell fates and medullobl astoma in mouse patched mutants	Goodrich, LV	SCIENCE	1997	1267	52.79	USA	Basic Science
2	1	Molecular subgroups of medullobl astoma: the current consensus	Taylor, Michael D.	ACTA NEUROP ATHOLO GICA	2012	785	87.22	Canada	Review
3	3	Brief Report: Treatment of Medullobl astoma with Hedgehog Pathway Inhibitor GDC- 0449.	Rudin, Charles M.	NEW ENGLAN D JOURNA L OF MEDICIN E	2009	727	60.58	USA	Clinical
4	2	Medullobl astoma Comprises Four Distinct Molecular Variants	Northcott, Paul A.	JOURNA L OF CLINICA L ONCOLO GY	2011	700	70	Canada	Clinical
5	20	Medullobl astoma growth inhibition by Hedgehog pathway	Berman, DM	SCIENCE	2002	659	34.68	USA	Basic Science

 Table 1. Top 100 papers on medulloblastoma by citation number

		blockade							
6	8	Smoothen ed Mutation Confers Resistance to a Hedgehog Pathway Inhibitor in Medullobl astoma		SCIENCE	2009	605	50.42	USA	Basic Science
7		Mutations in SUFU predispose to medullobl astoma	Taylor,	NATURE GENETIC S	2007	547		Canada	Basic Science
		Risk- adapted craniospin al radiothera py followed by high- dose chemother apy and stem-cell rescue in children with newly diagnosed medullobl astoma (St Jude Medullobl astoma- 96): long- term results from a prospectiv		LANCET ONCOLO					
8	21	e,	Amar	GY	2006	500	33.33	USA	Clinical

		multicentr e trial							
9	10	The Genetic Landscape of the Childhood Cancer Medullobl astoma	Parsons, D. Williams	SCIENCE	2011	499	49.9	USA	Basic Science
		Phase III study of craniospin al radiation therapy followed by adjuvant chemother apy for newly diagnosed average- risk medullobl		JOURNA L OF CLINICA L ONCOLO	6		<u>j</u>		
10	22	astoma Dissecting the genomic complexit y underlyin g medullobl	Roger J. Jones, David T.	GY	2006	487	32.47	USA	Clinical Basic
11	4	astoma	W.	NATURE	2012	481	53.44	Germany	Science

	Molecular subgroups							
	of medullobl astoma:							
	an internatio nal meta-							
	analysis of							
	transcripto me,							
	genetic aberration							
	s, and clinical data of					5		
	WNT, SHH,							
	Group 3, and Group 4		ACTA NEUROP	30				
12	4 medullobl 5 astomas	Kool, Marcel	ATHOLO GICA	2012	477	53	Germany	Review
12	Targeting brain	Marcer	OICA	2012	4//		Germany	Keview
	cancer: advances							
	in the molecular	2						
	pathology of malignant							
	glioma and		NATURE REVIEW					
13	medullobl 16 astoma	Huse, Jason T.	S CANCER	2010	462	42	USA	Review
	THE CEREBE							
	LLAR MEDULL	,	JOURNA L OF					
	OBLAST OMA		NEUROP ATHOLO					
	AND ITS RELATIC		GY AND EXPERI					
	NSHIP TO	RORKE,	MENTAL NEUROL					
14	64 PRIMITI	LB	OGY	1983	458	12.05	USA	Review

		VE NEUROE CTODER MAL							
		TUMORS Novel mutations target distinct subgroups of medullobl	Robinson,				C		Basic
15	7	astoma	Giles	NATURE	2012	456	50.67	USA	Science
		Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medullobl astoma in children: Conclusio ns from			6		5		
16	39	the Children's Cancer Group 921 randomize d phase III study		JOURNA L OF CLINICA L ONCOLO GY	1999	453	20.59	USA	Clinical
		Integrated Genomics Identifies Five Medullobl astoma Subtypes with Distinct Genetic	Kool,	PLOS				Netherlan	
17	19	Profiles, Pathway	Marcel	ONE	2008	452	34.77		Clinical

		Signatures and Clinicopat hological Features							
18	26	Genomics identifies medullobl astoma subgroups that are enriched for specific genetic alterations	Thompson , MC	JOURNA L OF CLINICA L ONCOLO GY	2006	452	30.13	USA	Basic Science
19	0	Medullobl astoma exome sequencin g uncovers subtype- specific somatic mutations	Pugh, Trevor J.	NATURE	2012	451	50.11	USA	Basic Science
	9	Genome Sequencin g of Pediatric Medullobl astoma Links Catastrop hic DNA Rearrange ments with TP53		NATURE	2012	4,51	50.11	USA	Basic
20	11	Mutations		CELL	2012	447	49.67	Germany	Science

21	33	Treatment of early childhood medullobl astoma by postoperat ive chemother apy alone	Rutkowsk i, S	NEW ENGLAN D JOURNA L OF MEDICIN E	2005	447	27.94	Germany	Clinical
22	12	Subgroup- specific structural variation across 1,000 medullobl astoma genomes	Northcott, Paul A.	NATURE	2012	432	48	Canada	Basic Science
23	18	Subtypes of medullobl astoma have distinct developm ental origins	Gibson, Paul	NATURE	2010	430	39.09	USA	Basic Science
24	55	THE TREATM ENT OF MEDULL OBLAST OMA - RESULT S OF A PROSPE CTIVE RANDO MIZED TRIAL	EVANS, AE;	JOURNA L OF NEUROS URGERY	1990	430	13.87	USA	Clinical

		OF RADIATI ON- THERAP Y WITH AND WITHOU T CCNU, VINCRIS TINE, AND PREDNIS ONE							
25	36	Suppressi on of the Shh pathway using a small molecule inhibitor eliminates medullobl astoma in Ptc1(+/-) p53(-/-) mice	Romer, JT	CANCER CELL	2004	406	23.88	USA	Basic Science
26		Integrativ e Genomic Analysis of Medullobl astoma Identifies a Molecular Subgroup That Drives Poor Clinical Outcome	Cho,	JOURNA L OF CLINICA L ONCOLO GY	2011	396		USA	Basic Science

