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A B S T R A C T

Glioma is the most common primary malignant tumor in the human brain. Although there are a variety of
treatments, such as surgery, radiation and chemotherapy, glioma is still an incurable disease. Super-enhancers
(SEs) are implicated in the control of tumor cell identity, and they promote oncogenic transcription, which
supports tumor cells. Inhibition of the SE complex, which is required for the assembly and maintenance of SEs,
may repress oncogenic transcription and impede tumor growth. In this review, we discuss the unique char-
acteristics of SEs compared to typical enhancers, and we summarize the recent advances in the understanding of
their properties and biological role in gene regulation. Additionally, we highlight that SE-driven lncRNAs,
miRNAs and genes are involved in the malignant phenotype of glioma. Most importantly, the application of SE
inhibitors in different cancer subtypes has introduced new directions in glioma treatment.

1. Introduction

Glioma is one of the most common types of primary malignant tu-
mors and accounts for more than 30% of all primary brain tumors [1].
Over the past several decades, glioma has been characterized by ne-
crosis, aggressive growth, and angiogenesis [2]. The World Health
Organization (WHO) has divided glioma into four types based on
morphological characteristics and prognosis [3]. Low-grade gliomas
(Grades I and II) mainly contain astrocytomas, oligodendrogliomas,
pleomorphic xanthoastrocytomas, and certain ependymomas that are
well-differentiated and have low malignancy [4]. High-grade gliomas
(Grades III and IV) include anaplastic astrocytomas, anaplastic oligo-
dendrogliomas, glioblastoma multiforme, and anaplastic oligoden-
drogliomas that are poorly differentiated and highly malignant [5].
High-grade gliomas account for the majority of all gliomas, and they are
heterogeneous and consist of tumor cells, glioma-like stem cells, a wide
range of blood vessels and immune cells [6–8]. Currently, the main
therapies for glioma include surgical resection, oral alkylating agents
and radiation [9]. Despite great advances in therapeutic interventions
against glioma, the prognosis of patients with glioma remains poor
[10]. Therefore, there is an urgent need to identify the underlying
molecular mechanisms of glioma development.

Super-enhancers (SEs) are ultra-long cis-acting elements with en-
hanced transcriptional activity [11]. SEs are a type of hyperactive

regulatory domain that comprises many complex regulatory elements
[12]. These regulatory elements work together to regulate key gene
networks involved in cellular identity [13]. Recently, SEs have been
found to play a central role in gene transcription activation in different
types of cells and to be involved in the pathological processes of nu-
merous tumors including glioma [14,15]. Although the effect of SEs has
been verified in many tumor cells, their specific regulatory mechanisms
have not been thoroughly studied. Increasing evidence has suggested
that transcriptional dysregulation caused by SEs has potential effects on
the biological function of glioma [16–18]. Previous studies have shown
that abnormal transcription of protein-encoded genes, including the
inactivation of tumor suppressor genes and the activation of proto-on-
cogenes, plays a necessary role in the development of glioma [19,20].
Interestingly, an increasing number of studies has focused on the
transcriptional dysregulation of non-coding RNA (lncRNA and miRNA)
in the pathology of glioma [21–23]. In this review, we will explore the
structure and function of SEs, and we illustrate their relationship with
protein-coding genes and non-coding genes (lncRNA and miRNA) in
glioma.

https://doi.org/10.1016/j.bbcan.2020.188353
Received 6 January 2020; Received in revised form 21 February 2020; Accepted 21 February 2020

⁎ Corresponding authors at: Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, Cerebral Vascular Disease Research
Center，Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province 230601, China.

E-mail addresses: aydbeb@126.com (E. Bian), aydzhb@126.com (B. Zhao).
1 This author contributes equally to the first author.

BBA - Reviews on Cancer 1873 (2020) 188353

Available online 26 February 2020
0304-419X/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/0304419X
https://www.elsevier.com/locate/bbacan
https://doi.org/10.1016/j.bbcan.2020.188353
https://doi.org/10.1016/j.bbcan.2020.188353
mailto:aydbeb@126.com
mailto:aydzhb@126.com
https://doi.org/10.1016/j.bbcan.2020.188353
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbcan.2020.188353&domain=pdf


2. Overview of super enhancers

2.1. What are SEs?

Enhancers are a class of cis-acting DNA elements that typically form
long chromatin rings with target genes [24]. Enhancers can precisely
regulate the expression of target genes even when they are far away
from target genes, and enhancers play a regulatory role in cell differ-
entiation and development [25]. There are several transcription factor
(TF)-binding sites on enhancers, which are implicated in regulating the
activity of enhancers [26]. The regulatory mechanism of enhancers has
been well studied in many tumors, including glioma [25,27,28]. In
2013, Whyte et al. proposed the concept of SEs for the first time based
on the study of enhancers [29]. Despite the widespread belief that SEs
are unique and regulate the expression of key identity genes in cells,
there is an alternative view held by some researchers that SEs are just
clusters of enhancers [30,31]. These kinds of enhancers cluster together
and work similarly to typical enhancers, contributing an additive effect
on their target genes. Given this controversy, it is necessary to explore
the structural composition of SEs and their functional patterns. In cer-
tain regions of SEs, there are hotspots occupied by multiple genealogy-
specific TFs, which generally span tens of bases of extended histone
modification markers covered with active enhancers [32]. In addition,
SEs are heavily loaded with chromatin remodelers, transcription co-
activators, and Pol II holoenzyme by at least one order of magnitude
greater than typical enhancers [29], which creates super strong tran-
scriptional activity and specific biochemical characteristics (Fig. 1). SEs
were first identified in mouse embryonic stem cells (ESCs) and defined
the identity of ESCs by strongly enriching ESC-specific TFs, such as
OCT4, NANOG and SOX2 [29]. Subsequently, based on the enrichment
of master TFs in cell type-specific genes that determine the biological
function of cells, more SEs have been identified in different cell types
[13]. However, the current definition and understanding of SEs in cells
are not clear.

