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Methylation of the O6-methylguanine methyltransferase (MGMT) gene promoter is correlated with the effectiveness of the current
standard of care in glioblastoma patients. In this study, a deep learning pipeline is designed for automatic prediction of MGMT
status in 87 glioblastoma patients with contrast-enhanced T1W images and 66 with fluid-attenuated inversion recovery(FLAIR)
images. The end-to-end pipeline completes both tumor segmentation and status classification. The better tumor segmentation
performance comes from FLAIR images (Dice score, 0:897 ± 0:007) compared to contrast-enhanced T1WI (Dice score, 0:828 ±
0:108), and the better status prediction is also from the FLAIR images (accuracy, 0:827 ± 0:056; recall, 0:852 ± 0:080; precision,
0:821 ± 0:022; and F1 score, 0:836 ± 0:072). This proposed pipeline not only saves the time in tumor annotation and avoids
interrater variability in glioma segmentation but also achieves good prediction of MGMT methylation status. It would help find
molecular biomarkers from routine medical images and further facilitate treatment planning.

1. Introduction

Glioblastoma multiforme (GBM) is the most common and
aggressive type of primary brain tumor in adults. It accounts
for 45% of primary central nervous system tumors, and the 5-
year survival rate is around 5.1% [1, 2]. The standard treat-
ment for GBM is surgical resection followed by radiation
therapy and temozolomide (TMZ) chemotherapy, which
improves median survival by 3 months compared to radio-
therapy alone [3]. Several studies indicated that O6-methyl-
guanine-DNA methyltransferase (MGMT) gene promoter
methylation reported in 30-60% of glioblastomas [4] can
enhance the response to TMZ, which has been proven to be
a prognostic biomarker in GBM patients [3, 5]. Thus, deter-

mination of MGMT promoter methylation status is impor-
tant to medical decision-making.

Genetic analysis based on surgical specimens is the refer-
ence standard to assess the MGMT methylation status, while
a large tissue sample is required for testing MGMT methyla-
tion status using methylation-specific polymerase chain reac-
tion [6]. In particular, the major limitations are the
possibility of incomplete biopsy samples due to tumor spatial
heterogeneity and high cost [7]. Besides, it cannot be used for
real-time monitoring of the methylation status.

Magnetic resonance imaging (MRI) is a standard con-
ventional examination in diagnosis, preoperative planning,
and therapy evaluation of GBM [8, 9]. Recently, radiomics,
extracting massive quantitative features from medical
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images, has been proposed to explore the correlation between
image features and underlying genetic traits [10–12]. There is
growing evidence that radiomics can be used in predicting
the status of MGMT promoter methylation [13–15]. How-
ever, most previous works utilized handcrafted features. This
procedure includes tumor segmentation, feature extraction,
and informatics analysis [16–19]. In particular, tumor seg-
mentation is a challenging and important step because most
works depend on manual delineation. This step is burden-
some and time consuming, and inter- or intraobserver dis-
agreement is unavoidable. Deep learning which can extract
features automatically has been emerging as an innovative
technology in many fields [20]. The convolutional neural
network (CNN) is proven to be effective in image segmenta-
tion, disease diagnosis, and other medical image analysis
tasks [21–25]. Compared to traditional methods with hand-
crafted features, deep learning shows several advantages of
being robust to distortions such as changes in shape and
lower computational cost. A few studies have shown that
deep learning can be used to segment tumors and predict
MGMT methylation status for glioma [26]. However, to the
best of our knowledge, there is no previous report regarding
building a pipeline for both glioma tumor segmentation
and MGMT methylation status prediction in an end-to-end
manner. Therefore, we investigate the feasibility of integrat-
ing the tumor segmentation and status prediction of GBM
patients into a deep learning pipeline in this study.

2. Methods

2.1. Data Collection. A total of 106 GBM patients were ana-
lyzed in our study. MR images, including presurgical axial
contrast-enhanced T1-weighted images (CE-T1WI) and
T2-weighted fluid-attenuated inversion recovery (FLAIR)
images, were collected from The Cancer Imaging Archive
(http://www.cancerimagingarchive.net). The images were
originated from four centers (Henry Ford Hospital, Univer-
sity of California San Francisco, Anderson Cancer Center,
and Emory University). Clinical and molecular data were
also obtained from the open-access data tier of the TCGA
website.