		Medullobl							
		astoma							
		can be							
		initiated							
		by							
		deletion							
		of patched							
		in lineage-							
		restricted							
		progenitor							
		s or stem	Yang,	CANCER					Basic
27	25	cells	Zeng-Jie	CELL	2008	394	30.31	Australia	Science
27	25		Zelig-Jie	CELL	2008	574	50.51	Australia	Science
		Acquisitio							
		n of							
		granule							
		neuron							
		precursor							
		identity is							
		a critical							
		determina							
		nt of							
		progenitor							
		cell							
		competen							
		ce to form							
		Shh-							
		induced							
		medullobl	Schueller,	CANCER					Basic
28	30	astoma	Ulrich	CELL	2008	365	28.08	USA	Science
		TREATM		AMERIC					
		ENT		AN					
		AND		JOURNA					
		PROGNO		L OF					
		SIS OF		ROENTG					
		MEDULL		ENOLOG					
		OBLAST		Y					
		OMA IN		I RADIUM					
		CHILDR		THERAP					
		EN - A		Y AND					
		STUDY		NUCLEA					
		OF 82							
		VERIFIE	BLOOM,	R MEDICIN					
20	05				1040	260	6.06	TICA	Clinical
29	83	D CASES	HJG	E	1969	362	0.90	USA	Clinical

30	98	Medullobl astoma cerebelli - A common type of midcerebe llar glioma of childhood	Bailey, P	ARCHIV ES OF NEUROL OGY AND PSYCHIA TRY	1925	359	3.74	USA	Clinical
31	59	OUTCO ME FOR CHILDR EN WITH MEDULL OBLAST OMA TREATE D WITH RADIATI ON AND CISPLAT IN, CCNU, AND VINCRIS TINE CHEMOT HERAPY	PACKER, RJ	JOURNA L OF NEUROS URGERY	1994	347	12.85	USA	Clinical
32	48	Expressio n profiling of medullobl astoma: PDGFRA and the RAS/MA PK pathway as therapeuti c targets for metastatic disease	MacDonal d, TJ	NATURE GENETIC S	2001	336	16.8	USA	Basic Science

33	34	PI3K pathway regulates survival of cancer stem cells residing in the perivascul ar niche following radiation in medullobl astoma in vivo	Hambardz umyan, Dolores	GENES & DEVELO PMENT	2008	332	25.54	USA	Basic Science
34		Interfering with Resistance to Smoothen ed Antagonis ts by Inhibition of the PI3K Pathway in		SCIENCE TRANSL ATIONA L	2010	328	29.82		Basic Science
35		Intellectua l outcome after reduced- dose radiation therapy plus adjuvant chemother apy for medullobl astoma : A children's cancer group	Ris, MD	JOURNA L OF CLINICA L ONCOLO GY	2001	323	16.15		Clinical

		study							
		ADJUVA NT CHEMOT HERAPY FOR MEDULL OBLAST OMA - THE 1ST MULTIC ENTER CONTRO L TRIAL OF THE INTERN ATIONA L SOCIETY OF PEDIATR		EUROPE	6		Ś		
		IC ONCOLO GY (SIOP		AN JOURNA L OF					
36	28	I) Hedgehog beyond medullobl astoma and basal cell carcinoma	DM Teglund, Stephan	CANCER BIOCHI MICA ET BIOPHYS ICA ACTA- REVIEW S ON CANCER	2010	321		England	Clinical Basic Science
		Genome Sequencin g of SHH Medullobl astoma Predicts Genotype- Related Response to Smoothen ed	Kool,	CANCER					Basic
38	15	Inhibition		CELL	2014	314	44.86	Germany	Science

39	56	Atypical teratoid/rh abdoid tumor of the central nervous system: A highly malignant tumor of infancy and childhood frequently mistaken for medullobl astoma - A pediatric oncology group study	Burger, PC	AMERIC AN JOURNA L OF SURGIC AL PATHOL OGY	1998	307	13.35	USA	Clinical
40	35	astoma beta-	Northcott, Paul A.	NATURE GENETIC S	2009	298	24.83	Canada	Basic Science
41	45	catenin status predicts a favorable outcome in childhood medullobl astoma: The United Kingdom	Ellison, DW	JOURNA L OF CLINICA L ONCOLO GY	2005	290	18.13	England	Clinical

		Children's Cancer Study Group Brain Tumour Committe e							
12		Medullobl astoma: clinicopat hological correlates of SHH, WNT, and non- SHH/WN T molecular		ACTA NEUROP ATHOLO			50		
42	31	subgroups Clonal	David W.	GICA	2011	280	28	USA	Clinical
43	24	selection drives genetic divergenc e of metastatic	Wu, Xiaochon g	NATURE	2012	279	31	Canada	Basic Science
		Postoperat ive neoadjuva nt chemother apy before radiothera py as compared to immediate radiothera py followed by maintenan ce		INTERN ATIONA L JOURNA L OF RADIATI ON ONCOLO GY BIOLOG					
44	58	apy in the	Kortmann . RD	Y PHYSICS	2000	274	13.05	Germany	Clinical
гт 	50	"PJ III tile	,		2000	274	15.05	Sermany	Simour

	treatment of medullobl astoma in childhood: Results of the German prospectiv e randomize d trial HIT '91							
45	 Neuropsy chologic functionin g of survivors of childhood medullobl astoma randomize d to receive conventio nal or reduced- dose craniospin al irradiation : A Pediatric Oncology Group 5tudy 	SIL	JOURNA L OF CLINICA L ONCOLO GY	1998	266	11.57	USA	Clinical
46	Loss of p53 but not ARF accelerate s medullobl astoma in mice heterozyg ous for 60 patched		CANCER RESEAR CH	2001	257	12.85	USA	Basic Science

47	88	MEDULL OBLAST OMA IN CHILDH OOD - SURVIV AL AND FUNCTI ONAL RESULT S	HIRSCH, JF	ACTA NEUROC HIRURGI CA	1979	254	6.05	Austria	Clinical
48	86	MEDULL OBLAST OMA - CLINICA L PRESEN TATION AND MANAG EMENT - EXPERIE NCE AT THE HOSPITA L-FOR- SICK- CHILDR EN, TORONT O, 1950- 1980	PARK, TS	JOURNA L OF NEUROS URGERY	1983	248	6.53	USA	Clinical
49	40	Identificat ion of CD15 as a Marker for Tumor- Propagati ng Cells in a Mouse Model of Medullobl astoma	Read, Tracy- Ann	CANCER CELL	2009	241	20.08	USA	Basic Science

