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Single-cell RNA-seq reveals that glioblastoma
recapitulates a normal neurodevelopmental
hierarchy
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Cancer stem cells are critical for cancer initiation, development, and treatment resistance.
Our understanding of these processes, and how they relate to glioblastoma heterogeneity, is
limited. To overcome these limitations, we performed single-cell RNA sequencing on 53586
adult glioblastoma cells and 22637 normal human fetal brain cells, and compared the lineage
hierarchy of the developing human brain to the transcriptome of cancer cells. We find a
conserved neural tri-lineage cancer hierarchy centered around glial progenitor-like cells. We
also find that this progenitor population contains the majority of the cancer's cycling cells,
and, using RNA velocity, is often the originator of the other cell types. Finally, we show that
this hierarchal map can be used to identify therapeutic targets specific to progenitor cancer
stem cells. Our analyses show that normal brain development reconciles glioblastoma
development, suggests a possible origin for glioblastoma hierarchy, and helps to identify
cancer stem cell-specific targets.
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ignificant obstacles hampering the development of effective

cancer therapeutics include tumor heterogeneity! =, and the

persistence of incompletely understood cancer stem cells
(CSCs) that give rise to cancer recurrence®’.

IDH wild-type (IDHwt) glioblastoma, the most common adult
primary brain cancer8, exemplifies these obstacles. Following
radiotherapy and temozolomide (TMZ) chemotherapy, the
median time to recurrence is 7 months, with patients succumbing
to the disease 7 months thereafter19, This cancer is composed of
two main cell compartments: a larger differentiated cell com-
partment that forms the basis of our understanding of the
genomic and molecular underpinnings of the disease!!:12; and a
smaller, less well-characterized compartment of cells with stem-
like capabilities!3-16, The molecular and genomic heterogeneity,
and the persistence of a subpopulation of cancer cells with stem-
like properties following radiotherapy and chemotherapy, are
believed to be the main causes of resistance to treatment and the
associated extremely poor outcomes®!7:18,

Interpatient heterogeneity was established through genomic
and transcriptomic analyses by The Cancer Genome Atlas
(TCGA) research network!!l. Analysis of whole-tumor tran-
scriptomic data extracted from predominantly differentiated cells
showed that glioblastoma clustered into four main subtypes:
proneural; neural; classical; and mesenchymal!®. The more recent
classification now excludes the neural subtype?0. Despite very
different transcriptomic profiles and associated genomic altera-
tions, no differences in survival exist between these subtypes.
More recently, it has been shown that multiple subtypes coexist in
different regions?!?? and different cells'>?? within the same
tumor. This interpatient and intratumoral heterogeneity poses a
daunting challenge for research programs aimed at developing
targeted therapeutic approaches?3 and may explain the failures of
such approaches in this disease. Although a neurodevelopmental
bi-lineage hierarchy has been shown to explain a portion of this
heterogeneity in IDH mutant glioma?%2> and high-grade pedia-
tric glioma?®, this has not been possible in adult IDHwt
glioblastoma.

Another layer of complexity was uncovered by the discovery of
a small subpopulation of glioblastoma cells that have stem-like
properties!®14. The CSC theory is derived from our under-
standing of normal stem cells!> and posits that such cells must
exhibit properties of self-renewal and the ability to produce dif-
ferentiated progeny. Consistently, glioblastoma stem cells (GSCs)
do possess these properties. GSCs can propagate tumors from one
host to another'4, and can expand and develop to form brain
cancers in orthotopic xenograft models that recapitulate the
tumor from which they were extracted!42’. Importantly, stem
cells isolated from different tumors show variability with respect
to marker expression?8-30, suggesting that some degree of inter-
patient and/or intratumoral heterogeneity exists within the stem
cell compartment as well. Although the GSC compartment is
small in comparison with the differentiated compartment, it is
relevant clinically. Studies have shown that GSCs resist radio-
therapy® and TMZ chemotherapy!831. These data suggest that
GSCs may have a role in cancer development and recurrence.
There are presently no treatments targeting GSCs.

Our understanding of glioblastoma heterogeneity, and the
relevance of GSCs in this process, is limited. Here, using mas-
sively parallel single-cell RNA-sequencing (scRNAseq) of glio-
blastoma and the normal developing human brain, we discovered
a conserved trilineage cancer hierarchy with progenitor cancer
cells at the apex. We found that this progenitor population
contains the majority of the cancer’s cycling cells, corresponds to
the apex of the hierarchy using RNA velocity, and functionally
resemble GSCs. Clinically relevant, we show that this hierarchal
map can be used to identify therapeutic targets specific to GSCs.

Results

ScRNAseq highlights genomic heterogeneity in glioblastoma.
We used droplet-based scRNAseq®2-34 to obtain the tran-
scriptome of cells isolated from freshly excised IDHwt glio-
blastoma and freshly derived enriched GSCs from IDHwt
glioblastoma. In total, 53,586 cells from 16 patients (mean age:
62.3 years (95% CI: 57.0, 67.5); 25% female, Table 1) were
sequenced: 30,205 whole-tumor cells and 23,381 enriched GSCs.

To distinguish cancer cells from normal brain cells, we
determined the main copy number aberration (CNA) events in
each cell from its transcriptomic profile (Supplementary Fig. 1b, c).
Two clusters devoid of known recurrent CNAs, and containing cells
from almost all tumors, were identified (Fig. 1a and Supplementary
Fig. 1d). Cells in these clusters expressed genes found exclusively in
myeloid cells, oligodendrocytes, or endothelial cells (Supplementary
Fig. le) and were thus classified as normal cells. All other clusters
were formed by cells originating mainly from one to three tumors
and contained multiple CNAs. We defined these as cancer cells.
When enriched GSCs and whole-tumor cells were sequenced from
the same patient, these samples clustered together (Fig. la and
Supplementary Fig. 1f).

Occasionally, cells from a given patient generated two or three
cancer groupings by t-distributed stochastic neighbor embedding
(tSNE), likely indicating different clones within a tumor (Fig. 1a).
To better characterize these clones, we pooled cells from the
cancer clusters of each tumor and reclustered them with our
location-averaged data. We determined the correct number of
clusters by finding the most-stable solution (Supplementary
Fig. 1g). We detected one to three clones for each tumor. These
clusters differed by a limited number of CNAs (Supplementary
Fig. 1h). Together, these findings demonstrate intertumoural and
intratumoral genomic heterogeneity.

Conserved neurodevelopmental lineages in glioblastoma. We
then assessed intratumoral heterogeneity in the whole-tumor and
GSC samples based on single-cell transcriptomic data. We per-
formed principal component analysis (PCA) for GSC samples,
and PCA and clustered non-negative matrix factorization
(cNMF)3> for whole-tumor samples to better understand the
signatures observed.

PCA was first performed on GSC samples, one sample at a time
to highlight intratumoral heterogeneity. A cycling-free PCA
strategy (Supplementary Fig. 2a) was used since not all cells were
cycling (Supplementary Fig. 2b).