2.2. Characteristics of SEs

Increasing evidence shows that SEs are occupied by components,
including TFs, chromatin regulators, coactivators, and RNA polymerase
II complex, which are associated with enhancer activity [11]. In addi-
tion, SEs are unique in that the average density of these components at
the SE locus is 10 times that of typical enhancers [33]. As important cis-
acting regulatory elements in the cellular identity and development of
multicellular organisms, enhancers regulate gene expression by acting
on nearby promoters [34]. For example, the enhancers that encode
upstream of the β-globulin gene in HeLa cells increase the expression of

the β-globulin gene by 200-fold [35]. In the model defined by Whyte
et al., SEs are an ultralong cis-acting element 8-20 kb in length with
transcription-enhancing activity that gathers key TFs and their cofac-
tors in high density. Compared to typical enhancers, SEs have stronger
transcriptional activation ability, and their associated genes show
higher expression levels [15,36]. As a result, we suggest that SEs may
strongly promote the transcription of their target genes. In addition, SEs
not only affect gene expression with their component enhancers but
also have an effect on the functional levels within the constitutive en-
hancers [31,37]. The further distinction between SEs and typical en-
hancers highlights the interaction of their components and their ability
to function as a unit. Increasing evidence suggests that SEs have some
unique characteristics compared with typical enhancers [15,38]. The
following aspects are the unique characteristics of SEs that distinguish
them from typical enhancers: (i) SEs enrich a large number of TFs,
cofactors and histone markers (H3K27ac and H3K4me1) associated
with transcription activity [39,40]; (ii) SEs span a larger genomic re-
gion with the median size of SEs ranging from 10 kb to over 60 kb
[15,29]; (iii) SEs can define a cell identity and drive the expression of
oncogenes [36,41,42]; (iv) SE-driven genes have high abundance and
can be defined in any cell type [24,43]; (v) SEs have a higher correla-
tion with tumor-specific cell signaling pathways, such as the TGF-β and
Wnt signaling pathways [44,45]; and (vi) SEs are more sensitive to
external intervention, and the expression levels of SE-associated genes
are more susceptible to transcriptional interference [46–48]. These
observations indicate that SEs can be used as biomarkers to categorize
cell types by comparing to typical enhancers. In summary, SEs and
typical enhancers are similar in terms of structural composition, but
their internal arrangement of TFs and cofactors as well as their binding
density are different [13,36]. As a result, SEs perform a different
function than typical enhancers. However, to understand whether SEs
are fundamentally different from typical enhancers still requires further
study. However, no set of rules can fully define all the characteristics of
SEs because they are present in different cell types with different
composition and properties. At present, it is feasible to identify SE
regulatory regions of core genes that determine cell fate. More studies
are required to explore these regulatory areas to better understand the
characteristics of SEs. Although our studies on SEs have made some
progress, they have also discovered new problems that need to be ad-
dressed. Due to the exceptional transcriptional activity of SEs, it is
necessary for SEs to precisely bind to their target genes to prevent them
from mistakenly driving adjacent genes unrelated to tumor function.

2.3. Identification of SEs

In previous studies, Richard A. Young and colleagues compared the

Fig. 1. Comparison of Super-enhancers and typical enhancers. In contrast to typical enhancers, Super-enhancers comprise large clusters of enhancer that are densely
occupied with H3K27ac, CDK7, BRD4, MED1, and lineage-specific or master transcription factors.
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relative ability of chromatin-immunoprecipitation sequencing (ChIP-
Seq) data to H3K27ac, H3K4me1, mediator, and DNase I hypersensi-
tivity data to distinguish SEs from typical enhancers. In this identifi-
cation process, the enrichment of these enhancer transcription activity
marker molecules on the genome was first analyzed by ChIP-Seq to
determine the activity enhancer site. Within the genome, if these single
enhancer entities were within the 12.5 kb range, they were merged into
a single entity, the stitched enhancer. The stitched enhancer and the
remaining individual enhancers were sorted according to the signal
strength of the labeled molecules measured by ChIP-seq and plotted
into a graph. The signal value of the marker molecule at the tangent
point of the tangent line with a slope of 1 on this curve was the dividing
line, in which molecules higher than this value were considered as SEs
with the remaining considered as typical enhancers. Finally, these au-
thors found that mediator was the most effective sign in distinguishing
SEs from typical enhancers [29]. Previous studies have also confirmed
that the domains of SEs are occupied by various histone modifiers,
chromatin regulators, RNA Pol II, TFs and cofactors [41]. Khan et al.
found that H3K27ac, p300, cyclin-dependent kinase 7 (CDK7), cyclin-
dependent kinase 9 (CDK9), and mediator complex subunit 1 (MED1) as
the six most important factors by ranking chromatin features [49]. Of
note, H3K27ac and bromodomain-containing protein 4 (BRD4) perform
optimally and each could be used to some degree to distinguish SEs
from typical enhancers. However, the use of ChIP-seq data to distin-
guish the occupancy of different factors in SEs has not yet been well
characterized. Previous studies have only shown that these highly
ranked factors mediate gene transcription.

H3K27ac is a modification on the DNA-packaging protein, histone
H3 [50]. Currently, H3K27ac is the most frequently used marker for
identifying SEs [51]. Due to the high reliability of H3K27ac ChIP-seq
data in SEs, the combination of Rank Ordering of Super-Enhancer
(ROSE) with the activity of molecular H3K27ac has been widely used to
distinguish SEs from typical enhancers [13].