50	65	Patterns of intellectua l developm ent among survivors of pediatric medullobl astoma: A longitudin al analysis		JOURNA L OF CLINICA L ONCOLO GY	2001	240	12	USA	Clinical
51	57	Medullobl astoma: signalling a change in treatment	Gilbertson , RJ	LANCET ONCOLO GY	2004	227	13.35	USA	Review
52	42	MicroRN A profiling in human medullobl astoma	Ferretti, Elisabetta	INTERN ATIONA L JOURNA L OF CANCER	2009	226	18.83	Italy	Basic Science
53	53	Neurocog nitive consequen ces of risk- adapted therapy for childhood medullobl astorna	Mulhern, RK	JOURNA L OF CLINICA L ONCOLO GY	2005	226	14.13	USA	Clinical
54	43	Dual and opposing roles of primary cilia in medullobl astoma	Han, Young- Goo	NATURE MEDICIN E	2009	225	18.75	USA	Basic Science

Oxysta s stimul Sonic hedgel signal transd on and prolife on of medul astoma	ate nog ucti rati	PROCEE DINGS OF THE NATION AL ACADE MY OF SCIENCE S OF THE UNITED STATES					
55 51 cells	a Corcoran, Ryan B.	OF AMERIC A	2006	225	15	USA	Basic Science
Antitu activit the rapam analog	y of ycin	2	KO,				
CCI-7 in hun primit neuroe derma tumor	79 han ive ecto I me	0					
dullob oma model single agent in combi	s as and						
on		CANCER					D .
56 69 apy	ther Geoerger, B	RESEAR CH	2001	221	11.05	USA	Basic Science

57	92	RADIATI ON TREATM ENT FOR MEDULL OBLAST OMA - A 21-YEAR REVIEW	BERRY, MP	JOURNA L OF NEUROS URGERY	1981	221	5.53	Canada	Clinical
		Results of a randomize d study of preradiati on chemother apy versus radiothera py alone for nonmetast atic medullobl astoma: The Internatio nal Society of Paediatric Oncology United Kingdom Children's Cancer Study Group PNET-3	Taylor,	JOURNA L OF CLINICA L ONCOLO					
 58	63	study	RE	GY	2003	219	12.17	England	Clinical
59	22	Enhancer hijacking activates GFI1 family oncogenes in medullobl	Northcott,	NATURE	2014	218	21.1.1	Germany	Basic Science

		astoma							
60		The miR- 17 similar to 92 cluster collaborat es with the Sonic Hedgehog pathway in medullobl astoma	Uziel, Tamar	PROCEE DINGS OF THE NATION AL ACADE MY OF SCIENCE S OF THE UNITED STATES OF AMERIC A	2009	215	17.92	USA	Basic Science
		Outcome Prediction			0	9			
		in Pediatric Medullobl			C				
		astoma Based on DNA							
		Copy- Number Aberratio							
		ns of Chromoso mes 6q and 17q		JOURNA L OF					
		and the MYC and MYCN	Dfistor	L OF CLINICA L ONCOLO					
61	47	Loci	Pfister, Stefan	GY	2009	213	17.75	Germany	Clinical
		MEDULL OBLAST							
		OMA - REPORT OF 201							
		CASES WITH EMPHAS	CHATTY						
62	95	IS ON RELATIO	, EM	CANCER	1971	213	4.26	USA	Clinical

	NSHIP OF HISTOLO GIC VARIAN TS TO SURVIV AL							
	PROSPE CTIVE RANDO MIZED TRIAL OF CHEMOT HERAPY GIVEN BEFORE RADIOT HERAPY IN CHILDH OOD MEDULL OBLAST OMA - INTERN ATIONA L- SOCIETY OF- PEDIATR IC- ONCOLO GY (SIOP) AND THE (GERMA N)- SOCIETY OF- PEDIATR		MEDICA L AND PEDIATR IC					
63 80	GY	BAILEY,	ONCOLO GY	1995	210	8 08	England	Clinical
	- /						0	

		SIOP-II							
64	75	Risks of young age for selected neurocogn itive deficits in medullobl astoma are associated with white matter loss	Mulhern, RK	JOURNA L OF CLINICA L ONCOLO GY	2001	208	10.4	USA	Clinical
						9			
65	78	Prognostic significan ce of HER2 and HER4 coexpressi on in childhood medullobl astoma	Gilbertson , RJ	CANCER RESEAR CH	1997	206	8.58	England	Clinical
		MULTIP LE BASAL- CELL NEVI SYNDRO ME - AN ANALYS IS OF A SYNDRO ME	GORLIN,						
66	99	CONSIST ING OF		CANCER	1965	206	3.68	USA	Review

		MULTIP LE NEVOID BASAL- CELL CARCIN OMA JAW CYSTS SKELET AL ANOMA LIES MEDULL OBLAST OMA AND HYPORE SPONSIV ENESS TO PARATH ORMON E			6				
67	83	EXPRESS ION OF THE NEUROT ROPHIN RECEPT OR TRKC IS LINKED TO A FAVORA BLE OUTCO ME IN MEDULL OBLAST OMA	SEGAL, RA	PROCEE DINGS OF THE NATION AL ACADE MY OF SCIENCE S OF THE UNITED STATES OF AMERIC A	1994	201	7.44	USA	Clinical

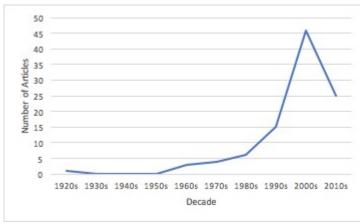
69		medullobl astoma MicroRN A-199b- 5p Impairs Cancer Stem Cells through Negative Regulatio n of HES1 in Medullobl astoma	WH	Y PHYSICS PLOS ONE	2004	198	11.65		Clinical
		Advantag e of protons compared to conventio nal X-ray or IMRT in the treatment of a pediatric patient with		INTERN ATIONA L JOURNA L OF RADIATI ON ONCOLO GY BIOLOG	6	0			
68	66	Clinical, histopatho logic, and molecular markers of prognosis: Toward a new disease risk stratificati on system for medullobl astoma	Gajjar, A	JOURNA L OF CLINICA L ONCOLO GY	2004	199	11.71	USA	Clinical