For each GSC-enriched tumor sample, we found that the first
principal component (PC) separated cells into neural develop-
mental lineages. GSCs expressing neuronal genes such as CD24,
SOXI11, and DCX were mutually exclusive from cells expressing
astrocytic (including astro-mesenchymal) genes such as GFAP,
APOE, AQP4, CD44, CD9, and VIM (Fig. 1b). To assess the
conservation of these gene programs across patients, we ranked
genes by strength of influence on PCl and found a strong
correlation of these ranks between samples (R? = 0.72, Fig. 1c).
GSCs with intermediate PC1 values express progenitor genes
such as SOX4, OLIG2, and ASCLI (Fig. 1b). In some samples,
these cells had high PC2 values; however, this was not apparent
in all samples and the rank correlation was lower (R*=0.37,
Supplementary Fig. 2¢c). We also compared the signature of each
cell within the GSC-enriched samples to determine their TCGA
subtype (Fig. 1b). For each patient sample, cells matching the
proneural, classical, and mesenchymal signatures were present.
We validated the differential gene expression profiles of
enriched GSCs and whole-tumor cell populations using flow
cytometry. In general, cells do not coexpress neuronal (e.g.,
CD24) and astrocytic (e.g., CD44) markers (Fig. 1d). Together,
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Fig. 1 Single-cell RNA sequencing highlights transcriptomic heterogeneity in glioblastoma and glioblastoma stem cells. a tSNE of location-averaged
transcriptome for all tumor cells colored by patient. Cancer cells cluster by patient, whereas normal cells from all patients cluster together (encircled
clusters indicated by arrows). GSC corresponds to glioma stem cell samples, W corresponds to whole samples. b Enriched glioblastoma stem cell (GSC)
gene expression heatmaps showing relative gene expression (raw data) sorted by PC1 per patient. These maps are separated into three rows: top row—
100 genes with the lowest value for PC1 loading; bottom row—100 genes with the highest value for PC1 loading; middle row—100 genes with the highest
value for PC2 loading. These gene signatures correspond to neuronal, astrocytic, and progenitor signatures, respectively. The TCGA subtype is also shown
for each GSC. ¢ Mean and actual rank of genes by PC1 correlation. The actual gene rank (y axis, one point per sample) correlates strongly with the mean
gene rank (x axis) in all patients. d Flow cytometry analysis of GSCs and whole-tumor, demonstrating mutually exclusive expression of CD24 and CD44.
e Heatmap of gene expression by cNMF signature with associated cell cycle scores and TCGA subtype (right). The most characteristic genes for each
signature group are depicted on the x axis. Signatures (y axis) are ordered according to hierarchical clustering (left tree). Left color bar represents the
patient sample that generated each signature—patient colors match those in Fig. 1a. Red represents high expression; blue represents low expression. Gene
signatures groupings correspond to progenitors, astro-glia (mesenchymal and classical), and neurons, with the addition of cell cycle and hypoxia
signatures. cNMF—clustered non-negative matrix factorization. f Heatmap of gene expression by signature ordered by patient as shown by the left color
bar. Genes (x axis) are in the same order as Fig. Te. Patient colors in the color bar match those in Fig. 1a, e. Each patient contains signatures from multiple

groups.

these data suggest that GSCs are organized into progenitor,
neuronal, and astrocytic gene expression programs, resembling

a developing brain.

We applied the same strategy to the whole-tumor samples.
Once the cell cycle effect was removed (see Methods), variability
in gene expression profiles remained apparent within tumors
and between tumors. We identified multiple TCGA subtypes
in each tumor, as previously shown!220 (Supplementary Fig. 2d).

Importantly, cells with different TCGA subtypes were often
separated by the first of second PCs, indicating that these
subtypes accurately describe a portion of the intrinsic hetero-
geneity of each tumor. Also, in each tumor, cells with different
TCGA subtypes did not necessarily belong to different CNA
clones (Supplementary Fig. 2e); however, different proportions of
TCGA subtypes were observed between some clones within
individual tumors. This is consistent with results from the TCGA,
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indicating that genomic aberrations do not perfectly predict a
subtype.

To better characterize sample heterogeneity in whole-tumor
samples, we implemented a sample-wise cNMF algorithm3¢. We
found five to nine signatures per sample. These clustered into
seven groups (Fig. le and Supplementary Fig. 2f). Through
identification of the most characteristic genes of each group of
signatures, we found that the first and second groups expressed
genes important for the G1S and G2M cell cycle programs with
some stem cell genes like EZH2, whereas the seventh group
expressed genes important for hypoxia response (Fig. le). The
third and fourth groups were more closely related and expressed
genes associated with oligo-progenitor and neuronal cells,
respectively (Fig. le). The fifth and sixth groups expressed genes
associated with astrocytic differentiation. Critically, each patient
sample yielded signatures, which belonged to three to seven
different groups (Fig. 1f).

We compared each of these signatures with those obtained in
the TCGA!® (Fig. le). The cell cycle, oligo-progenitor, and
neuronal signatures were associated with the proneural subtype
and the hypoxia signature was more associated with the
mesenchymal subtype. One of the two astrocytic signature
groups matched the classical subtype, whereas the other matched
the mesenchymal subtype. That the classical and mesenchymal
signatures clustered together and expressed astrocytic genes
corroborates their resemblance to astrocytes and cultured
astrocytes, respectively!®. Finally, as was previously found by
Wang et al.2%, none of the signatures matched the neural subtype.

ScRNAseq of the normal developing brain. If glioblastoma is
organized into programs reflecting normal brain development,
then a direct comparison with the developing brain at a single-cell
level should provide additional insight. We performed scRNAseq
on freshly isolated cells from the telencephalon of four human
fetuses ranging from 13 to 21 weeks of gestation. Fluorescence-
assisted cell sorting (FACS) was used to remove most microglia
(CD45-positive) and endothelial cells (CD31-positive) from the
samples, and to select CD133-positive cells in order to improve
the resolution of progenitor and neural stem cell populations3’.
By sequencing both the total and the CD133-positive cell popu-
lations, we aimed to maintain cellular representation of devel-
opment. We sequenced 12,544 cells from the total unsorted
population, and 10,093 cells from the CD133-positive population.

Total and CD133-positive data sets from all fetal brains were
combined in silico (Supplementary Fig. 3a) after excluding
ependymal cells, and the Louvain community detection algorithm
was used to group cells into cell types (Fig. 2a,b). By varying the
resolution parameter of the algorithm, we chose the most stable
clustering solution (Fig. 2b and Supplementary Fig. 3b). This
generated a total of 10 cell clusters (Fig. 2a). Differential gene
expression analysis of these clusters (Supplementary Data 1)
identified important genes per cluster. Cluster names were given
based on their correlation with cell types described by Now-
akowski et al.38 (Supplementary Fig. 3¢, d). CD133-positive cells
were found in all clusters/cell types, but were enriched in the
radial glia, neuronal progenitors, and committed glial cell clusters
(Fig. 2d and Supplementary Fig. 3e).

Two CD133-positive cell types did not fit with previously
identified gene signatures8. The first was detected mainly in the
17- and 19-week brains and highly expressed genes such as VIM,
GFAP, OLIG1, GLI3, and EOMES (Fig. 2a, uRG). It was found to
be most similar to certain types of radial glia in the Nowakowski
et al. data set®® (Supplementary Fig. 3¢, d). The second cell type,
an unidentified glial cell cluster, was detected at all ges-
tational ages and strongly expressed oligodendrocyte lineage

genes (e.g., OLIGI1, OLIG2, and PDGFRA), glial/astrocytic lineage
genes (e.g., GFAP, SOX9, HOPX, HEPACAM, and VIM), and
progenitor genes (e.g., ASCL1, MKI67, and HES6) (Fig. 2¢, dotted
line encircles the glial cluster as well as oligodendrocytic cells and
astrocytes for comparison, and Supplementary Data 1). Accord-
ingly, high correlation was observed with astrocytes and
oligodendrocyte progenitor cells in the Nowakowski et al.38 data
set (Supplementary Fig. 3c). However, it did not express
differentiation markers found in astrocytes or oligo-lineage cells
(OLCs) such as APOE and APOD, respectively (Fig. 2¢). It also
lacked the high gene complexity and UMI counts seen in doublets
(Supplementary Fig. 3f). This mixed gene signature is compatible
with that of a bipotential glial progenitor cell (GPC). Notably, this
GPC signature was almost exclusively identified in CD133-sorted
cells (Fig. 2a, d and Supplementary Fig. 3e), which likely explains
why it was not previously detected3®3%. The existence of cells
expressing these GPC markers was confirmed in first passage
culture of fetal brain cells derived from one of the fetal brains
sequenced (Fig. 2e), and in the subventricular zone of the adult
human brain (Fig. 2f).

Creation of a fetal brain roadmap. We next aimed to find a
parallel for each cancer cell to a fetal brain cell type. To do so, we
developed a roadmap technique that enables the projection of
every cancer cell onto the fetal data set. We first selected the
appropriate fetal cell types to build the roadmap. This was
accomplished by determining which fetal brain cell type was
nearest to, or captured, each cancer cell. Ninety-four percent of
whole-tumor cells were captured by five fetal brain cell types:
neurons; astrocytes; OLCs; truncated radial glia (tRG); and GPCs
(Supplementary Fig. 4a). Surprisingly, interneurons captured
more cells than excitatory neurons. Consequently, the five cell
types used to construct the roadmap were astrocytes; tRG; GPCs;
OLCs; and interneurons.

We used PCA on an equal number of fetal astrocytes, GPCs,
OLCs, interneurons, and tRG. This fetal PC space acts as the
roadmap. We then used diffusion embedding?®4! to better
represent the differentiation process in 3D. In this diffusion
roadmap, GPCs are found at the junction of the oligodendrocytic,
astrocytic, tRG, and neuronal lineages (Fig. 3a).