Genomic data were from the TCGA data portal. MGMT
methylation status analysis was performed on Illumina
HumanMethylation27 and HumanMethylation450 Bead-
Chip platforms. A median cutoff using the level 3 beta-
value present in the TCGA was utilized for categorizing
methylation status. Illumina Human Methylation probes

(cg12434587 and cg12981137) were selected in this study
[27].

Of 106 GBM cases, 87 cases were with CE-T1W images,
and 66 cases with FLAIR images. We randomly split the cases
into training and testing sets with the ratio of 8 : 2 and applied
10-fold cross-validation to the training set with scikit-learn
library (https://scikit-learn.org/stable/). The dataset distribu-
tion is listed in Table 1.

2.2. Image Preprocessing. For general images, the pixel values
contain reliable image information. However, MR images do
not have a standard intensity scale. In Figure 1(a), we show
the density plot of two raw MR images. In each plot, there
are two peaks, the peak around 0 refers to background pixels,
and the other peak refers to white matter. The white matter
peaks of the two images are far away. Thus, MR images nor-
malization is needed to guarantee that the grey values of the
same tissue among different MR images are close to each
other [28].

The piece-wise linear histogram matching was used to
normalize the intensity distribution of MR images [29].
Firstly, we studied standard histogram distribution via aver-
aging the 1st to 99th percentile of all images. Then, we line-
arly mapped the intensities of each image to this standard
histogram. In Figure 1(b), we can see that the white matter
peaks of two images coincide with each other after normali-
zation. Secondly, the images were normalized to zero mean
and unit standard deviation only on valued voxels. At last,
data augmentation was used to increase the dataset size to
avoid overfitting. We rotated images for every 5 degrees from
-20 to +20 degrees, resulting in a 9-fold increment in the
number of MRI scans.

2.3. Segmentation. As for tumor segmentation, one state-of-
the-art model [30] in BraTS 2018 challenge (Multimodal
Brain Tumor Segmentation 2018 Challenge http://
braintumorsegmentation.org/) was adapted. The whole net-
work architecture is shown in Figure 2.

In short, the deep learning model added a variational
autoencoder (VAE) branch to a fully convolutional network
model. The decoder part was shared for both segmentation
and VAE tasks. The prior distribution taken for the KL diver-
gence in the VAE part is Nð0, 1Þ. ResNet blocks used in the
architecture [31] included two 3 × 3 convolutions with nor-
malization and ReLU as well as skip connections. In the
encoder part, the image dimension was downsampled using
stride convolution by 2 and increased channel size by 2. For
the decoder part, the structure was similar to that of the

Table 1: Dataset distribution of each experiment.

Phase
Cases

(methylation/unmethylation)
CE-T1WI slices

(methylation/unmethylation)
FLAIR slices

(methylation/unmethylation)

FLAIR
Training 51 (25/26) 676 (288/388)

—
Testing 15 (7/8) 167 (62/105)

CE-
T1WI

Training 70 (36/34)
—

1208 (609/599)

Testing 17 (10/7) 220 (109/111)

Note: FLAIR: fluid-attenuated inversion recovery; CE-T1WI; contrast-enhanced T1-weighted imaging.
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encoder part but using upsampled. The decoder endpoint
had the same size as the input image followed by sigmoid
activation, and its output was for tumor segmentation. As
for the VAE part, the encoder output was reduced to 256,
and the input image was reconstructed by using a similar
structure as the decoder without skip connection. The seg-
mentation part output the tumor segmentation and the
VAE branch attempted to reconstruct the input image.
Except for the input and output layers, all blocks in

Figure 2 utilized the ResNet block with different channel
numbers (depicted aside each layer). For the input layer, a 3
× 3 convolution was with 3 channels; and for both output
layers, a 3 × 3 convolution with a dropout rate of 0.2 and L2
regularization with weight 1e − 3 were used to avoid overfit-
ting. The loss function consists of 3 terms as shown in

L = LDice + 0:1 × LL2 + 0:1 × LKL, ð1Þ
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Figure 1: Density plot of two different MR images (a) before and (b) after piece-wise linear histogram matching.
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Figure 2: An end-to-end deep learning pipeline for both tumor segmentation and status classification.
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where LDice is the soft Dice loss between the predicted seg-
mentation and the ground truth labels. The ground truth
labels were manually annotated with ImageJ (https://imagej
.nih.gov) by one neuroradiologist with 10 years’ experience
specialized in brain disease diagnosis. LL2 is the L2 loss on
the VAE branch output image and the input image, and
LKL is the standard VAE penalty term [32, 33]. Then, the
Dice coefficient as defined in function (2) was calculated to
assess the performance of segmentation:

Dice =〠
i

2 ⋅ pi ⋅ bpi
pik k2 + pi∧k k2 + epsilon

, ð2Þ

where pi is the ground truth, p̂i is the prediction for pixel i,
and epsilon = 1e − 8.