BRD4, a member of the bromodomain and extraterminal domain
(BET) protein family, is the second strongest marker for SEs in various
cell types. BRD4 is a transcriptional regulator and epigenetic reader in
cells that can bind to acetylated lysine in histones [52]. BRD4 induces
the expression of cell type-specific genes by preferentially binding ac-
tive enhancers. The main mechanism of BRD4 is to promote phos-
phorylation of RNA Pol II and then mediate transcriptional elongation
of target genes [53,54]. Furthermore, BRD4 is also related to anti-sus-
pension enhancers that regulate the proximal suspension release of RNA
Pol II promoters [55].

Recently, increasing studies on SEs have highlighted the other two
key factors, namely, CDK7 and MED1. CDK7, identified as a member of
the cyclin-dependent kinase family, regulates transcription initiation by
promoting phosphorylation of RNA Pol II. Thus, CDK7 is considered a
key component of the transcription apparatus [56].

MED1, which is one of the critical components of the large multi-
protein complex, acts as a key player in the transcription of RNA Pol II
by binding DNA to the regulatory signals of gene-specific TFs [57].
Moreover, MED1 contributes to the formation of enhancer-promoter
looping and three-dimensional (3D) genome organization [58]. Ad-
ditionally, MED1 plays a major coordinating role in cell lineage and
development [59].

To summarize, the combination of ROSE with the activity of mo-
lecular H3K27ac as analyzed by ChIP-Seq can identify SEs. In addition,
several cofactors (MED1), chromatin regulators (BRD4), and signaling
factors (CDK7) can also be used for SE identification [60,61]. However,
the other master TFs that form the SE domain are still unclear. Previous
studies have only indicated the possibility that multiple cofactors play a
pivotal role in SE formation. To the best of our knowledge, there are
three SE databases, including dbSUPER [62], SEA [60], and SEdb [63],
which gather published SEs and implement the ROSE algorithm to mine
available ChIP-seq data.

2.4. Biological function of SEs

SEs are enhancer clusters with cell type specificity that define
identity and biological function by driving the expression of key cell
identity genes [64]. SEs not only determine the identity of cells but also
have the ability to maintain the characteristic of cancer cells and dis-
tinguish cancer subtypes [65]. Multiple SEs can promote gene regula-
tion via several methods through specific loci with differences in acti-
vation during the developmental stage or synergetic gene expression.
Additionally, somatic mutations frequently related to cancer often
occur in SE-enriched genomes and are directed by SEs [66,67]. A
phenomenon called "enhancer hijacking" has been reported by several
studies on the mechanism of tumorigenesis. This phenomenon describes
SEs as multi-component regulatory elements that can drive the ex-
pression of oncogenes in different cellular environments [68]. For ex-
ample, a study on adenoid cystic carcinoma found that SE translocation
drives the overexpression of oncogenic TFs in cancer cells [69].
Translocated SE elements shelter TF-binding sites, rendering TFs active,
resulting in a positive feedback loop, further strengthening TF expres-
sion [70]. Another example of enhancer hijackings has been reported in
acute myeloid leukemia (AML) with the translocation of SEs in the locus
leading to the reorientation of the original tumor suppressor genes into
oncogenes, ultimately promoting the occurrence of tumors [71,72].
Previous research has shown that SEs have a pivotal role in cell de-
velopment and determine cellular identity [73]. A recent study has
found that SEs play a general role in the genome of cells in addition to
playing a regulatory role in different cell types [12]. However, the role
of SEs in genome regulation is not fully elucidated.

Previous classical transcriptional control models have provided
important insights into SE regulatory principles. Recently, a phase se-
paration model has been proposed in the study of SEs [37]. High-den-
sity aggregates of polyvalent molecules and nucleic acids as well as
their synergistic interactions result in the formation of phase separation
[74]. In cell biology, phase separation refers to a specific state of in-
tracellular aggregation of biological macromolecules [37,75], and it is
similar to the process by which the liquid and solid of a substance
change into each other in physical chemistry. The phase separation
process plays an important role in 3D genomic tissue and participates in
the identification of tissue cell identity [76]. Richard Young's group
reported that the transcriptional coactivators, BRD4 and MED1, pro-
mote the phase separation process by forming a liquid–liquid phase
separation (LLPS) around the SE domain. This process gathers the
transcription machinery near the SEs to achieve the compartmentali-
zation response of the transcription process. Intrinsically disordered
regions (IDRs) play a key role in the phase separation process [77]. This
kind of regulation mechanism is particularly suited to assembly and
activation of SEs. Compared to typical enhancers, the formation of
phase-separated multimolecular assemblies may occur more frequently
during SE formation. Therefore, SEs contribute more to transcriptional
regulation than the additive effect of their multiple components. As
described above, SEs are considered a collaborative assembly of high-
density TFs, chromatin regulators, transcription cofactors, and RNA Pol
II [40] (Fig. 2). Thus, SEs can drive higher levels of transcription than
typical enhancers and are particularly sensitive to interference with
enhancer-related components. This model provides a profound insight
into the formation, disturbance resistance and co-activation of multiple
genes of SEs. Additionally, a similar study has proposed that SEs have
potential functions in remote chromatin communication and the es-
tablishment of 3D chromatin rings [78]. The biological functions of SEs
have been studied by many researchers, which has also provided in-
sights into the understanding of SEs. However, little is known about the
potential mechanism of SEs in specific cells. Therefore, focusing on the
regulatory mechanism of SEs is still a future research direction.
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2.5. SEs in tumors