71	54	Daoy medullobl astoma cells that express CD133 are radioresist ant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia	Blazek, Ed R.	INTERN ATIONA L JOURNA L OF RADIATI ON ONCOLO GY BIOLOG Y PHYSICS	2007	0 197	14.07	USA	Basic Science
72	32	Decoding the regulatory landscape of medullobl astoma using DNA methylatio n sequencin g	Hovestadt , Volker	NATURE	2014	196	28	Germany	Basic Science
73		Rapid, reliable, and reproduci ble molecular sub- grouping of clinical medullobl astoma samples	Northcott, Paul A.	ACTA NEUROP ATHOLO GICA	2012	193		Canada	Basic Science

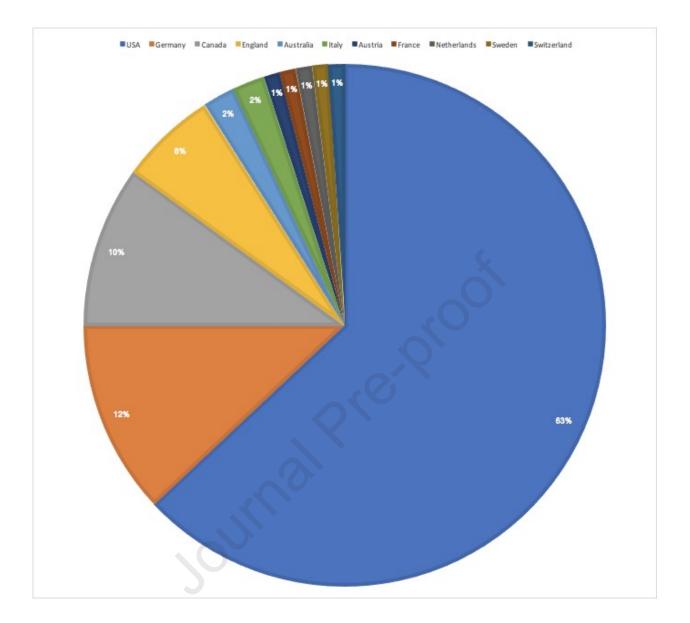
74	13	Intertumor al Heterogen eity within Medullobl astoma Subgroups	Florence	CANCER CELL	2017	190	47.5	Canada	Clinical
75	89	A MUSCLE ACETYL CHOLIN E- RECEPT OR IS EXPRESS ED IN THE HUMAN CEREBE LLAR MEDULL OBLAST OMA CELL- LINE TE671	LUTHER, MA	JOURNA L OF NEUROS CIENCE	1989	188	5.88	USA	Basic Science
		ESTABLI SHMENT OF A HUMAN MEDULL OBLAST OMA CELL- LINE AND ITS HETERO TRANSP LANTAT ION INTO NUDE-	JACOBS	JOURNA L OF NEUROP ATHOLO GY AND EXPERI MENTAL NEUROL					Basic
76	94	MICE	EN, PF	OGY	1985	188	5.22	Australia	Science

77	91	STRUCT URAL CHROM OSOMAL - ABNOR MALITIE S IN HUMAN MEDULL OBLAST OMA	BIGNER, SH	CANCER GENETIC S AND CYTOGE NETICS	1988	187	5.67	USA	Basic Science
78	62	Incidence and severity of postoperat ive cerebellar mutism syndrome in children with medullobl astoma: a prospectiv e study by the Children's Oncology, Group	Robertson , Patricia L.	JOURNA L OF NEUROS URGERY	2006	186	12.4	USA	Clinical
79	84	Effects of medullobl astoma resections on outcome in children: A report from the children's cancer group	Albright, AL	NEUROS URGER Y	1996	185	7.4	USA	Clinical

80	52	The origins of medullobl astoma subtypes	Gilbertson , Richard J.	ANNUAL REVIEW OF PATHOL OGY- MECHA NISMS OF DISEASE	2008	184	14.15	USA	Review
81	87	THE INCIDEN CE OF GORLIN SYNDRO ME IN 173 CONSEC UTIVE CASES OF MEDULL OBLAST OMA	EVANS, DGR	BRITISH JOURNA L OF CANCER	1991	184	613	England	Clinical
81	87	OMA	DGR	CANCER	1991	184	6.13	England	Clinical
82	14	The whole- genome landscape of medullobl astoma subtypes	Northcott, Paul A.	NATURE	2017	180	45	Germany	Basic Science
83	73	Sonic hedgehog and insulin- like growth factor signaling synergize to induce medullobl	Rao, G	ONCOGE NE	2004	179	10.53	USA	Basic Science
		astoma							


		formation from nestin- expressing neural progenitor s in mice							
84	100		RUBINST EIN, LJ	BRAIN	1964	179	3.14	USA	Clinical
85	70	Genomic and protein expression profiling identifies CDK6 as novel independe nt prognostic marker in medullobl astoma	Mendrzyk , F	JOURNA L OF CLINICA L ONCOLO GY	2005	176	11	Germany	Basic Science
86	96	MEDULL OBLAST OMA IN CHILDR EN - CORREL ATION BETWEE N STAGIN G AND	HARISIA DIS, L	INTERN ATIONA L JOURNA L OF RADIATI ON ONCOLO GY BIOLOG Y	1977	176	4	USA	Clinical

		RESULT S OF TREATM ENT		PHYSICS					
87	77	Intensity- modulated radiation therapy for pediatric medullobl astoma: Early report on the reduction of ototoxicit y	Huang, E	INTERN ATIONA L JOURNA L OF RADIATI ON ONCOLO GY BIOLOG Y PHYSICS	2002	175	9.21	USA	Clinical
88	81	Medullobl astoma: clinical and biologic aspects.	Packer, R J	Neuro- oncology	1999	175	7.95	USA	Review
89	61	Medullobl astoma in childhood: new biological advances	Crawford, John R.	LANCET NEUROL OGY	2007	174	12.43	USA	Review
90	97	ESTABLI SHMENT OF A HUMAN MEDULL OBLAST OMA CELL LINE	MCALLI STER, RM	INTERN ATIONA L JOURNA L OF CANCER	1977	174	3.95	USA	Basic Science


91	41	The clinical implicatio ns of medullobl astoma subgroups	Northcott, Paul A.	NATURE REVIEW S NEUROL OGY	2012	173	19.22	Canada	Review
92	71	Treatment of medullobl astoma with postoperat ive chemother apy alone: an SFOP prospectiv e trial in young children	Grill, J	LANCET ONCOLO GY	2005	173	10.81	France	Clinical
93	90	IMPROV ED SURVIV AL WITH THE USE OF ADJUVA NT CHEMOT HERAPY IN THE TREATM ENT OF MEDULL OBLAST OMA	PACKER, RJ	JOURNA L OF NEUROS URGERY	1991	172	5.73	USA	Clinical