2.4. Status Classification. Meanwhile, for the classification of
MGMT methylation status, a 4-layer CNN was designed.
Further, the classification model was cascaded with the
tumor segmentation model. At the stage of the tumor seg-
mentation model design, the classification network was tried
with different numbers of convolutional layers [2–5], and we
found that 2 convolutional layers with 2 fully connected (FC)
layers performed the best for this task. The first convolutional
layer had 16 filters, and the second one had 4 filters. All the
convolutional layers had a kernel size of 3 × 3 and stride of

(a)

(b)

Figure 3: Automatic segmentation results of brain tumors with FLAIR images. (a) The ground truth of tumor boundaries in FLAIR images
and (b) automatic segmentation results using the proposed network with FLAIR images.

(a)

(b)

Figure 4: Three representative cases of brain tumor manual annotation and automatic segmentation with CE-T1WI images. (a) The manual
annotation and (b) the automatic segmentation results with our proposed network.
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1 followed by LeakyReLU, batch normalization, and max
pooling. LeakyReLU was an advanced ReLU activation that
avoids dead neurons by setting a negative half-axis slope 0.3
instead of 0. Its advantages include good performance in
eliminating gradient saturation, low computational cost,
and faster convergence. Batch normalization was used to
normalize features by the mean and variance within a small
batch. It helped to solve the covariance shift issue and ease
optimization. Max pooling with a 4 × 4 filter was used to
downsample image features extracted through convolutional
layers and then fed into 2 FC layers. ReLU and softmax were
adapted as activation functions for the first and second FC
layers, respectively. The weight initialization of all layers
was done by He-normal [34].

2.5. Parameter Settings and Software. All experiments were
conducted under the open-source framework Keras (https://
keras.io/) on one GeForce RTX 2080Ti GPU. The numbers
of parameters of the segmentation and classification model
are, respectively, 6,014,721 and 3,498. In tumor segmentation,
Adam optimizer was adapted with a self-designed learning
rate scheduler which was initialized with a learning rate 1e −
4; then, the learning rate was divided by 2 when the validation
loss did not reduce in the past 5 epochs. The epoch was set at
50 and batch size at 8. Every epoch took around 50 seconds. In
tumor classification, 4-CNN was trained for 50 epochs which
utilized Adamwith learning rate 2e − 4, and the batch size was
32. If the validation accuracy was observed stable for over 10
epochs, the training process would be ended. The averaged
elapsed time for each epoch was 5 seconds.

2.6. Statistical Analysis. The Dice coefficient was calculated for
evaluating the performance of tumor segmentation. For the
MGMT methylation status classification, the accuracy rate,
recall, precision, and F1 score were calculated according to
equations listed below. In addition, the receiver operating
characteristic (ROC) curve was plotted, and the area under
the ROC curve (AUC) was reported to measure the classifica-
tion accuracy. All the parameters were calculated in PyCharm

with the programming language of Python (version 3.6.8;Wil-
mington, DE, USA; http://www.python.org/):

Accuracy =
TP + TN

TP + TN + FP + FN
,

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

F1 =
2 × Precision × Recall
Precision + Recall

,

ð3Þ

where TP is the true positive, TN is the true negative, FP is the
false positive, and FN is the false negative.

3. Results

3.1. Tumor Segmentation

3.1.1. Qualitative Observation. Tumors could be accurately
delineated by the proposed pipeline. Figure 3 shows the
annotated ground truth (the first row) and corresponding
segmentation results (the second row) of GBM in FLAIR
images. It is observed that tumor boundaries could be accu-
rately localized by using the deep learning network, and the
major hyperintense regions are delineated. The three cases
show that automatic segmentation is quite close to the
ground truth.

Figure 4 shows the GBM in CE-T1WI images, and the
ground truth (the first row) and the segmentation results
(the second row) are presented. Tumor boundaries are local-
ized, and it seems that there is no obvious difference between
the manual annotation and its corresponding segmentation
results obtained from our proposed network, and the suspi-
cious regions are mainly contoured. The three cases show
that segmentation results from the deep network approxi-
mate the manual delineation.