As is well-known, gene transcription regulation governs the type of
cell differentiation and the fate of organ development. Cancer is driven
by transcriptional dysregulation of proto-oncogene and tumor-sup-
pressive pathways. Thus, transcriptional dysregulation mediated by
epigenetic or genetic alterations often results in the formation of
cancer. Abnormal transcription of genes driven by SEs is essential for
maintaining the characteristics of tumor cells. By assembling their own
SEs, tumor cells can significantly promote the expression of a variety of
oncogenes, thereby enhancing the biological function of tumor cells
[79]. Compared to promoters and typical enhancers, a larger spectrum
of cancer-associated mutations is found in SEs. In some tumors, small
mutations and indels can randomly generate new SEs that can drive
oncogenes of tumor pathogens [80]. Increasing evidence suggests that
SEs are involved in the development of several tumors and maintain the
characteristics of tumor cells. Therefore, SEs may be a potential bio-
marker in tumor cells [19,24,26,52,53]. Compared to their normal
counterparts, tumor cells have altered SE usage and expression patterns
[81]. Accordingly, SEs are enriched in genes and non-coding RNAs,
known as oncogenic function, in tumor cells. Although SEs are specific
to different tumor types, they could regulate the expression of the same
genes in different tumors [34]. For example, Loven et al. reported that
SEs are highly enriched in the MYC locus and overlap in different types
of tumors [15]. Futhermore, MYC acquires large SEs that are tumour
type-specific and absent from the normal cells [13]. In squamous cell
carcinoma (SCC), CCAT1 has been identified as a new SE-associated
oncogenic lncRNA [82]. As newly developed regulators, numerous
studies have identified SEs in diverse tumors and shown that SEs pro-
mote the malignant phenotype of tumor cells. In summary, these results
indicate that SEs contribute to tumor development by strongly en-
riching and driving tumor-specific genes and non-coding RNAs.

2.6. SEs in glioma

Transcription dysregulation is regulated by epigenetic and genetic
alterations targeting non-coding regulatory elements. These effects can
lead to the occurrence and development of tumors. SE involvement in
the occurrence and development of glioma has been reported
[16,17,83,84]. By using the CHIP-seq analysis of H3K27ac and MED1,
many SE-associated genes, including WNT7B, FOSL1, FOXL2, and

ZMIZ1, have been identified in glioma cells. Individual silencing of
these genes significantly impairs the proliferation of glioma cells [16].
A separate study on diffuse intrinsic pontine glioma (DIPG) has shown
that numerous genes related to SEs are markers of the state of un-
differentiated nerve cells. Furthermore, a set of SE-associated genes
mediates the identity and malignant state of DIPG cells [17]. In another
similar study, the researchers found that SE-related genes have im-
portant roles for glioblastoma (GBM) growth. In addition, SE inhibitors
lead to considerable disruption of global gene transcription in GBM
cells, preferentially targeting genes associated with SEs [84]. These
results emphasize the essential role of SEs in glioma development. Thus,
targeting SE-associated transcription addiction may be an effective
therapeutic strategy against glioma. In this review, we will explore the
role of SEs in driving protein-coding genes and non-coding genes, such
as miRNA and lncRNA, in glioma as well as their mechanism for reg-
ulating the biological functions of glioma cells.

3. Protein-coding genes associated with SEs in glioma

Protein-coding genes involved in tumorigenesis have been well
studied. Dysregulated gene expression mediated by transcriptional
regulation promotes malignant cell proliferation and eventually leads to
tumors, suggesting that the dysregulation of transcription is an im-
portant oncogenic mechanism [85,86]. Studies have reported genes
that play a pivotal role in glioma, and some of these genes are regulated
by SEs in the progression of glioma (Table 1). Therefore, identification
of novel SE-associated molecular markers targeting glioma and under-
standing their molecular mechanisms are critical for the treatment of
glioma.

3.1. Cluster of differentiation 47 (CD47)

CD47, which is a cell surface glycoprotein, inhibits phagocytosis by
binding to the extracellular region of SIRPa on macrophages [87]. In
addition, CD47 is overexpressed in all types of human tumors [88].
Betancur et al. analyzed the CD47 regulatory genome to locate CD47
distal cis-regulatory regions (enhancers or SEs), and they also analyzed
H3K27ac ChIP-Seq data and found that CD47 is regulated by different
sets of SEs in different tumor cell types, such as T-cell acute lympho-
blastic leukemia and diffuse large B-cell lymphoma [89]. Betancur et al.
also discovered that CD47-associated SEs link TNF-NFKB1 signaling to

Fig. 2. Super-enhancer region combines multiple transcription factors to regulate gene transcription status.
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CD47 upregulation in breast cancer [89]. These results suggest that SEs
affect the malignancy of tumors by upregulating the expression of CDK7
in different tumor types. It has been demonstrated that high expression
of CD47 is associated with a high degree of malignancy and invasive-
ness in glioma [90]. Additionally, glioma cells highly enriched with
CD47 have stem progenitor cell-like characteristics, and silencing CD47
in glioma results in a decrease in these characteristics [91]. A similar
study has shown that knockdown of CD47 inhibits tumor growth in
pediatric brain tumor models [92]. These results indicate that SEs may
enhance the malignancy of glioma cells by driving the expression of
CD47. Therefore, the blockade of CD47 associated with SEs may be a
novel therapeutic option to target glioma stem cells.