94	72	Loss of patched and disruption of granule cell developm ent in a pre- neoplastic stage of medullobl astoma	Oliver, TG	DEVELO PMENT	2005	170	10.63	USA	Basic Science
95	79	Low-stage medullobl astoma: Final analysis of trial comparing standard- dose with reduced- dose neuraxis irradiation	Thomas,	JOURNA L OF CLINICA L ONCOLO GY	2000	170	8.1	USA	Clinical
96	93	AMPLIFI CATION OF THE C-MYC GENE IN HUMAN MEDULL OBLAST OMA CELL- LINES AND XENOGR AFTS	BIGNER, SH	CANCER RESEAR CH	1990	170	5.48	USA	Basic Science

97	Medullobl astoma: developm ental mechanis ms out of 74	Marino, S	TRENDS IN MOLECU LAR MEDICIN E	2005	168	10.5	Switzerlan d	Review
98	BET Bromodo main Inhibition of MYC- Amplified Medullobl 37	Bandopad hayay, Pratiti	CLINICA L CANCER RESEAR CH	2014	167	23.86	USA	Basic Science
99	An Animal Model of MYC- Driven Medullobl 44 astoma	Pei, Yanxin	CANCER CELL	2012	167	18.56	USA	Basic Science
	Patched target Igf2 is indispensa ble for the formation of medullobl astoma and rhabdomy		JOURNA L OF BIOLOGI CAL CHEMIS					Basic

Journal Pre-proof

Journal Pre-proof

Rank by Total Citations	Rank by Average Citations per Year	Title	Authors	Journal Title	Year of Publication	Total Citations	Average Citations per Year
3	3	Brief Report: Treatment of Medulloblastoma with Hedgehog Pathway Inhibitor GDC-0449.	Rudin, Charles M.	NEW ENGLAND JOURNAL OF MEDICINE	2009	727	60.58
			.0	00			
8	21	Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial	Gajjar, Amar	LANCET ONCOLOG Y	2006	500	33.33
10	22	Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma	Packer, Roger J.	JOURNAL OF CLINICAL ONCOLOG Y	2006	487	32.47

Table 10. List of the studies investigating therapeutics and/or clinical outcomes

16	39	Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study	Zeltzer, PM	JOURNAL OF CLINICAL ONCOLOG Y	1999	453	20.59
21	33	Treatment of early childhood medulloblastoma by postoperative chemotherapy alone	Rutkows ki, S	NEW ENGLAND JOURNAL OF MEDICINE	2005	447	27.94
24	55	THE TREATMENT OF MEDULLOBLASTOMA - RESULTS OF A PROSPECTIVE RANDOMIZED TRIAL OF RADIATION-THERAPY WITH AND WITHOUT CCNU, VINCRISTINE, AND PREDNISONE	EVANS, AE;	JOURNAL OF NEUROSU RGERY	1990	430	13.87
29	85	TREATMENT AND PROGNOSIS OF MEDULLOBLASTOMA IN CHILDREN - A STUDY OF 82 VERIFIED CASES	BLOOM, HJG	AMERICAN JOURNAL OF ROENTGE NOLOGY RADIUM THERAPY AND NUCLEAR MEDICINE	1969	362	6.96

30	98	Medulloblastoma cerebelli - A common type of midcerebellar glioma of childhood	Bailey, P	ARCHIVES OF NEUROLO GY AND PSYCHIAT RY	1925	359	3.74
31	59	OUTCOME FOR CHILDREN WITH MEDULLOBLASTOMA TREATED WITH RADIATION AND CISPLATIN, CCNU, AND VINCRISTINE CHEMOTHERAPY	PACKE R, RJ	JOURNAL OF NEUROSU RGERY	1994	347	12.85
35	50	Intellectual outcome after reduced- dose radiation therapy plus adjuvant chemotherapy for medulloblastoma : A children's cancer group study	Ris, MD	JOURNAL OF CLINICAL ONCOLOG Y	2001	323	16.15
36	76	ADJUVANT CHEMOTHERAPY FOR MEDULLOBLASTOMA - THE 1ST MULTICENTER CONTROL TRIAL OF THE INTERNATIONAL SOCIETY OF PEDIATRIC ONCOLOGY (SIOP I)	TAIT, DM	EUROPEA N JOURNAL OF CANCER	1990	321	10.35

41	45	Beta-catenin status predicts a favorable outcome in childhood medulloblastoma: The United Kingdom Children's Cancer Study Group Brain Tumour Committee	Ellison, DW	JOURNAL OF CLINICAL ONCOLOG Y	2005	290	18.13
44	58	Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: Results of the German prospective randomized trial HIT '91	Kortman n, RD	INTERNATI ONAL JOURNAL OF RADIATION ONCOLOG Y BIOLOGY PHYSICS	2000	274	13.05
45		Neuropsychologic functioning of survivors of childhood medulloblastoma randomized to receive conventional or reduced- dose craniospinal irradiation: A Pediatric Oncology Group Study	Mulhern, RK	JOURNAL OF CLINICAL ONCOLOG Y	1998	266	11.57
47	88	MEDULLOBLASTOMA IN CHILDHOOD - SURVIVAL AND FUNCTIONAL RESULTS	HIRSCH , JF	ACTA NEUROCHI RURGICA	1979	254	6.05

48	86	MEDULLOBLASTOMA - CLINICAL PRESENTATION AND MANAGEMENT - EXPERIENCE AT THE HOSPITAL-FOR-SICK- CHILDREN, TORONTO, 1950-1980	PARK, TS	JOURNAL OF NEUROSU RGERY	1983	248	6.53
50	65	Patterns of intellectual development among survivors of pediatric medulloblastoma: A longitudinal analysis	Palmer, SL	JOURNAL OF CLINICAL ONCOLOG Y	2001	240	12
51	57	Medulloblastoma: signaling a change in treatment	Gilbertso n, RJ	LANCET ONCOLOG Y	2004	227	13.35
53	53	Neurocognitive consequences of risk-adapted therapy for childhood medulloblastorna	Mulhern, RK	JOURNAL OF CLINICAL ONCOLOG Y	2005	226	14.13
57	92	RADIATION TREATMENT FOR MEDULLOBLASTOMA - A 21-YEAR REVIEW	BERRY, MP	JOURNAL OF NEUROSU RGERY	1981	221	5.53
56	69	Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy	Geoerge r, B	CANCER RESEARC H	2001	221	11.05