3.1.2. Quantitative Evaluation. The quantitative performance
of automatic tumor segmentation is summarized in Table 2.
The deep network obtained good testing performance on
tumor segmentation using CE-T1WI (Dice score, 0:828 ±
0:108) and FLAIR (Dice score, 0:897 ± 0:007). And the Dice
scores from FLAIR were slightly higher than those from
CE-T1WI across training, validation, and testing sets. The
maximum difference of the Dice score between average Dice
scores from CE-T1W images in training and validation sets
was 0.026, indicating that the model was not overfitting.

3.1.3. Computational Performance. Time consumption
between manual annotation and automatic prediction per
MR slice is compared as shown in Table 3. For the evaluation
of time consumption, we recorded the total time and divided
it by the number of slices. So, the time listed in Table 3 was
the average segmentation time per slice. It was observed that
the deep network was more efficient, and it took less than 0.2
seconds to complete the segmentation of an MR slice, while
manual annotation required more than 30 seconds.

Table 2: Dice scores of the deep network on tumor segmentation
using MR images.

Modality Training Validation Testing

CE-T1WI 0:832 ± 0:009 0:831 ± 0:012 0:828 ± 0:108

FLAIR 0:893 ± 0:004 0:892 ± 0:008 0:897 ± 0:007

Note: the number in the table referred to the mean ± standard deviation
values of 10 cross-validation experiments. CE-T1WI: contrast-enhanced
T1-weighted imaging; FLAIR: fluid-attenuated inversion recovery.

Table 3: Inference time (seconds) of one MR slice for glioma
segmentation.

Modality Manual annotation Deep model

CE-T1WI 50 s 0.11 s

FLAIR 60 s 0.07 s

Note: CE-T1WI: contrast-enhanced T1-weighted imaging; FLAIR: fluid-
attenuated inversion recovery.
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3.2. Classification of MGMT Promoter Methylation Status.
Table 4 shows the prediction performance of MGMT pro-
moter methylation status which is evaluated from four classi-
fication metrics (accuracy, recall, precision, and F1 score) on
three stages (training, validation, and testing) when using dif-
ferent MR images (CE-T1WI, FLAIR). In general, the model
trained with FLAIR achieves better results for all metrics
across three stages, followed by the model trained with CE-
T1WI images. Specifically, the accuracy, recall, precision,
and F1 score of the deep model trained with FLAIR images
reach 0.827, 0.852, 0.821, and 0.836 in the testing stage,
respectively.

ROC curves of the prediction results are demonstrated in
Figures 5 and 6. Figure 5 shows the best status classification
when using FLAIR images for a deep model, which achieves
an AUC of 0.985 (yellow curve), 0.968 (green curve), and
0.905 (red curve) on the training, validation, and testing data-
sets, respectively.

The best status classification when using CE-T1WI
images for deep model training is shown in Figure 6. The
well-trained deep model obtains AUC up to 0.973 (yellow
curve), 0.942 (green curve), and 0.887 (red curve) on the
training, validation, and testing datasets, respectively.

4. Discussion

This study presents an MR-based deep learning pipeline for
automatic tumor segmentation and MGMT methylation sta-
tus classification in an end-to-end manner for GBM patients.
Experimental results demonstrate promising performance on
accurate glioma delineation (Dice score, 0.897) and MGMT
status prediction (accuracy, 0.827; recall, 0.852; precision,
0.821; and F1 score, 0.836) coming from the model trained
with FLAIR images. In addition, the proposed pipeline dra-
matically shortens the inference time on glioma
segmentation.

For glioma segmentation, one state-of-the-art deep
model is utilized and obtains impressive performance on
the involved MGMT dataset for GBM segmentation. Its per-
formance is close to these deep network-based tumor seg-
mentation studies. Hussain et al. [35] reported a CNN
approach for glioma MRI segmentation, and the model
achieved a Dice score of 0.87 on the BRATS 2013 and 2015
datasets. Cui et al. [36] proposed an automatic semantic seg-

mentation model on the BRATS 2013 dataset, and the Dice
score was near 0.80 on the combined high- and low-grade gli-
oma datasets. Kaldera et al. [37] proposed a faster RCNN
method and achieved a Dice score of 0.91 on 233 patients’
data. These studies suggest that deep networks are full of
potential for accurate tumor segmentation in MR images.