Fetal brain roadmap reveals glioblastoma trilineage hierarchy.
We projected an equal number of cancer cells from each patient
onto this roadmap and used the first three components of dif-
fusion embedding which most effectively separated the cell types
as each cell’s coordinate in the hierarchy (Fig. 3b), with the
exception of one tumor from which we obtained too few cells
(BT407-W). GSCs and whole-tumor cells overlapped (Fig. 3c)
despite significant variations in lineage proportions between
patients in the whole-tumor samples (Supplementary Fig. 4c).
Mirroring the TCGA analysis performed above (Supplementary
Fig. 2e), different cell types did not necessarily belong to different
CNA clones (Supplementary Fig. 4c). The GPC signature was the
only one robustly expressed in all patients. To visualize gene
signatures, we ordered cancer cells according to all three diffusion
components (DCs) individually and found genes that correlated
most with this order (Fig. 3d and Supplementary Data 2). Cancer
cells expressing an OLC signature (e.g., OLIG1, APOD; Supple-
mentary Fig. 4d) or astro-mesenchymal signatures (e.g., CD44,
GFAP, AQP4) were found at either end of DC2; cancer cells
expressing a neuronal signature (e.g., STMN2, DLX2) were found
at the end of DC1; and cancer cells expressing a GPC signature
(e.g., OLIG2, NES ASCL1, HES6) were found at the end of DC3
and mid-DC2. We therefore defined DC3 as the glial progenitor
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Fig. 2 Single-cell RNA sequencing of the developing brain and the identification of glial progenitor cells. a T-distributed stochastic neighbour
embedding (tSNE) map of human fetal brain cells by cluster or cell type. Data sets from total cells and CD133+ cells were combined. Cells are colored by
cell type. tRG truncated radial glia, uRG unknown radial glia, IPC inhibitory neuronal progenitor, RG radial glia, EN excitatory neuron, IN interneuron, ENP
excitatory neuronal progenitor, Astro astrocyte, GPC glial progenitor cell, OLC oligo-lineage cells. b Similarity matrix of fetal brain cells ordered by cluster.
¢ tSNE maps of human fetal brain cells showing cell type expression of OLIG2, PDGFRA, APOD, GFAP, SOX9, APOE, ASCLI1, and MKI67. Expression is
averaged to the 20 closest neighbors in principal component (PC) space. Encircled cells were reclustered to yield three separate clusters. d tSNE map of
total human fetal brain cells and CD133+ fetal brain cells. e Representative example of freshly cultured fetal neural stem cells coexpressing CD133, OLIG2,
and GFAP (n =2 independent biological samples). Images were taken at X63 magnification. Scale bars: 10 pm f Immunofluorescence analysis of the adult
human subventricular zone (SVZ) at the junction of the AB and HG. Top row, schematic and anatomic structure of the SVZ. Bottom row, identification of
dividing cells with marker expression corresponding to glial progenitor cells. HG hypocellular gap, AB astrocytic band, E ependymal cells, LV lateral
ventricle, CN caudate nucleus. Analysis was performed in n = 4 independent patient samples. Scale bars: top row images: 200 pum (left) and 40 pm (right);
bottom row images: 20 pm.

score. This organization reveals a glial progenitor-centered trili-
neage organization of whole-tumor and enriched GSCs.

When comparing enriched GSCs and whole-tumor cells, we
found a significant shift of GSCs toward higher values on the glial
progenitor score (p<1E-21), and a shift toward intermediate
values of DC2 (Fig. 3¢ and Supplementary Fig. 4e). These data
show that glial progenitor cancer cells are enriched in GSC
culture conditions, and a shift away from the astrocytic,
mesenchymal, and oligodendrocytic cancer cell types occurs after
7 days in stem cell culture conditions.

Lastly, cancer cells from whole tumor were classified into cell
types using a LDA with the fetal cells as a training set (Fig. 3a, b).
Cells that could not be classified with a probability of error
<0.01% were left unclassified (Fig. 3b); these correspond to cells
with intermediate signatures. The gene expression profile of the
roadmap cell types closely matched those obtained by <cNMF
(Supplementary Fig. 4f). We also found a close agreement
between these cell type signatures and the signatures described by
Neftel et al.#2, highlighting the fundamental nature of these
lineages in IDHwt glioblastoma (Supplementary Fig. 4f).
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Fig. 3 Fetal brain roadmap reveals a glioblastoma trilineage hierarchy centered on progenitor cancer cells. a Diffusion plot of the projection of selected
fetal cell types onto the roadmap. Cells are colored by the cell type they were attributed in Fig. 2a. b Diffusion plot of the projection of an equal number of
whole-tumor cancer cells from each patient onto the roadmap. Cells are colored based on their classification by linear discriminant analysis (LDA).
Unclassified cells were colored gray. ¢ Diffusion plot showing the location of glioma stem cells (GSCs) relative to whole-tumor cells (left) and histogram of
glial progenitor score for GSCs and whole-tumor cells (right). An increase in proportion of cells with higher glial progenitor scores is seen in GSCs (p < le-
21, two-sample Kolmogorov-Smirnov test). Only samples with paired GSC and whole-tumor data were used here. d Heatmaps showing relative gene
expression (raw data) for cells ordered by each of the diffusion components of the roadmap. Genes are ordered from most correlated to least correlated
with the diffusion component. The 200 most and 200 least correlated genes are shown. Top color bar indicates cell type classification from the LDA. Each
color corresponds to the same classification as in b. e Pie chart for TCGA subtype by cell type for a subset of 1000 cells. Cell types are based on the LDA
classification for all whole-tumor cells. and TCGA subtype was obtained using Gliovis (see Methods).
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We compared the TCGA subtype of each cell (see TCGA
analysis above) with its classified cell type (Fig. 3e). As predicted
by previous work!%#2, neuronal and oligo-lineage cancer cells
were almost exclusively proneural; astrocytic cancer cells were
strongly classical; and mesenchymal cancer cells were strongly
mesenchymal. Glial progenitor cancer cells were mostly proneural
(Fig. 3e), but similarities to the classical and mesenchymal
subtypes were also found. We then used our signatures to score
the TCGA samples!® according to these cell type signatures
(Supplementary Fig. 4g). The proportion of cell types by TCGA
subtype is in close agreement to that described by Neftel et al.42.

Progenitor cancer cells are the most proliferative cancer cells.
Based on the expression of cell cycle genes, we defined a cycling
cell as one with a G1/S or G2/M score >1.5, as was done pre-
viously?>. We then calculated the proportion of cycling cells as a

8

function of their glial progenitor score. We found almost all
cycling cancer cells had high glial progenitor scores (Fig. 4a, b).

We then aimed to validate this result using single-cell
proteomic analysis. To do so, we generated protein marker
panels representative of each cancer cell type. We created a
simplified roadmap (see methods) with progenitor and lineage
scores (Fig. 4c). We projected GSCs onto this modified roadmap
and selected genes encoding cell surface protein markers which
most strongly correlated with the lineage scores (Fig. 4d and
Supplementary Data 3). Interestingly, this projection high-
lighted the relative absence of HLA gene expression in neuronal
cancer cells (Fig. 4d), analogous to normal neurons*3. This may
have implications in the immune responsiveness of these
cells. For the purposes of cytometry assays and sorting, we
defined CCD1337/CD247/CD9 as neuronal cancer cells,
CD9%/CD44%/CD133~ as astro-mesenchymal cancer cells,
and CD97/CD133" as progenitor cancer cells. For the mass
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Fig. 5 RNA velocity supports conserved hierarchical dynamics in glioblastoma. a Diffusion roadmap schematic for all whole-tumor samples where
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superimposed to the UMAP embedding of cells by sample. Cells are colored by cell type according to a. UMAP uniform manifold approximation and

projection.

cytometry assay, PDGFRA and OLIG2 were included as
markers for progenitor cancer cells.

Using the progenitor cancer cell marker panel, and a validated
cell cycle marker panel*44>, we used mass cytometry to analyze
42,983 cancer cells, and found 840 cells in S-phase (1.95%)
(Fig. 4e). We found that 12.6% of the progenitor cancer cell
population was in the S-phase. These progenitor cancer cells
made up only 12.2% of the total tumor population yet accounted
for 78.9% of all S-phase cells (Fig. 4f). Interestingly, much of the
remaining S-phase cells expressed a subset of the progenitor
signature (Fig. 4e), highlighting the continuous nature of
differentiation. In contrast, only 0.25% of cells without progenitor
markers were found in S-phase (Fig. 4e). Together, these non-
progenitor cells made up 87.8% of the total population but only
21.1% of all cells in S-phase (Fig. 4f). Similarly, tumor
immunolabeling, using Ki67 as a marker of cell proliferation,
showed that the percentage of cycling cells in the CD133-positive
population is significantly higher than that of CD133-negative
population in two patients (Supplementary Fig. 4h).