Journal Pre-proof

58	63	Results of a randomized study of preradiation chemotherapy versus radiotherapy alone for nonmetastatic medulloblastoma: The International Society of Paediatric Oncology United Kingdom Children's Cancer Study Group PNET-3 study	Taylor, RE	JOURNAL OF CLINICAL ONCOLOG Y	2003	219	12.17
61		Outcome Prediction in Pediatric Medulloblastoma Based on DNA Copy-Number Aberrations of Chromosomes 6q and 17q and the MYC and MYCN Loci	Pfister, Stefan	JOURNAL OF CLINICAL ONCOLOG Y	2009	213	17.75
62	95	MEDULLOBLASTOMA - REPORT OF 201 CASES WITH EMPHASIS ON RELATIONSHIP OF HISTOLOGIC VARIANTS TO SURVIVAL	CHATTY , EM	CANCER	1971	213	4.26

63	80	PROSPECTIVE RANDOMIZED TRIAL OF CHEMOTHERAPY GIVEN BEFORE RADIOTHERAPY IN CHILDHOOD MEDULLOBLASTOMA - INTERNATIONAL-SOCIETY-OF- PEDIATRIC-ONCOLOGY (SIOP) AND THE (GERMAN)-SOCIETY- OF-PEDIATRIC-ONCOLOGY (GPO) - SIOP-II	BAILEY, CC	MEDICAL AND PEDIATRIC ONCOLOG Y	1995	210	8.08
64	75	Risks of young age for selected neurocognitive deficits in medulloblastoma are associated with white matter loss	Mulhern, RK	JOURNAL OF CLINICAL ONCOLOG Y	2001	208	10.4
65	78	Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma		CANCER RESEARC H	1997	206	8.58
68	66	Clinical, histopathologic, and molecular markers of prognosis: Toward a new disease risk stratification system for medulloblastoma	Gajjar, A	JOURNAL OF CLINICAL ONCOLOG Y	2004	199	11.71

69	67	Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma	St Clair, WH	INTERNATI ONAL JOURNAL OF RADIATION ONCOLOG Y BIOLOGY PHYSICS	2004	198	11.65
78	62	Incidence and severity of postoperative cerebellar mutism syndrome in children with medulloblastoma: a prospective study by the Children's Oncology, Group	Robertso n, Patricia L.	JOURNAL OF NEUROSU RGERY	2006	186	12.4
79	84	Effects of medulloblastoma resections on outcome in children: A report from the children's cancer group	Albright, AL	NEUROSU RGERY	1996	185	7.4
81	87	THE INCIDENCE OF GORLIN SYNDROME IN 173 CONSECUTIVE CASES OF MEDULLOBLASTOMA	EVANS, DGR	BRITISH JOURNAL OF CANCER	1991	184	6.13
86	96	MEDULLOBLASTOMA IN CHILDREN - CORRELATION BETWEEN STAGING AND RESULTS OF TREATMENT	HARISIA DIS, L	INTERNATI ONAL JOURNAL OF RADIATION ONCOLOG Y BIOLOGY PHYSICS	1977	176	4

87	77	Intensity-modulated radiation therapy for pediatric medulloblastoma: Early report on the reduction of ototoxicity	Huang, E	INTERNATI ONAL JOURNAL OF RADIATION ONCOLOG Y BIOLOGY PHYSICS	2002	175	9.21
89	61	Medulloblastoma in childhood: new biological advances	Crawford , John R.	LANCET NEUROLO GY	2007	174	12.43
92	71	Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children	Grill, J	LANCET ONCOLOG Y	2005	173	10.81
93	90	IMPROVED SURVIVAL WITH THE USE OF ADJUVANT CHEMOTHERAPY IN THE TREATMENT OF MEDULLOBLASTOMA	PACKE R, RJ	JOURNAL OF NEUROSU RGERY	1991	172	5.73
95	79	Low-stage medulloblastoma: Final analysis of trial comparing standard- dose with reduced-dose neuraxis irradiation	Thomas, PRM	JOURNAL OF CLINICAL ONCOLOG Y	2000	170	8.1

		studies investigating cellular an		biology			
Rank by Total Citations	Rank by Average Citations per Year	Title	Authors	Journal Title	Year of Publication	Total Citations	Average Citations per Year
1	6	Altered neural cell fates and medulloblastoma in mouse patched mutants	Goodrich, LV	SCIENCE	1997	1267	52.79
2	1	Molecular subgroups of medulloblastoma: the current consensus	Taylor, Michael D.	ACTA NEUROPAT HOLOGICA	2012	785	87.22
5	20	Medulloblastoma growth inhibition by Hedgehog pathway blockade	Berman, DM	SCIENCE	2002	659	34.68
6	8	Smoothened Mutation Confers Resistance to a Hedgehog Pathway Inhibitor in Medulloblastoma	Yauch, Robert L.	SCIENCE	2009	605	50.42
13	16	Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma	Huse, Jason T.	NATURE REVIEWS CANCER	2010	462	42
14	64	THE CEREBELLAR MEDULLOBLASTOMA AND ITS RELATIONSHIP TO PRIMITIVE NEUROECTODERMAL TUMORS	RORKE, LB	JOURNAL OF NEUROPAT HOLOGY AND EXPERIMEN TAL NEUROLOG Y	1983	458	12.05

Table 8. List of the studies investigating cellular and molecular biology

23	18	Subtypes of medulloblastoma have distinct developmental origins	Gibson, Paul	NATURE	2010	430	39.09
25	36	Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/-) p53(-/-) mice	Romer, JT	CANCER CELL	2004	406	23.88
27	25	Medulloblastoma can be initiated by deletion of patched in lineage- restricted progenitors or stem cells	Yang, Zeng-Jie	CANCER CELL	2008	394	30.31
28	30	Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma	Schueller, Ulrich	CANCER CELL	2008	365	28.08
32	48	Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease	MacDonald, TJ	NATURE GENETICS	2001	336	16.8