3.2. Oncogene c-MYC (MYC)

MYC, known as a transcription factor of the helix-loop-helix-leucine
zipper (HLH-LZ) family, binds DNA as part of several protein complexes
[93]. A broad body of evidence has established that dysregulated MYC
expression promotes the development of a variety of tumors and creates
a favorable environment for the survival of tumor cells in vivo [94,95].
It has been demonstrated that most SE genes associated with osteo-
sarcoma bind to MYC. In addition, the treatment of osteosarcoma cells
with SE inhibitors effectively inhibits the malignant phenotype of os-
teosarcoma cells [96]. These results demonstrate that SE signaling
driven by MYC is critical for the biological function of osteosarcoma
cells. Another study has shown that MYC regulates transcriptional
amplification by SEs, which is a main hallmark of cancer [97]. Recent
studies have shown that MYC overexpression is positively correlated
with glioma grade and that increased MYC level is observed in ap-
proximately 60-80% gliomas [98]. Inhibition of MYC represses the
proliferation of tumor cells, damages cell activity, and promotes
apoptosis [99]. Additionally, several studies have proposed that MYC
overexpression plays a central role in glioma progression driven by a
variety of different mutations [100,101]. Therefore, these studies sug-
gest that the inhibition of MYC associated with SEs may be an effective
treatment strategy for glioma.

3.3. Epidermal growth factor receptor (EGFR)

EGFR is a member of the ERBB transmembrane tyrosine kinase re-
ceptor family [102]. EGFR overexpression promotes tumor cell pro-
liferation, invasion, and angiogenesis but impedes apoptosis [103,104].
Chen et al. showed that SEs promote the proliferation, migration, and
invasion of tumor cells by driving EGFR overexpression [105]. It has
been demonstrated the high expression of EGFR is related to a variety of
human tumors including GBM [106]. The upregulation of EGFR is as-
sociated with poor prognosis in patients with glioma [107]. Further-
more, upregulated EGFR promotes the malignant phenotype of tumors
via receptor phosphorylation and downstream signaling pathway acti-
vation [108]. As the new research field of glioma is rapidly expanding,
SE-driven EGFR may become a major focus for targeted cancer therapy
for glioma.

3.4. Mesenchymal-epithelial transition factor (c-MET)

c-Met, known as a transmembrane receptor tyrosine kinase, consists
of α- and β-chains linked by disulfide bonds. c-Met is activated by he-
patocyte growth factor (HGF) and promotes tumor cell progression and
metastasis [109]. Overexpression of c-Met is correlated with poor
prognosis of patients with tumors [110]. A recent study from Chen et al.
showed that epigenetic activation of SEs in the genome drives the ex-
pression of key oncogenes such as c-Met [105]. A recent study has re-
ported that c-Met overexpression occurs in GBM and that c-Met gene
amplification promotes malignancy [111]. A similar study has shown
that c-Met amplification is partially associated with the aggressiveness
of glioma [112]. More importantly, the upregulation of c-Met is relatedTa
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to shorter survival and poor therapeutic response for glioma [113].
Therefore, these studies suggest that c-Met driven by SEs may promote
malignancy and be associated with poor clinical outcome in glioma.

3.5. GATA binding protein 2 (GATA2)

GATA proteins are TFs with central roles in early embryonic de-
velopment and lineage specification [114]. GATA2, a member of the
GATA protein family, is a major regulator of hematopoietic function,
which involves the initial formation and maintenance of hematopoietic
stem cells (HSCs) [115]. After translocation, the GATA2 enhancer re-
gion acquires the characteristics of SEs in the MOLM-1 genome [15]. A
present study revealed that striatal SEs display extensive H3K27 acet-
ylation within gene bodies and are enriched in binding motifs for
GATA2 TFs [116]. Wang et al. demonstrated that high expression of
GATA2 is positively related to the malignant degree of glioma. GATA2
overexpression promotes the malignant phenotype of glioma [117].
Another study has shown that GATA2 controls the expression of tumor-
related blood vessels in glioblastoma and promotes angiogenesis [118].
Therefore, these results indicate that SEs may mediate the malignant
phenotype of glioma cells via GATA2.

3.6. Low-density lipoprotein receptor (LDLR)

LDLR is an integral membrane protein that is abundantly expressed
in the liver [119]. The characterization of SE-mediated networks in
nasopharyngeal cancer has identified many novel SE-associated onco-
genic transcripts, such as LDLR [120]. LDLR is highly upregulated in a
variety of tumors. LDLR is also expressed in normal brain tissue and has
a dual-targeting effect on the blood-brain barrier and glioma cells,
making it a potential target receptor for the brain tumor drug delivery
system [121,122]. Another study has shown that targeting LDLR in
GBM inhibits the growth of tumor cells, thereby playing an anti-tumor
role [123]. These results suggest that LDLR associated with SEs can
affect the progress of glioma.

3.7. p21-activated kinases 4 (PAK4))

PAK4 is a Cdc42 effector protein that is involved in key functions in
embryos, neurons, and immune defense [124]. PAK4 regulates the
biological function of tumor cells dependent on actin cytoskeleton
[125]. Recently, a comprehensive analysis of both SE-associated and
THZ1-sensitive transcripts identified several novel esophageal squa-
mous cell carcinoma (OSCC) oncogenes, including PAK4 [126]. A broad
body of evidence has established that PAK4 is overexpressed in several
types of tumors and promotes the growth of tumor cells [127,128].
Kesanakurti et al. demonstrated that PAK4 is aberrantly expressed in
glioma and that PAK4 knockdown decreases migration and invasion of
glioma cells [129,130]. In addition, overexpression of PAK4 promotes
mesenchymal transformation by upregulating Epithelial-mesenchymal
transition(EMT)markers in glioma cells [131]. Therefore, these results
suggest that PAK4 associated with SEs may regulate the invasion and
EMT of glioma cells.