Progenitor cancer cells at apex of glioblastoma hierarchy. We
found that all samples had high intron rates similar to those

observed in mouse brain development#® (Supplementary Fig. 5a).
Therefore, we used RNA velocity*® to measure transcriptional
dynamics and characterize the differentiation process in
glioblastoma.

To find patterns in velocities, we labeled cells with the cell type
classification they were given in the LDA described above.
Progenitor cells and unclassified cells were colored according to a
greyscale, which indicated the magnitude of their progenitor
score (Fig. 5a), highlighting the spectrum of differentiation seen
in the roadmap. Notably, cells with the same cell type aggregated
together and were at the periphery of the UMAP (Fig. 5b),
suggesting once again these cell types are intrinsic to the
glioblastoma samples.

Directional flow was noticed in every patient sample (Fig. 5b).
We confirmed this was not owing to random chance (repre-
sentative example in Supplementary Fig. 5b). In general, the
vector field points from cells with high glial progenitor scores to
cells classified to a specific lineage (Fig. 5b). We also performed
velocity with PCA embedding, a mathematically simpler
representation than UMAP. These data also show that the main
direction of flow is from progenitor cells to differentiated cell
types (Supplementary Fig. 5c¢).
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Although in a few patients no clear path could be found leading
to astrocytic and/or neuronal lineages, we found no clear vector
paths between lineages. An exception to this is the mesenchymal
cell type, which appeared downstream of astrocytic cancer cells in
most patient samples (Fig. 5b), or appeared to be intermediate
between progenitors and other lineages in one patient sample
(BT346). Interestingly, in samples containing multiple cell types
(e.g., BT389, BT400, and BT409), cells often did not completely
segregate by lineage until the terminus of their respective lineage
velocity field.

Together, these analyses suggest that astrocytic, mesenchymal,
oligodendrocytic, and neuronal cancer cells are more differen-
tiated than progenitor cancer cells, and that the latter are most
often the originator of the hierarchy in glioblastoma.

Progenitor cancer cells drive chemoresistance and growth.
Resistance to conventional chemotherapies and tumorigenicity are
hallmarks of CSCs®1718, These data, however, are derived from
studies that have considered the CSC compartment to be uniform,
not one displaying heterogeneity driven by a hierarchical develop-
mental organization. To evaluate GSC chemoresistance and tumor-
igenicity considering hierarchy and lineage, we sorted them into
following three types: progenitor, neuronal, and astro-mesenchymal,
based on the protein expression panel described above.

Three patient-derived GSC lines were separated into these
types and treated with TMZ. Variable doses were required to
achieve responses in different cell lines, correlating with the
methylguanine methyltransferase status of the tumor. We found
that progenitor GSCs either did not respond or responded less to
TMZ than the more-differentiated GSCs (Fig. 6a and Supple-
mentary Fig. 6a).

We then assessed the influence of hierarchy and lineage on
tumor forming capacity. Forty-seven mice were orthotopically
xenografted with progenitor, neuronal, astrocytic, or total GSCs
from three different patients in near-limiting dilution. We
observed earlier tumor formation, and a more rapid increase in
tumor signal, for all mice implanted with progenitor or total
GSCs. In mice implanted with astro-mesenchymal or neuronal
GSCs the tumor formation and signal increase was either absent
or significantly delayed by up to 3 months (Fig. 6b-d).
Consistently, mice implanted with progenitor GSCs had a
significantly lower survival time than those implanted with
neuronal (OR 0.26, p <0.01) or astro-mesenchymal (OR 0.05, p <
0.001) GSCs (Fig. 6e).

We also analyzed the xenografts to determine the progeny of
each implanted GSC cell type (Fig. 6d). At 12 weeks, progenitor
GSCs gave rise to tumors expressing mainly the progenitor marker
ASCL1 and small populations of cancer cells expressing the
neuronal marker DCX or the astro-mesenchymal marker CD44.
Neuronal GSCs gave rise to tumors expressing mainly DCX, and
smaller populations of cells expressing ASCL1. No CD44-
expressing cells were found in these tumors. Finally, the very small
tumors stemming from astro-mesenchymal GSCs expressed mainly
ASCL1 and a small population of CD44-expressing cancer cells.
The low proportion of CD44-expressing cells may be due to the
lack of immune micro-environment in NSG mice?’.

Together, these results identify a lineage hierarchy of
tumorigenicity and chemoresistance in GSCs, with progenitor
cancer cells being the most chemoresistant and tumorigenic. Our
findings also indicate that lineage specificity and plasticity exist
within the GSC pool.

Progenitor pathways expose therapeutic opportunities. As
progenitor GSCs are the most chemoresistant and tumorigenic
cancer cell population, we aimed to leverage our hierarchy and

transcriptomic data to find targets relevant to this cancer cell
population.

We used the LDA classification of whole-tumor cells described
above to separate cells into cell types. We selected the GPC and
astro-mesenchymal groups for the analysis to specifically
compare the progenitor population to the most abundant cell
types in the cancer. We performed gene set enrichment analysis
(GSEA) in a manner similar to previously described methodol-
ogies*. We identified pathways with a significant enrichment in
progenitor cancer cells (Supplementary Data 4). Hits with
significant and strong correlations were found in pathways such
as EZH2, FOXM1, and Wnt, previously established pathways
relevant to CSC self-renewal and tumorigenicity4°->1.

Pathways of previously unknown significance in GSCs were
also detected. Of these, the E2F4 pathway was the most
significant, and it was thus selected to test our target identification
method. The E2F gene family regulates cell cycle and is important
for progenitor cell survival®2. The E2F4 gene set involves many of
the regulating targets of the transcription factor E2F4; therefore,
E2F4 inhibition was selected to target this pathway. HLM006474
is a small molecule inhibitor that prevents E2F4 binding to DNA.
It has been shown to cause senescence of gastric cancer cells®3,
and to reduce proliferation and survival of melanocytic cells and
lung cancer cells in vitro®%>, E2F4 expression in glioblastoma
tissue has been shown®®. To our knowledge, our work provides
the first description of its importance in GSCs.

We tested the effect of E2F4 inhibition in progenitor, neuronal,
and astro-mesenchymal GSCs following HLM006474 treatment.
Proliferation and survival of progenitor GSCs was significantly
reduced compared with neuronal and astro-mesenchymal GSCs
(Fig. 7a). This differential sensitivity was also observed in a sphere
forming capacity assay (Fig. 7b, ¢) and serum-free vs serum-
differentiated GSCs (Supplementary Fig. 6b). On target E2F
inhibition was confirmed>* (Supplementary Fig. 6¢, d). Together,
these data show that targeting E2F4 preferentially affects
progenitor GSC proliferation.

We tested the effects of E2F4 inhibition in vivo. Pooled GSCs,
treated with HLMO006474 or vehicle for 3 days, were orthotopi-
cally xenografted. A significant reduction in tumor growth
(Fig. 7d, e), and improved survival (Fig. 7f, p value = 0.03, Cox
proportional hazard) in the HLMO006474-treated mice was
observed.

As E2F4 inhibition is effective in progenitor GSCs, and TMZ
chemotherapy is more effective in more-differentiated GSCs, we
reasoned that HLM006474 combined with TMZ would be a
more-effective treatment for the total GSC compartment than
each individually. We sequentially treated GSCs with
HLMO006474 followed by TMZ chemotherapy at TMZ doses that
are ineffective as monotherapy. We observed a further decrease in
proliferation and cell survival using this combination therapy
compared with monotherapy (Fig. 7g). We performed an
isobolographic analysis of this combination therapy®” to assess
for synergism or antagonism. We found no significant difference
between the measured isoboles and the control additive isobole
(Supplementary Fig. 6e, p value = 0.74, Student's £). Therefore, no
synergism or antagonistic effect was found between the two
compounds, but their additive properties suggest they could be
used in combination to treat both progenitor and more-
differentiated GSCs within the total GSC population.