33	34	PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo	Hambardzu myan, Dolores	GENES & DEVELOPM ENT	2008	332	25.54
34	27	Interfering with Resistance to Smoothened Antagonists by Inhibition of the PI3K Pathway in Medulloblastoma	Buonamici, Silvia	SCIENCE TRANSLATI ONAL MEDICINE	2010	328	29.82
37	28	Hedgehog beyond medulloblastoma and basal cell carcinoma	Teglund, Stephan	BIOCHIMIC A ET BIOPHYSIC A ACTA- REVIEWS ON CANCER	2010	317	28.82
39	56	Atypical teratoid/rhabdoid tumor of the central nervous system: A highly malignant tumor of infancy and childhood frequently mistaken for medulloblastoma - A pediatric oncology group study	Burger, PC	AMERICAN JOURNAL OF SURGICAL PATHOLOG Y	1998	307	13.35

				1			
42	31	Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups	Ellison, David W.	ACTA NEUROPAT HOLOGICA	2011	280	28
46	60	Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched	Wetmore, C	CANCER RESEARCH	2001	257	12.85
49	40	Identification of CD15 as a Marker for Tumor-Propagating Cells in a Mouse Model of Medulloblastoma	Read, Tracy-Ann	CANCER CELL	2009	241	20.08
52	42	MicroRNA profiling in human medulloblastoma	Ferretti, Elisabetta	INTERNATI ONAL JOURNAL OF CANCER	2009	226	18.83
55	51	Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells	Corcoran, Ryan B.	PROCEEDI NGS OF THE NATIONAL ACADEMY OF	2006	225	15

				SCIENCES OF THE UNITED STATES OF AMERICA			
54	43	Dual and opposing roles of primary cilia in medulloblastoma development	Han, Young-Goo	NATURE MEDICINE	2009	225	18.75
			6.9	0			
59	23	Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma	Northcott, Paul A.	NATURE	2014	218	31.14
60	46	The miR-17 similar to 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma	Uziel, Tamar	PROCEEDI NGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA	2009	215	17.92

66	99	MULTIPLE BASAL-CELL NEVI SYNDROME - AN ANALYSIS OF A SYNDROME CONSISTING OF MULTIPLE NEVOID BASAL- CELL CARCINOMA JAW CYSTS SKELETAL ANOMALIES MEDULLOBLASTOMA AND HYPORESPONSIVENESS TO PARATHORMONE	GORLIN, RJ	CANCER	1965	206	3.68
67	83	EXPRESSION OF THE NEUROTROPHIN RECEPTOR TRKC IS LINKED TO A FAVORABLE OUTCOME IN MEDULLOBLASTOMA	SEGAL, RA	PROCEEDI NGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA	1994	201	7.44
70	49	MicroRNA-199b-5p Impairs Cancer Stem Cells through Negative Regulation of HES1 in Medulloblastoma	Garzia, Livia	PLOS ONE	2009	197	16.42
71	54	Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia	Blazek, Ed R.	INTERNATI ONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS	2007	197	14.07
73	38	Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples	Northcott, Paul A.	ACTA NEUROPAT HOLOGICA	2012	191	21.22

		1	1		1		
74	13	Intertumoral Heterogeneity within Medulloblastoma Subgroups	Cavalli, Florence M. G.	CANCER CELL	2017	190	47.5
75	89	A MUSCLE ACETYLCHOLINE- RECEPTOR IS EXPRESSED IN THE HUMAN CEREBELLAR MEDULLOBLASTOMA CELL- LINE TE671	LUTHER, MA	JOURNAL OF NEUROSCI ENCE	1989	188	5.88
76	94	ESTABLISHMENT OF A HUMAN MEDULLOBLASTOMA CELL- LINE AND ITS HETEROTRANSPLANTATION INTO NUDE-MICE	JACOBSEN , PF	JOURNAL OF NEUROPAT HOLOGY AND EXPERIMEN TAL NEUROLOG Y	1985	188	5.22
83	73	Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice	Rao, G	ONCOGENE	2004	179	10.53
84	100	MEDULLOBLASTOMA + SO- CALLED ARACHNOIDAL CEREBELLAR SARCOMA	RUBINSTEI N, LJ	BRAIN	1964	179	3.14
88	81	Medulloblastoma: clinical and biologic aspects.	Packer, R J	Neuro- oncology	1999	175	7.95

90	97	ESTABLISHMENT OF A HUMAN MEDULLOBLASTOMA CELL LINE	MCALLIST ER, RM	INTERNATI ONAL JOURNAL OF CANCER	1977	174	3.95
91	41	The clinical implications of medulloblastoma subgroups	Northcott, Paul A.	NATURE REVIEWS NEUROLOG Y	2012	173	19.22
94	72	Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma	Oliver, TG	DEVELOPM ENT	2005	170	10.63
97	74	Medulloblastoma: developmental mechanisms out of control	Marino, S	TRENDS IN MOLECULA R MEDICINE	2005	168	10.5
98	37	BET Bromodomain Inhibition of MYC-Amplified Medulloblastoma	Bandopadh ayay, Pratiti	CLINICAL CANCER RESEARCH	2014	167	23.86
99	44	An Animal Model of MYC-Driven Medulloblastoma	Pei, Yanxin	CANCER CELL	2012	167	18.56

Journal Pre-proof

				JOURNAL			
		Patched target Igf2 is		OF			
		indispensable for the formation of		BIOLOGICA			
		medulloblastoma and		L			
100	82	rhabdomyosarcoma	Hahn, H	CHEMISTRY	2000	167	7.95

Journal Pression

Tuble 0.		succes investigating genetics					
Rank by Total Citations	Rank by Average Citations per Year	Title	Authors	Journal Title	Year of Publication	Total Citations	Average Citations per Year
4	2	Medulloblastoma Comprises Four Distinct Molecular Variants		JOURNAL OF CLINICAL ONCOLOGY	2011	700	70
7	29	Mutations in SUFU predispose to medulloblastoma	Taylor, MD	NATURE GENETICS	2002	547	28.79
9	10	The Genetic Landscape of the Childhood Cancer Medulloblastoma	Parsons, D. Williams	SCIENCE	2011	499	49.9
11	4	Dissecting the genomic complexity underlying medulloblastoma	Jones, David T. W.	NATURE	2012	481	53.44
12	5	Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas	Kool, Marcel	ACTA NEUROPATH OLOGICA	2012	477	53
15	7	Novel mutations target distinct subgroups of medulloblastoma	Robinso n, Giles	NATURE	2012	456	50.67