4. miRNAs associated with SEs in glioma

MiRNAs are a class of endogenous small (19-25 nucleotides) non-
coding single-stranded RNAs that are involved in post-transcriptional
regulation either by degrading specific RNAs or inhibiting translation
[132]. The role of miRNAs in gene transcriptional regulation and cell
biological function has been elucidated in many different types of tu-
mors. As a key regulatory factor of gene expression, miRNAs play a role
in proliferation, differentiation, and apoptosis. Increasing evidence
suggests that dysregulated miRNAs are related to the development of
tumors [133]. MiRNAs can serve as tumor suppressors or oncogenes to
influence tumor progression by regulating the malignant phenotype ofTa
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glioma cells [134–136]. Recently, several studies have found that
miRNAs associated with SEs play a central role in glioma (Table 2).

4.1. miR-155

MiR-155, located on chromosome 21, is an oncogenic miRNA [137].
As a multifunctional miRNA, miR-155 plays a crucial role in a variety of
physiological and pathological processes of cells. Increasing evidence
suggests that miR-155 is highly expressed in many different types of
tumors [138–140]. Duan et al. revealed that SEs at miR-155 target
genes regulated by NF-κB and BET drive miR-155 transcription-medi-
ated self-regulation of inflammation [141]. Sun et al. showed that up-
regulated miR-155 is positively correlated with the pathological grade
of gliomas and that high miR-155 expression indicates a low survival
rate of patients [142]. In addition, miR-155 promotes glioma progres-
sion and increases malignancy by enhancing the Wnt signaling pathway
[143]. Therefore, these findings indicate that miR-155 driven by SEs
may promote malignant phenotype of glioma.

4.2. miR-21

MiR-21, one of the most studied miRNAs, has been shown to be
highly expressed in various types of tumors, promoting tumor pro-
gression and serving as a biomarker for tumor prognosis [144]. A
previous study has reported that SEs contribute to the progression of
certain tumor types by enhancing the expression of miRNAs, such as
miR-21 [145]. Yang et al. reported that the upregulation of miR-21 is
inversely associated with patient survival [146]. In addition, miR-21
affects molecular pathways, including RECK, insulin-like growth factor
binding protein-3, and TIMP3 in glioma cells [147]. Recent studies have
also demonstrated that miR-21 overexpression inhibits apoptosis and
senescence of glioma cells by inhibiting the expression of PTEN, cas-
pase-3, and caspase-9 as well as by promoting the expression of AKT,
PI3K, P-AKT, and P53 [148]. These data indicate that miR-21 asso-
ciated with SEs may promote the malignant phenotype of glioma by
multiple signaling pathways.

4.3. miR-17

MiR-17 belongs to the miR-17/92 cluster, which is abundantly ex-
pressed during neuronal and embryonic development [149]. The on-
cogenic activity potential of miR-17 gene clusters was initially identi-
fied in mouse viral tumors [150]. The activating mutations of miR-17
have been observed in different types of tumors [151]. A recent ChIP-
seq data analysis found that the locus of miR-17 is enriched with SEs.
Moreover, SEs promote the progression of tumors by enhancing miR-17
expression [145]. MiR-17 is upregulated in glioma, and inhibition of
miR-17 significantly reduces the cell viability of glioma cells and sti-
mulates cell apoptosis [152]. Another study has demonstrated that miR-
17 is highly expressed in human glioma samples and is correlated with
the malignancy degree and prognosis [153]. Therefore, these studies
suggest that miR-17 associated with SEs may be a potential therapeutic
target of glioma.

5. LncRNAs associated with SEs in glioma

LncRNAs are RNAs longer than 200 nucleotides, and they do not
have protein-coding ability [154]. LncRNAs may play a regulatory role
in gene expression by serving as signal molecules, decoy molecules,
guiding molecules and scaffold molecules [155]. Increasing evidence
has shown that the dysregulation of lncRNAs is involved in the biolo-
gical function of cells, leading to the development of tumors [156].
Additionally, lncRNAs have been correlated with invasion and metas-
tasis in human cancers [157–159]. Several studies have shown that
lncRNAs act as oncogenes, tumor suppressors or both, depending on the
environment in which tumor cells are located. Recently, we found thatTa
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several lncRNAs, including HOTAIR, MEG3, and lncRNA-ATB, are in-
volved in the progression of glioma [160,161]. Moreover, several stu-
dies have found that lncRNAs associated with SEs may be a crucial
regulator in glioma (Table 3).

5.1. Colon cancer-associated transcript 1 (CCAT1)

CCAT1, located at chromosome 8q24.21, is an ~2 kb lncRNA that
was first found to be upregulated in colon cancer [162]. Xiang et al.
found that CCAT1 regulated the CTCF protein to preserve chromatin
cyclization between MYC enhancers and was enriched in the SE region
of tumor cells [163]. A recent epigenomic analysis of SEs in squamous
cell carcinoma (SCC) showed that TP63 and SOX2 co-bind to SE regions
of CCAT1 [82]. Notably, CCAT1 has been found to be implicated in the
pathogenesis of several types of tumors. Wang et al. demonstrated that
CCAT1 expression is significantly upregulated in glioma and that
CCAT1 knockdown represses cell vitality and colony formation ability
in glioma [164]. Another study has reported that the upregulation of
CCAT1 is related to the pathological grade and prognosis of patients
with glioma [165]. Therefore, these results suggest that SE driven-
lncRNA CCAT1 may be involved in the development of glioma.