Several deep models have been designed for the classifica-
tion of MGMT methylation status in GBM patients. Chang
et al. [38] proposed a deep neural network which achieved
a classification accuracy of 83% for 259 gliomas patients with
T1W, T2W, and FLAIR images. Korfiatis et al. [26] com-
pared different sizes of the ResNet baseline model and
reached the highest accuracy of 94.9% in 155 GBM patients
with T2W images. Han et al. [39] proposed a bidirectional
convolutional recurrent neural network architecture for
MGMT methylation classification, while the accuracy was
around 62% for 262 GBM patients with T1W, T2W, and
FLAIR images. In this study, a shallow CNN is used, and
the classification performance is promising. The best perfor-
mance comes from the model trained with FLAIR images,
and we achieved a satisfactory result with the highest accu-
racy of 0.827 and recall of 0.852 in consideration of the rela-
tively small dataset.

In the previous studies, Drabycz et al. [40] analyzed
handcrafted features to distinguish methylated from
unmethylated GBM and figured out that texture features
from T2-weighted images were important for the prediction
of MGMT methylation status. Han et al. [41] found that
MGMT promoter-methylated GBM was prone to more
tumor necrosis, while T2-weighted FLAIR sequence may be
more sensitive to necrosis than T1-weighted images. Interest-
ingly, we also find that better performances of both GBM seg-
mentation and molecular classification are achieved on
FLAIR images in our study although the images of CE-
T1W and FLAIR did not come from the same patients.

The strengths of this study lie in the fully automatic gli-
oma segmentation and predicting the MGMT methylation
status based on a small dataset. Generally, it takes a radiolo-
gist about one minute per slice in tumor annotation, while
the inference time of the deep learning model is about 0.1
seconds which is around 1/600 times used in manual annota-
tion. Additionally, manual annotation is burdensome and
prone to introduce inter- and intraobserver variability. While
once well trained, a deep learning model can continuously

Table 4: Results of MGMT methylation status classification.

Modality Phase
Classification

Accuracy Recall Precision F1 score

CE-T1WI

Training 0:894 ± 0:012 0:906 ± 0:007 0:886 ± 0:018 0:896 ± 0:010

Validation 0:839 ± 0:046 0:866 ± 0:044 0:823 ± 0:051 0:845 ± 0:045

Testing 0:804 ± 0:011 0:818 ± 0:033 0:798 ± 0:014 0:808 ± 0:015

FLAIR

Training 0:941 ± 0:056 0:943 ± 0:104 0:947 ± 0:026 0:945 ± 0:081

Validation 0:885 ± 0:090 0:941 ± 0:105 0:857 ± 0:028 0:889 ± 0:101

Testing 0:827 ± 0:056 0:852 ± 0:080 0:821 ± 0:022 0:836 ± 0:072

Note: the number in the table referred to themean ± standard deviation values of 10 cross-validation experiments. CE-T1WI: contrast-enhanced T1-weighted
imaging; FLAIR: fluid-attenuated inversion recovery.
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and repeatedly perform tumor segmentation regardless of the
observers. On the other hand, the training strategy in this
study is beneficial for small dataset analysis. In general, a
deep model requires a large number of training instances.
However, it is challenging or impossible to provide massive

high-quality images in medical imaging. Finally, although
several studies tried to use deep networks for automatic gli-
oma segmentation [35, 36, 42] or molecular classification
[26, 38, 39], the proposed network in this study could inte-
grate both glioma segmentation and classification in a
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Figure 5: ROC curves of the best result on the FLAIR images for MGMT promoter methylation status classification on the training,
validation, and testing datasets.
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seamless connection pipeline. And the performance is com-
petitive to the state-of-the-art studies in tumor segmentation
and classification.

There are several limitations to our study. First, the sam-
ple size is small in the study; we will further confirm the find-
ings in a study with larger samples. Second, a multicenter
research trial is helpful to validate the capability of the pro-
posed pipeline, while the variations of MR imaging
sequences, equipment venders, and other factors could
impose difficulties on model building. Third, we failed to
investigate the value of combined CE-T1WI and FLAIR in
tumor segmentation and classification considering the fewer
samples. In the future, we will explore multiple MR
sequences for MGMT methylation status prediction, such
as amide-proton-transfer-weighted imaging and diffusion-
weighted imaging. These may have great potential to
improve the performance of MGMT methylation status
prediction.

5. Conclusion

AnMRI-based end-to-end deep learning pipeline is designed
for tumor segmentation and MGMT methylation status pre-
diction in GBM patients. It can save time and avoid interob-
server variability in tumor segmentation and help discover
molecular biomarkers from routine medical images to aid
in diagnosis and treatment decision-making.
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