Discussion

Intratumoral and interpatient heterogeneity are hallmarks of
many cancers!. Here, we show that the normal developing human
brain can be used as a roadmap to elucidate brain cancer devel-
opment, and, in conjunction with RNA velocity, reveal that
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Fig. 6 Progenitor cancer cells are drivers of chemoresistance and tumor growth. a Box-whisker plots showing the proportion of viable glioma stem cells
(GSCs, n =1 patient: BT390-GSC) sorted by type and followed by 5 days of temozolomide (TMZ) treatment, normalized to corresponding vehicle control.
See Supplementary Fig. 5e for additional patients. Three technical replicates and three biological replicates were performed per condition. Box plot
represents the first quartile, median, and third quartile with whiskers corresponding to 1.5 times the interquartile range. The overlaid dot-plots represent the
mean value per biological replicate per group. A one-tailed, two-sample equal variance t test was used. b Select bioluminescence images from mice
implanted with GSCs sorted by type. Mice implanted with progenitor GSCs exhibit a more rapid tumor growth compared with those implanted with
neuronal or astrocytic GSCs. € Average bioluminescence intensity over time for mice xenografts injected with different GSC types sorted from BT333-GSC
(n=24). Data are represented as mean * SE. p values obtained with two-tailed, two-sample t tests. d Mice from each GSC group was killed at 12 weeks
and the corresponding H&E and immunofluorescence images for cell type markers are shown. Expression of cell type-specific markers was quantified from
~1000 to ~3000 human nucleoli (hNu)-positive cells per mouse model group. Each graph represents n = 2 biologically independent mouse brain sections.
Scale bars: whole mount images: T mm; immunofluorescence images: 50 pm. e Kaplan-Meier survival curves for mice implanted with different GSC types
(n=47). Univariate Cox proportional Hazard Model (two-sided) shows a significant difference in survival between progenitor GSC and neuronal

(p value = 0.0025) or astrocytic GSC (p value = 5.7e-6) xenografts, and also between neuronal and astrocytic GSC xenografts (p value = 0.0059). For all
plots, ***p < 0.001, **p<0.01, *p<0.05.

glioblastoma develops along conserved neurodevelopmental gene
programs and contains a rapidly dividing progenitor population.
These data shed new light on IDHwt glioblastoma CSC hierarchy
and the origins of heterogeneity.

Recently, scRNAseq characterization of human fetal brain cells
described the transcriptomic signature of many cell types within
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the developing brain3%3°. By increasing the number of cells
sequenced, and enriching for neural stem cells, we uncovered a
cell type with a transcriptomic signature suggestive of a GPC.
Additional work such as fate mapping will be necessary to
uncover the exact position of these cells within the developmental
hierarchy of the brain.
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Fig. 7 Pathways enriched in progenitor cancer cells expose therapeutic opportunities. a Bar-graph showing the proportion of viable glioma stem cells
(GSCs, BT333-GSC) sorted by type followed by 7 days of HLM006474 treatment, with each cluster normalized to corresponding vehicle control. Each bar
in the graph represents the average of n=3 biological replicates treated with HLM0O06474 as a ratio of the average of n=3 DMSO-treated biological
replicates. Data represented as mean+SE. A one-tailed, two-sample equal variance t test was used. b Representative images of GSCs at x10 magnification
(brightfield), sorted by type and treated in HLM006474 for 7 days (images correspond to 7a). n = 2 biologically independent sphere forming experiments
were performed. Scale bar: 400 pm. ¢ Forest plot showing the odds ratio of forming a tumor sphere >65 mm following 7 days of HLM0O06474 treatment,
calculated using a multivariate logistic regression with the astrocytic GSC type as a reference, controlled for patient cell line. There was no significant
difference between the two GSC lines (p>0.2), odds ratio with 95% confidence intervals are shown. d Bioluminescence images and e signals from
representative mice treated with 20 mm HLM006474 vs DMSO with corresponding f Kaplan—Meier survival plot (n =16, eight per group). Data are
represented as mean=SE. g Box—whisker plot showing the proportion of viable unsorted GSCs (BT326-GSC) after one of the following treatments: 6 days
of TMZ treatment, 6 days of HLMO06474 treatment, or 3 days of HLM006474 treatment followed by 3 days of TMZ treatment, normalized to
corresponding vehicle control. n = 2 biological replicates per treatment. Box plot represents the first quartile, median, and third quartile with whiskers
extending to 1.5 times the interquartile range. The overlaid filled dot-plots represent the mean value per biological replicate per group. P values: TMZ/HLM,
0.004; HLM/combination, 0.01. For all plots, **p < 0.01, *p < 0.05.

We showed that IDHwt glioblastoma is hierarchically orga- Critically, we found a fifth cell type, which exists at the inter-
nized into three cell lineages that correspond to all three normal section of these lineages and corresponds transcriptomically to
neural lineages: astrocytic; neuronal; and oligodendrocytic.  progenitors and functionally to apical glioma stem cells. The closest
Interestingly, the neuronal lineage is devoid of HLA expression, transcriptomic parallel of this cell cluster in the normal developing
suggesting a potential source of resistance to immunotherapy. We  human brain are GPCs. We propose that the cell of origin of
identified a fourth cell type by cNMF, mesenchymal, which most  glioblastoma, whether a GPC or another cell type nearby in the
closely resembles tRG in our roadmap. Although this resem- brain stem cell hierarchy, also possesses such pluripotency. A
blance served the purpose of properly separating cancer cell types,  genetic mouse model studying glioma origin suggested that OPCs
mesenchymal cancer cells lack expression of important tRG genes  are candidate cells of origin®®. These cells expressed Pdgfra, Olig2,
such as AQP4, FAM107A, SOX9, and GLI3, and tRG lack the and occasionally nestin. In our data set, both GPCs and OPCs
expression of mesenchymal genes such as CD44 and TIMP1. express PDGFRA and OLIG2, but NESTIN expression is restricted
Therefore, tRG may not be a perfect parallel for mesenchymal to GPCs. In contrast, scRNAseq studies of IDH mutant gliomas
cancer cells, and this parallel may not exist in the normal brain. identified only two lineages, astrocytic and oligodendrocytic?42>.
These four cancer cell lineages closely resemble the signatures This suggests a different cell of origin in these pathologies than in
recently described by Neftel et al.#2, showing their fundamental adult IDHwt glioblastoma and may underlie the disparate natural
importance in describing cancer heterogeneity. histories and treatment responses between these cancer types.
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Our data also show that progenitor cancer cells are the cancer
cell type with the highest rates of proliferation, more so than
cancer cells undergoing lineage differentiation. The identification
of highly proliferative apical CSCs here is in contrast to the work
of Patel et al.!? and Neftel et al.2, where such a progenitor cell
population was not identified. As genetic anomalies are most
often acquired during the cell cycle, it is likely that new clones
arise within this progenitor population and propagate down the
lineages as their progeny differentiate. We suspect that specific
genomic anomalies skew differentiation towards one lineage or
another, giving rise to the observed TCGA subtypes. In support of
this hypothesis, Neftel et al.#?> recently showed how some
anomalies are associated with particular cancer cell types, and, in
a model system, that these anomalies can influence the differ-
entiation of normal neural stem cells.

These results also provide insight into hierarchy and plasticity
within glioblastoma. With our high cell numbers, we estimated
RNA velocity in the cancer, as was previously done in the
developing mouse brain®®. This analysis suggests progenitor
cancer cells have the potential to differentiate into all cancer cell
lineages identified. Although the velocity data demonstrate the
main flow of differentiation, from progenitor cancer cells to the
more-differentiated cell lineages, the apparent proximity of some
lineages close to the progenitor population suggests that
plasticity*2° can occur, particularly in the GSC population. In
support, our GSC cell type-specific xenograft models show evi-
dence of both lineage commitment and plasticity within the GSC
population. In a similar type of experiment, Neftel et al.#? recently
used barcoded glioma cells grown in serum-free media supple-
mented with EGF and FGF to show that many of these cells can
ultimately give rise to multiple lineages in a mature xenograft.

Our findings suggest that progenitor cancer cells are the most
common originator of the cancer cell hierarchy, are the most
rapidly cycling cancer cell type, and within the GSC pool are the
most tumorigenic in xenograft models, more so than distal CSCs,
thus driving cancer growth. In GSC culture conditions where all
GSCs retain the ability to divide, progenitor GSCs are also most
resistant to TMZ. Together, these findings are relevant to cancer
biology and therapeutics development. These rapidly cycling
progenitor cancer cells are often at apex of the cancer cell hier-
archy and thus serve as a prime cell population to target. Iden-
tification of mutations or driver events within this cell population,
or the identification of signaling pathway alterations between
progenitor cancer cells and more-differentiated cancer cells will
likely yield meaningful new therapeutic targets.