5.2. Long noncoding RNA 00152 (Linc00152)

Linc00152, located on chromosome 2p11.2, is a recently identified
tumor-promoting long non-coding RNA [166]. A pan-cancer study has
demonstrated that linc00152 expression is regulated by SEs and is
strongly enriched in the SE region [60]. Wei et al. investigated the re-
lationship between linc00152 and SEs by using the SEA database, and
they suggested that linc00152 is driven by SEs [60]. Increasing evi-
dence suggests that the aberrant expression of linc00152 contributes to
the malignancy of cancers [167–169]. Chen et al. showed that
linc00152 is highly expressed in glioma cells and enhances the pro-
liferation, migration, and invasion, and they also reported that knock-
down of linc00152 inhibits growth and increases apoptosis in glioma
[170,171]. Therefore, these findings indicate that linc00152 associated
with SEs may promote the malignant phenotype of glioma.

5.3. Nuclear paraspeckle assembly transcript 1 (NEAT1)

NEAT1 is a nuclear-enriched lncRNA that is necessary for the for-
mation of nuclear paraspeckles [172]. A recent integrative analysis
using both whole-transcriptome sequencing (RNA-Seq) and ChIP-Seq
characterization of SE-mediated networks has identified many novel
SE-associated oncogenic transcripts, including NEAT1, in nasophar-
yngeal carcinoma (NPC) [173,174]. It has been demonstrated that high
expression of NEAT1 is positively correlated with the pathological
grade of glioma [175]. However, knockdown of NEAT1 inhibits the
malignant phenotype of glioma cells [156]. Chen et al. found that
NEAT1 enhances the malignancy of glioma by activating the WNT/
beta-catenin pathway [176]. Therefore, these studies suggest that
NEAT1 mediated by SEs may promote the malignant phenotype of
glioma.

6. SEs inhibitors and their applications in glioma

We have discussed the biological functions of SE-driven protein-
coding genes and non-coding genes (miRNAs and lncRNAs) in glioma.
We observed that the abnormal transcription driven by SEs can regulate
malignant biological behavior of cancer cells. Moreover, we believe
that cancer cells may be highly dependent on these transcriptional
programs, which generates new targets for therapeutic interventions of
cancers. As the core regulatory factors of gene transcription, SE com-
plexes play key roles in the process of oncogene transcription.
Increasing studies have shown that the repression of oncogenes by in-
hibiting SE complexes has become the most attractive target in cancerTa
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therapy [177,178]. Interestingly, some studies have shown that the
same oncogenes can form different SE structures in different tumors
types [79]. However, the components of SEs are the same in different
tumor cells, which allows direct inhibition of the most common com-
ponents of SEs to prevent oncogenes from becoming resistant to SEs.
Currently, this approach has been used in a variety of cancer models,
showing great potential. It is important to further identify the compo-
sition of SEs, which will allow more inhibitors targeting the key com-
ponents of SEs to be applied in cancers in the future. There is evidence
that targeting these core transcriptional networks, either by knockdown
by RNA interference or small molecule inhibitors, may block cancer
development [179,180].

Several new drugs targeting SE complexes have been recently found
to affect cellular transcription mechanisms, resulting in anti-tumor ef-
fects (Table 4). Inhibitors of SE complexes, including BRD4 and CDKs,
block transcription by inhibiting RNA polymerase II or affecting cova-
lent modification of histones [65]. Treatment of cancer cells with these
inhibitors may result in acute and simultaneous repression of multiple
oncogenes, thereby leading to the destruction of various carcinogenic
mechanisms.

The BET family is composed of four members (BRD2, BRD3, BRD4,
and BRDT), which share a C-terminal extraterminal motif and two N-
terminal tandem bromodomains [181]. The BET inhibitor (BETi) is a
competitive inhibitor of the BET family bromine domain, which com-
petitively inhibits the binding of the BET bromine domain to acetyl-
lysine, thereby inhibiting the extension of transcription [182]. Among
all of the family members, BRD4 is one of the most widely studied
genes, and it plays a significant role in gene transcriptional regulation
[183]. Therefore, the blockade of BET by inhibiting BRD4 is used in
many studies. BRD4 inhibitors inhibit the recruitment of the positive
transcriptional extension factor complex, resulting in gene transcription
interruption [184]. At present, the following BRD4 inhibitors have been
reported: JQ1, I-BET151, AZD5153, and MK-8628 [185,186]. A recent
study has reported that JQ1 represses the transcription of oncogenes
that sustain the aberrant growth and self-renewal properties in acute
myeloid leukemia (AML) [187]. Additionally, JQ1 impairs the activity
of DIPG cells by inhibiting SE-driven transcription [188].

Other studies have indicated that CDK7 inhibitors have become one
of the powerful candidates to target oncogenic SEs [189]. CDK7 in-
hibitors include THZ1, THZ2, LDC4297, and BS-181 [190–192]. As a
covalent inhibitor of CDK7, THZ1 inhibits transcription by eliminating
CDK7-dependent phosphorylation of RNA Pol II CTD on Ser-5 and Ser-7
[193]. A recent study has reported that THZ1 treatment results in
considerable disruption of global gene transcription in glioma cells,
preferentially targeting SE-associated genes [18]. These studies suggest
that targeting the CDK7-dysregulated transcription program with SE
inhibitors may be an effective treatment strategy for glioma. Similarly,
THZ1 inhibits the transcription of related oncogenes by inhibiting SEs,
which ultimately results in the destruction of DIPG cell viability. Ad-
ditionally, THZ1 treatment modestly increases survival in a patient-
derived DIPG xenograft model [188]. However, further investigation is
required to understand whether THZ1 has better brain penetration. In
summary, drugs that inhibit CDK7 and BRD4, such as JQ1 and THZ1,
respectively, specifically target the inhibition of SEs in tumors, pro-
viding an efficient way to treat tumors by only targeting tumor cells.