Table 9. List of the studies investigating genetics

		Integrated Genomics Identifies Five Medulloblastoma Subtypes with Distinct Genetic Profiles, Pathway					
17	19	Signatures and Clinicopathological Features	Kool, Marcel	PLOS ONE	2008	452	34.77
18	26	Genornics identifies medulloblastoma subgroups that are enriched for specific genetic alterations	Thomps on, MC	JOURNAL OF CLINICAL ONCOLOGY	2006	452	30.13
19	9	Medulloblastoma exome sequencing uncovers subtype- specific somatic mutations	Pugh, Trevor J.	NATURE	2012	451	50.11
20	11	Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations	Rausch, Tobias	CELL	2012	447	49.67
22	12	Subgroup-specific structural variation across 1,000 medulloblastoma genomes	Northcott , Paul A.	NATURE	2012	432	48

26	17	Integrative Genomic Analysis of Medulloblastoma Identifies a Molecular Subgroup That Drives Poor Clinical Outcome	Cho, Yoon- Jae	JOURNAL OF CLINICAL ONCOLOGY	2011	396	39.6
38	15	Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition	Kool, Marcel	CANCER CELL	2014	314	44.86
40	35	Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma		NATURE GENETICS	2009	298	24.83
43	24	Clonal selection drives genetic divergence of metastatic medulloblastoma	Wu, Xiaocho ng	NATURE	2012	279	31
72	32	Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing	Hovesta dt, Volker	NATURE	2014	196	28
77	91	STRUCTURAL CHROMOSOMAL- ABNORMALITIES IN HUMAN MEDULLOBLASTOMA	BIGNER , SH	CANCER GENETICS AND CYTOGENET ICS	1988	187	5.67
80	52	The origins of medulloblastoma subtypes	Gilbertso n, Richard J.	ANNUAL REVIEW OF PATHOLOGY - MECHANISM	2008	184	14.15

				S OF DISEASE			
82	14	The whole-genome landscape of medulloblastoma subtypes	Northcott , Paul A.	NATURE	2017	180	45
85	70	Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma	Mendrzy k, F	JOURNAL OF CLINICAL ONCOLOGY	2005	176	11
96	93	AMPLIFICATION OF THE C-MYC GENE IN HUMAN MEDULLOBLASTOMA CELL- LINES AND XENOGRAFTS	BIGNER , SH	CANCER RESEARCH	1990	170	5.48

- BCNS = basal cell nevus syndrome
- CLA = classic
- CNS = central nervous system
- CY = average citations per year
- DN = desmoplastic/nodular
- LCA = large cell/anaplastic
- MBEN = medulloblastoma with extensive nodularity
- PNET = primitive neuroectodermal tumors
- PTC = Patched
- RS = senior author
- SHH = Sonic Hedgehog signaling pathway
- SNF = similarity network fusion
- SNIP = Source Normalized Impact per Paper
- WoS = Web of Science

Decade	Number of papers
1920s	1
1930s	0
1940s	0
1950s	0
1960s	3
1970s	4
1980s	6
1990s	15
2000s	46
2010s	25

Table 2. The number of publications per decade	e for the top 100 most highly cited articles.

Jonuly

First Author	Number of Articles
Northcott, PA	7
Packer, RJ	4
Gilbertson, RJ	3
Kool, M	3
Mulhern, RK	3
Bigner, SH	2
Ellison, DW	2
Gajjar, A	2
Taylor, MD	2

Table 3. The frequency of authors who contributed 2 or more articles.

Journal

Rank	Journal of Publication	Number of articles (n=100)	Source- normalized impact per paper (SNIP)	SCImago journal rank
1	Journal of Clinical Oncology	16	5.22	11.754
2	Nature	9	9.20	16.345
3	Cancer Cell	7	4.57	11.741
4	Journal of Neurosurgery	6	2.00	1.69
5	International Journal of Radiation Oncology, Biology, Physics	5	1.72	2.29
6	Acta Neuropathologic a	4	4.08	8.34
6	Cancer Research	4	1.60	4.05
6	Science	4	7.31	13.25
7	Lancet Oncology	3	9.24	18.07
7	Nature Genetics	3	5.48	21.51
7	Proceedings of the National Academy of Sciences of the United States of America	3	2.54	5.6
8	International Journal of Cancer	2	2.39	3.28
8	Journal of Neuropathology	2	0.89	1.67

Table 4. The journal of publications in which the top 100 most cited articles were published
--

	and Experimental Neurology			
8	New England Journal of Medicine	2	13.00	19.524
8	Cancer	2	2.03	3.49
8	PLOS One	2	1.12	1.1
N/A	Other*	26	N/A	N/A

*Journals with only one article each predominated the top 100 list

Country of origin	Number of Articles
USA	63
Germany	12
Canada	10
England	6
Australia	2
Italy	2
Austria	
France	1
Netherlands	1
Sweden	1
Switzerland	1

Table 5 Countries	of omigin for the to	op cited papers on medulloblastom	
Table 5. Countries	of origin for the lo	on cheol daders on medimodiasion	18
racie et countries	or origin for the to	p encea papers on medanicolascon	

Institution	Country	Number of Articles
St. Jude Children's Research Hospital	USA	14
University of Toronto/Hospital for Sick Children	Canada	9
German Cancer Research Center	Germany	8
Children's National Hospital	USA	5
Johns Hopkins	USA	4
Children's Hospital of Philadelphia (UPenn)	USA	4
Harvard Medical School/Massachusetts General Hospital/Boston Children's Hospital	USA	4
Duke University Medical Center	USA	4
Stanford University	USA	3

Table 6. Top contributing institutions based on first author*

*Institutions with 3 or more articles were included

Article Category	Number of Articles
Basic Science	47
Clinical	42
Review	11

Table 7.	Category	type of the	e 100 most	cited	articles.
1 4010 / 1	Categor,	type or m	C 100 most	- ercea	areres.

Declaration of interests

All authors (Nolan J. Brown, Bayard Wilson, Anushka Paladugu, Shane Shahrestani, Brian V. Lien, Katelynn Tran, Seth C. Ransom, Ali Tafreshi, Ryan C. Ransom, Alvin Chan, Isaac Yang, Elliot Choi, and Ronald Sahyouni) declare to the following below: They have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

bournal provide the