To that end, we leveraged our transcriptomic data and con-
served hierarchical neurodevelopmental classification to identify
therapeutic targets relevant to progenitor cancer cells in all
patients. HLMO006474, an E2F4 blocker, shows pronounced
activity toward progenitor GSCs versus GSCs that have differ-
entiated towards the neuronal or astrocytic-mesenchymal linea-
ges. We showed that E2F4 inhibition significantly hampered
tumor growth in vivo. As mice xenografted with these progenitor
GSCs develop tumors faster and exhibit a shorter survival time
than mice engrafted with distal GSCs, targeting this most rapidly
cycling and functionally aggressive progenitor cancer cell popu-
lation may be an effective treatment approach. Given the plasti-
city that can occur in the GSC population, separate targeting of all
cell types within the cancer will likely be needed.

Methods

Glioblastoma samples. Glioblastoma samples were harvested under a protocol
approved by the Montreal Neurological Hospital’s research ethics board. Consent
was given by all patients. Surgeries were performed at the Montreal Neurological
Hospital. Pre-operative magnetic resonance imaging was performed for surgical
planning. Tumor samples were obtained at the junction of the contrast-enhancing

portion of the tumor and brain invasion. In our experience, this location maximizes
cell viability, reduces the confounding effects of hypoxia and necrosis, and
increases the number of cells, which can be extracted from the sample. A certified
neuropathologist confirmed all tumor histopathological diagnoses and IDH
mutation status by DNA sequencing.

Cells were dissociated from the whole tumor, and cDNA libraries were prepared
on the operative day (Supplementary Fig. 1a). Whole-tumor specimens were
washed three times in sterile phosphate-buffered saline (PBS) containing penicillin
and streptomycin. Specimens were then minced into fragments of <1 mm in size,
before being digested in a collagenase solution containing DNAse and MgCl, for
1-2h at 37 °C. The digested specimens were washed three times with sterile PBS,
and large debris were removed with a 70-pm strainer. Residual RBCs were removed
using a density gradient in a 1:1 volume ratio with the sample (Lymphoprep, Axis-
Shield). Samples were washed five more times in sterile PBS.

Preparation of the whole tumor and GSC samples. The isolated cells were
divided into two parts: one for whole-tumor analysis; and one for glioma stem cell
enrichment.

Whole-tumor cells were prepared for single-cell capture and sequencing. For
the early samples (Table 1), endothelial and myeloid cells were removed before
capture. Later samples (Table 1) were captured and sequenced immediately after
dissociation since normal cells were removed in silico. The isolated cells were
resuspended at a concentration of 1e6/mL in PBS. After removing 50 pL as
unstained control, the live/dead dye, Aqua (Molecular Probes) was added at a
concentration of 1:1000. Cells were incubated for 25 min on ice, protected from
light. Cells were washed once with PBS and resuspended in 100 pL of PBS with 1%
bovine serum albumin (BSA). FcR block (Miltenyi) was added and incubated for
15 min. CD31 conjugated to BV421 (Biolegend), and CD45 (Biolegend) conjugated
to PE were added to the suspension at pre-titrated values and mixed well by
resuspension and incubated for 25 min on ice, protected from light before washing
twice with PBS. Compensation beads (Molecular Probes) were used to prepare
compensation controls for all antibodies and live/dead used. The sample was then
resuspended in PBS with 5% BSA with 25 mm HEPES and 2 mm EDTA at a final
volume of 300-500 pL and sorted on the FACS Aria III. Sorted cells were collected
in polypropylene tubes with 1 mL of ice-cold FACS buffer with a temperature
maintained at 4 °C throughout sorting. We selected cells that were negative for
CD31 and CD45 (Supplementary Fig. 7a). Cells were resuspended in PBS with
0.04% BSA for single-cell capture (Supplementary Fig. 1a).

For GSC-enriched samples, whole-tumor presorted cells were expanded as
neurospheres in complete neurocult-proliferation media (Neurocult basal medium
containing: neurocult NS-A proliferation supplement at a concentration of 1/10
dilution, 20 ng/ml recombinant epidermal growth factor, 20 ng/ml, recombinant
basic fibroblast growth factor, and 2 pug/ml Heparin) from Stem Cells Technologies.
After 7 days of NCC culture, the neurospheres were collected in a tube and spun at
1200 rpm for 3 min. To dissociate the spheres, Accumax (Millipore) was added to
the cell pellet and incubated for 5 min at 37 °C, they were then washed with PBS,
centrifuged and resuspended in PBS with 0.04% BSA for single-cell capture
(Supplementary Fig. 1a). GSC lines were proven to be tumorigenic by
xenotransplantation.

Human fetal brains. Human fetal brain tissue samples (13-21 gestational weeks)
were obtained from the University of Washington Birth Defects Research
Laboratory (Seattle, Washington, USA), Centre Hospitalier Universitaire Sainte-
Justine (Montreal, Quebec, Canada), and from the University of Calgary (Calgary,
Alberta, Canada). These tissues were obtained at legal abortions. The use of the
specimens following parental consent was approved by The Conjoint Health
Research Ethics Board at the University of Calgary and studies were carried out
with guidelines approved by McGill University and the Canadian Institutes for
Health Research (CTHR). Cells were freshly isolated®. In brief, fetal brain tissue
was minced and treated with DNase (Roche, Nutley, NL) and trypsin (Invitrogen,
Carlsbad, CA, USA) before being passed through a nylon mesh. The flow cells were
collected in PBS for sorting followed by sequencing (see below).

Human adult brain. Human autopsy brain specimens were obtained from de-
identified excess diagnostic brain tissue that had been slated for incineration.
Brains were cut in the coronal plane and immersed in 3% paraformaldehyde (PFA)
or formalin for 1-2 weeks and then portions of their lateral ventricular walls were
excised. These were further processed for immunolabeling, embedded in paraffin,
and 5 um thick sections were cut using a microtome (SLEE).

Fetal cell sorting. Dissociated fetal cells were washed thrice with excess ice-cold
PBS and spun down at 1400 rpm for 10 min. Cells were resuspended at 1le6/mL of
PBS and aqua live/dead dye (Molecular Probes) was added at 1:1000 and incubated
for 25 min on ice, protected from light. Cells were washed once in excess PBS and
were resuspended at 1e6/40uL and FcR block (Miltenyi) was added at 5 uL per 50
uL. Cells were mixed well and left to incubate on ice for 15 min. CD133-PE
(eBioscience), CD45-PerCP/Cy5.5, and CD31-PerCP/Cy5.5 were added at a con-
centration of 1:20 and cells were resuspended well before being left to incubate on
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ice for 25 min. A total of 1e5 cells were kept aside as unstained control and 5e5 cells
were kept aside for fluorescence minus-one gating for CD133 only (FMO-PE).

All cells were washed twice with excess PBS and were spun down at 1400 rpm
for 5-10 min. Cells were resuspended in ice-cold FACS buffer (5% BSA in PBS with
1% penicillin-streptomycin) before sorting. Sorted cells were collected into
polypropylene tubes with 1 mL of ice-cold FACS buffer with a temperature
maintained at 4 °C throughout sorting. All samples were acquired on the BD FACS
Aria Fusion IIL

Compensation beads (Invitrogen) was used to prepare compensation controls
for all antibodies and live/dead stains used. A minimum of 5000 events were
acquired for compensation matrix calculation and a minimum of 50e4 total events
were collected for fetal samples and analyzed using FlowJo(v10, FlowJo LLC).

Single-cell RNA sequencing. For each sample, fetal or cancer, an aliquot of cells
was taken and stained for viability with calcein-AM and ethidium-homodimer1 (P/
N L3224 Thermo Fisher Scientific).

Following the Single Cell 3’ Reagent Kits v2 User Guide (CG0052 10x
Genomics)34, a single-cell RNA library was generated using the GemCode Single-
Cell Instrument (10x Genomics, Pleasanton, CA, USA) and Single Cell 3’ Library &
Gel Bead Kit v2 and Chip Kit (P/N 120236 P/N 120237 10x Genomics). The
sequencing ready library was purified with SPRIselect, quality controlled for sized
distribution and yield (LabChip GX Perkin Elmer), and quantified using qPCR
(KAPA Biosystems Library Quantification Kit for Illumina platforms P/N
KK4824). Finally, the sequencing was done using Illumina HiSeq4000 or
HiSeq2500 instrument (Illumina) using the following parameter: 26 bp Readl, 8 bp
17 Index, 0 bp I5 Index, and 98 bp Read2.