Increasing evidence suggests that SE inhibitors have great potential
as selective, anti-cancer therapeutics. More studies are required to ex-
plore the mechanism of SE-driven oncogenic transcription addiction to
identify new targets to block transcription to treat tumors. However,
there are several problems associated with treating tumors by targeting
SEs in tumor cells. As previously discussed, SEs are more sensitive to
external signals than any other genomic region, and SEs control cell
identity genes in both normal and diseased cells. Therefore, SE in-
hibitors must specifically target SEs in tumor cells without affecting SEs
in normal cells, which is one of the most challenging issues in cancer
treatment. Some researchers have found that most SEs are suppressed in

cells, and only a small number of active SEs determine cell identity in
different cells [71,194]. Compared to normal cells, tumor cells actively
assemble SEs at oncogene domains to drive oncogene expression in the
process of tumorigenesis [15]. These studies suggest that the strategy of
targeting SEs is feasible in some tumors, which may provide novel
therapeutic options for other malignant tumors that lack good drug
therapies.

Because SEs are a series of enhancer clusters, they have some similar
components as typical enhancers. Therefore, the use of SE inhibitors
may inhibit typical enhancers in normal cells, resulting in transcrip-
tional suppression and activation of new oncogenes. Thus, the non-
specific targeting of general transcriptional machinery may also lead to
cytotoxicity in non-malignant cells. Some researchers have addressed
these challenges. Treatment of multiple myeloma tumor cells with JQ1
causes BRD4 to become imbalanced in the genome, and this imbalance
is more frequent in the SE region than in the typical enhancer region
[15]. This phenomenon is found in other tumors, such as B cell lym-
phoma and colorectal cancer [14,195]. Drugs, such as JQ1 and THZ1,
specifically target the inhibition of SEs in tumors, providing an efficient
way to treat tumors [15,193]. Additonally, recent studies have found
that SE inhibitors (CDK7 inhibitors) are highly sensitive and specific to
tumor cells [196,197]. Although SE inhibitors have been studied in
many tumors, the potential side effects and off-target effects of SEs have
not been fully investigated. Therefore, when SE inhibitors are used to
treat tumors, their inhibitory effect on these tumors as well as their
possible side effects should be studied to allow avoidance of these side
effects in the future. Finally, these insights are important to understand
the assembly and activation of SEs to identify more candidates that
inhibit SEs in glioma (Fig. 3).

7. Conclusion and prospective

In this review, we summarized recent advances in the basic con-
cepts, characteristics, and biological functions of SEs and their identi-
fication in different cells. In addition, we described the role of the
protein-coding genes and non-coding genes (miRNAs and lncRNAs)
driven by SEs in glioma. We also found that SEs are specific to the
tumour type, but they can regulate the same gene in different tumours.
Thus, it is clear that SEs have central effects on transcriptional reg-
ulation of glioma, and these SEs have oncogenic capability depending
on the environment. However, the intrinsic properties of SEs and their
interactions with target genes are still poorly understood. Moreover, the
role of each SE complex component and how they work together to
regulate gene expression require additional research and discussion.
Future studies on SEs should focus on exploring the various components
of SEs in different tumor cells and how they regulate the function of SEs
and affect the biological function of tumor cells. The underlying me-
chanism of SEs in normal development and cancer conditions remains
to be elucidated.

SE-related components of the glioma cell genome can be mapped
using sequencing techniques followed by gene-editing techniques to
knockout individual components to investigate their cooperative roles
in SEs.

Because SE complexes are shared in diverse cancer subtypes, tar-
geting individual components of SE complexes, such as BRD4 and
CDK7, may have great potential in the treatment of cancers. In addition
to applying genome-editing techniques, such as CRISPR/Cas9, for the
analysis of SE components, this approach may also be a novel gene
therapy to target oncogenic SEs. The characteristics of SEs in glioma
provide a new framework for application of inhibitors that target SEs to
destroy tumor cell transcription. However, challenges still exist.
Although the role of SE inhibitors has been demonstrated in many
tumor subtypes, the extent of their involvement remains controversial.
Targeted SEs used in cancer treatment may cause significant side effects
because some tumor suppressor genes may also be blocked by SE in-
hibitors. Therefore, before SEs can be used as a therapeutic target for
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glioma, there is an urgent need to better understand the mechanism of
the addictive nature of SE-driven oncogene transcription.

High-throughput sequencing technology has revealed many SEs
associated with tumors and other diseases. Despite the compelling
evidence that SEs regulate cellular identity genes leading to tumors,
there insufficient genetic evidence to determine whether individual SEs
determine cell fate and change specific cell types. In this review, we
emphasized that SEs play underappreciated but critical roles in glioma
cells. SEs may increase the malignant degree of glioma cells by reg-
ulating the overexpression of protein-coding genes and non-coding
genes. Therefore, we hypothesize that SEs may regulate the biological
function of glioma cells by influencing SE-associated genes or non-
coding RNAs. Moreover, SEs can be used as prognostic markers to
predict the progression and risk of glioma. Integrative analysis of the SE
signature and gene transcription profile of the glioma genome may be a
novel approach for diagnosis. In corresponding fresh glioma samples
and para-cancer tissue samples, the SE landscape can be established
using ChIP-Seq technology to study the changes in the SE landscape in
each stage of the occurrence and development of glioma. Finally, as the
research field of SEs expands, increasing numbers of SEs associated
with glioma will be found. In the future, SEs may be applied in clinical
practice for the diagnosis, prognosis or treatment of glioma.
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