Cell barcodes and UMI (unique molecular identifiers) barcodes were
demultiplexed and single-end reads aligned to the reference genome, GRCh38,
using the CellRanger pipeline (10X Genomics). The resulting cell-gene matrix
contains UMI counts by gene and by cell barcode.

Analysis of CNAs and identification of non-cancerous cells. Cells from all
samples were pooled in silico. The raw counts of each cell were first normalized
using a trimmed mean of M-values (TMM) normalization approach®!. This nor-
malization is not affected by outliers but ensures that the majority of the genes
support the normalization scale factor. The genome was then tiled by merging
consecutive genes into expressed regions with a minimum average expression
across the cells (five reads). This new expression matrix was also TMM normalized.
For each region and each cell, a Z score was then computed by subtracting the
average expression across cells and dividing by the standard deviation. These Z
scores were winsorized at —3 and 3, minimizing the effect of strong outliers. To
focus on the effect of CNAs, we minimized expression patterns that are specific to a
single expressed region by applying a moving median. Using a sliding window of
seven regions, this moving median approach replaced the expression of a region by
the median over the surrounding seven regions (three upstream and three
downstream).

A PCA was performed on the smoothed Z scores using non-cycling cells (see
“Cell cycle and principal components analysis”). Because of the genome tiling and
moving median, this PCA focuses on expression variability affecting large regions,
hence driven by CNA. Louvain clustering was then performed on the K-nearest
neighbour graph built using K = 100. The similarity between nodes was computed
as 1/(1 4 D) with D the Euclidean distance on the first 20 principal components.
“KNN” and a modified version of “igraph” R packages were used, respectively, for
the KNN graph and Louvain clustering®>%3. We scanned the resolution parameters
y = 0.1 to y = 1.5, in increments of 0.1. We ran the Louvain clustering 100 times
for each resolution, shuffling the order of the nodes in the graph each time. To
assess the stability of the clustering at each resolution, we computed the average
and standard deviation of the Adjusted Rand Index between pairs of classification®*
(Supplementary Fig. 1c). y = 0.2 was the resolution with the highest average Rand
index and lowest standard deviation®®. T-distributed stochastic neighbour
embedding®, or tSNE, was used to visualize the cells across patients and clusters,
using again the first 20 principal components.

Cells were annotated as normal if belonging to one of two communities each
containing cells from almost all patients (Fig. 1a and arrows in Supplementary
Fig. 1d). These clusters had low cycling scores and could not be explained by
differences in sequencing depth. In addition, these two clusters formed an outgroup
when focusing on chromosomes 7 and 10, two chromosomes that are known to
host recurrent CNAs in glioblastomal®. As expected, normal cells had lower
expression in chromosome 7 and higher expression in chromosome 10. The two
clusters of normal cells were remarkable for their expression of myeloid genes in
one cluster, and oligodendrocyte and endothelial genes in the other
(Supplementary Fig. 1e), which indicates their nature. The presence of two clusters
of normal cells is most likely due to subtle cell type specific patterns that were not
fully corrected by the moving median (see example in Supplementary Fig. 7d).

Clones within tumors were defined by running the same Louvain clustering
approach separately on the tumor cells of each patient. Here, the number of
principal components used were automatically chosen by the “quick.elbow”
function of the “bigpca” R package. The optimal resolution gamma was chosen as
described above (Supplementary Fig. 1g). When the best average Adjusted Rand
Index was lower than 0.7, we considered the clustering too unstable and grouped all

the cells from the patient into one unique clone. To characterize the CNA profile of
each clone, cells were merged into supercells by summing their raw gene counts.
For each clone, we created 10 supercells, each by merging 30 randomly selected
cells. Supercells from normal cells were created similarly and were used later as
baseline. The supercells for each clone were then pooled, TMM normalized genes
were merged as above to create expressed regions with at least 20 reads on average.
For each expressed region and each supercell, a log-ratio was computed by dividing
the normalized counts by the average counts in the normal supercells. Using the
log-ratios and a multivariate Gaussian mixture hidden Markov model (HMM),
regions were classified as loss, neutral, or gain. The HMM had three states with
means log(0.5), 0 and log(1.5), the empirical standard deviation estimated from the
data, and represented the 10 supercells simultaneously for each clone. The “viterbi”
function from “RcppHMM” R package was used to estimate the most likely states
of a GHMM object. The transition probability was set to 10740, We define a loss
(gain) of a chromosome if more than 50% of the regions are in the loss (gain) state.
Finally, the significance of each chromosomal CNA was confirmed using a
Wilcoxon test on the median chromosome expressions. All CNAs showed p values
below 0.001. The HMM analysis was also run on the normal cells from each patient
with the normal cells from other patients as baseline; no CNAs were detected
(Supplementary Fig. 1h). We used a Chi-squared test to compare the cell
distribution across the four TCGA signatures between pairs of clones
(Supplementary Fig. 2e). Except for the first clone of BT333, clones had
significantly different TCGA signatures (p < 0.01).

Signal processing for transcriptional data. Low complexity cells (<1000 genes or
<1800 UMI detected), dying cells (>12% UMI to mitochondrial genes, Supple-
mentary Fig. 7e), non-cancerous cells (see Analysis of CNAs and isolation of non-
cancerous cells) and genes with no counts were removed from the analysis. Next
counts were adjusted in each cell according to a size factor akin to TPM. Genes that
accounted for >1% of UMI in a given cell were not counted towards the UMI sum
of this cell. Similar to previous studies’>33, each cell was normalized to le5 UMI.

Signal-containing, non-random genes were selected in each sample. This was
done in a manner similar to that described by Klein et al.32. In brief, we selected the
3000 highly variable genes in every sample by Fano statistic. We then applied a base
2 logarithm to obtain the normalized expression matrix. A z score by gene was
applied at this point for single sample analyses. For analyses spanning multiple
samples, we combined the normalized expression matrices on the basis of the
intersection of their significant genes. Z-score across all cells and samples was
applied by gene thereafter.

Filtering the fetal brain and cancer samples. We removed ependymal cells and
microglia from later fetal analyses. These were seen as separate clusters in PC1 and
PC2 in most samples. Microglia had high expression of genes such as P2RY12
and CX3CR1°7:98, whereas ependymal cells had high expression of SPAG6, FOLRI,
and FOXJ16970,

BT346 contained many cells with a signature not seen in other samples. These
clustered separately in tSNE and PCA. We used k-means (k = 2) to separate them
from the other cells. A GSEA (see “Quantification and Statistical Analysis for
methodology”) showed that the top four most significant gene sets were linked to
hypoxia (e.g., HALLMARK_HYPOXIA, MENSE_HYPOXIA_UP). This tumor was
unique in that the magnetic resonance imaging region of contrast enhancement
was very thin. It is thus likely that some cells from the necrotic core were isolated.
We excluded the hypoxic cells in BT346 from later analyses and did not include
them in the total cancer cell number reported.

Cell cycle and principal components analysis. We positioned all cells within the
cell cycle according to the method presented by Tirosch et al.?4. In brief, each cell
obtained a score for the G1/S phases and a score for the G2/M phases (Supple-
mentary Fig. 7f). A list of genes deemed characteristic of those cell cycle states was
used?%. Each score was defined as the sum of the expression of all genes within its
corresponding gene set, then z scored across cells. As most cells are not cycling
(Supplementary Fig. 7f), we defined non-cycling cells as those with both G1/S and
G2/M scores <0.

Cycling-free PCA was performed for each sample individually as follows. The
PCs, or eigenvectors of the covariance matrix, were obtained from the non-cycling
cells only (as defined above). We then use these cell cycle-independent eigenvectors
to project the complete data set in PCA space (Supplementary Fig. 2a).

The first PC of every GSC sample was highly conserved (see Results). To
quantify this, we compared the ranking of genes by PC1 loadings across samples.
The actual ranking of each gene was obtained in all samples. To obtain the mean
ranking, the actual rankings were averaged by gene, and these averaged values were
then ranked. For each gene, we thus obtained five actual rankings (one per sample)
and one mean ranking. RZ was obtained by least-square linear regression in PC1
and PC2 separately (Matlab, fitlm).

Classifying cells by TCGA subtype. TCGA subtype for each whole-tumor cell
was obtained by scoring each cell for their proximity to each TCGA centroid!®. The
highest score obtained by a given cell defined the subtype of the cell. We used this
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method on the original TCGA data set and found we could correctly classify 89.7%
of all tumors.

Proximity is calculated as follows. The position of a cell in the TCGA
transcriptomic space (Xj;) is obtained from the expression of the genes present in
the TCGA signature (S). The unit vector of this cell’s position is then projected
onto the unit vector of the signature of interest using a dot product.

XS
boxlls|

where P is the projection score and S is the signature of interest.

We also subtyped cells using the more recent TCGA signatures?® and
classifier’!. We randomly selected 1000 cells from our data set and entered their
data for all non-zero genes in the Gliovis data portal.

Clustered non-negative matrix factorization. The cNMF algorithm was applied
individually to each whole-tumor sample35, with some modifications. In brief, non-
negative matrix factorization was run (nmf, Matlab, multiplicity algorithm, repli-
cates = 20, maximum iterations = 1e6) 100 times for k from 2 to 15 signatures. For
each k, the 100 repetitions are clustered in k groups. We expect a stable clustering
solution would produce tight clusters with one signature per cluster for each of the
100 repetitions. The proportion of repetitions with one signature per cluster was
called reproducibility. Clustering of the signatures was done by k means (Matlab,
using correlation) with a constraint of uniform cluster sizes, prioritizing higher
correlations. The largest k with a reproducibility above 0.9 was chosen (Supple-
mentary Fig. 7g, left plot). For a chosen k, we confirmed the clustering solution was
appropriate by running tSNE on the signatures it generated (Supplementary

Fig. 7g, right plot). The final signatures for a given sample was obtained by aver-
aging the signature repetitions within a cluster, excluding repetitions with poor
reproducibility (the ones which did not produce a signature per cluster).

We obtained between five and nine final signatures per sample, 79 signatures in
total. From the inter-signature Pearson correlations, we used hierarchical clustering
to find trends of signatures (Fig. le, hierarchical tree). Six main groups emerged. In
one of these groups, important variations in gene weights were observed: signatures
characterized by OLIG2 and ASCLI, for example, had less DCX and STMN1, and
vice versa. We reclustered this group in two, yielding the final seven groups (Fig. le
and Supplementary Fig. 2f).

We identified the most characteristic genes of each signature group by ranking
genes according to their relative signal to noise ratio (snr) and chose the top 40 for
the heatmap.

Hgroup — Mot
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We scored each signature according to the TCGA using the method described

above (Classifying cells by TCGA subtype). A given signature was labeled with the
subtype yielding the highest score (Fig. le).

Community detection in fetal samples. To properly cluster fetal cells in cell types,
the modular structure of the gene coexpression network was estimated using
community detection. Data from all fetal samples were merged as explained above.
PCA was performed on the merged data set (see Principal components analysis
above). The first 10 PCs were selected based on the importance of their corre-
sponding eigenvalue (Supplementary Fig. 7h). The connection weights were
computed as 1/(1 + D) with D as the Euclidean KNN graph between nodes in this
PC space, with K= 50. Self-weights were set to 0 to promote the formation of
communities.

Again, the goal of the analysis was to identify groups of cells that are more
similar to each other than other cells. This constraint was operationalized in terms
of the modularity Q®2:

Qly) = Zu [Wij - ypij]a(ciacj)
where w;; is observed connection weight between nodes i and j, whereas p;; is the
expected connection weight between those nodes. The Kronecker delta function,
8(c;»¢;) is equal to 1 when nodes i and j and assigned to the same community
(c; = cj) and zero otherwise (c; # cj), ensuring that modularity is only computed for
pairs of nodes belonging to the same community. The resolution parameter y scales
the importance of null model p;;, potentiating the discovery of larger (y<1) or
smaller communities (y > 1)63.

In the present study, the expected connection weight between pairs of nodes
was defined according to a standard configuration model, such that:

Py =55 /2m
where s; = > w; is the strength of node i and m = > w;; is total weight of
i ij>1

connections. Under this null model, communities are considered to be of high
quality if the constituent nodes are more highly correlated with each other than in a
randomly rewired network with the same strength distribution and density.

The quality function Q was maximized using a Louvain-like locally greedy
algorithm’?, as implemented in the Brain Connectivity Toolbox

(community_louvain.m)”3. We scanned the resolution parameters y = 0 to y = 1.5,
in increments of 0.1. At each scale, the Louvain algorithm was run 100 times to find
a partition that maximized the modularity function’2.

To select an appropriate scale, we computed the z score of the Rand index
between all pairs of partitions at each scale®. We selected the resolution at which
the mean pairwise Rand index to standard deviation ratio (SNR) was greatest
across the partition ensemble®. The logic behind this approach is that if there
exists a particularly well-defined community structure at some topological scale,
then it should be relatively easy to detect, and the partitions will not vary greatly
across runs. Supplementary Fig. 3b shows the SNR of all pairwise Rand indices.
Based on this method, we selected y = 1.0. Once the scale was selected, we used the
consensus heuristic described by Bassett et al.% to find the most representative
partition in the ensemble (Brain Connectivity Toolbox; consensus_und.m).

Two modifications were made to this solution. The first was to consolidate
excitatory neurons—four clusters coincided on the tSNE plot and strongly expressed
neuronal genes such as NEUROD6, SYT1, and STMN2. Second, a smaller cluster
spanned multiple apparent groups on the tSNE plot. Differing expression of
OLIG2, PDGFRA, APOD, GFAP, SOX9, APOE, ASCLI1, and MKI67, among other
genes, were apparent within this cluster (Fig. 2c dotted circle, and Supplementary
Data 1). The algorithm described above was used again on this group of cells, with
resolution parameters scanned from y = 0 to y = 1.5, in increments of 0.01. Lower
increments were used because less total nodes allowed for additional computational
time. y = 0.44 was the consensus or most representative partition. This further
separated it into three clusters consistent with: OLCs; astrocytes; and a previously
unidentified glial cell type we called glial progenitor cells.

The values shown in the similarity matrix heatmap (Fig. 2b) are the inverse of
the diffusion pseudotime?! between cells.

Differential expression of fetal cell types and comparison with a reference
fetal data set. We assessed differentially expressed genes between fetal brain cell
types by comparing each cell type with all others combined. A Mann-Whitney U
test (Matlab, ranksum.m) was applied on the log expression value (before z score)
of each gene sequentially. P values were adjusted for multiple testing using the
approach described by Storey’4, and are reported as q value (Matlab, mafdr.m).

To compare our data set to the reference data®$, we used two complementary
approaches: cluster-based comparison and a cell-based scoring approach.

The cluster-based approach uses signatures (markers) of each cluster in the two
data sets. A similarity (distance) matrix was computed with the Jaccard Coefficients
(JC, fraction of shared markers) using a maximum of 100 most significant genes for
each cluster in both studies (with p value <0.01). Using the JC matrix, with
reference clusters in rows and current clusters in the columns, a heatmap was
generated (Supplementary Fig. 3c) using pheatmap, R package, with default
parameters and no re-ordering of the columns (cluster_col=FALSE).

For the cell-based approach we scored each cell for sets of markers from clusters
in the reference study38. The AUCell”> ranked-based scoring method was used,
which is independent of the gene expression units, in order to score cells using
markers (n marker = 60) for each reference cluster. The scores were then visualized
across all clusters. The nine reference clusters (out of 47) that help most to annotate
current clusters have been shown in (Supplementary Fig. 3d).

Creation of the fetal roadmap. We aimed to create a fetal roadmap, or a trans-
formation of transcriptomic space descriptive of the transitions that exist between
the cell types present in glioblastoma. Simply, we first determined which fetal cell
types were most representative of the cancer; then we created a PC space of these
cell types onto which the cancer could be mapped.

We determined the most representative cell types by finding each cancer cells
closest transcriptomic fetal brain cell neighbour. Data from all whole tumor and
fetal brain samples were merged as described above. Each fetal cell type was
randomly subsampled (Matlab, randsample.m) to obtain an equal number of cells
for each cell type. Whole-tumor samples were similarly subsampled. The top 10
PCs for this new fetal data set were calculated (see “Removal of cell cycle” section),
and both fetal brain and cancer data sets were projected in this space. The closest
fetal brain cell neighbour for each cancer cell was found (Matlab, knnsearch.m). We
refer to this as a capture of this cancer cell by the fetal cell. The number of cancer
cells captured by each fetal cell type was tabulated. Neuronal progenitor cell types
were tabulated under their more-differentiated counterpart.

The proportion of enriched GSCs captured by GPCs was substantially greater
than that of whole-tumor cells (46% vs 24%, Supplementary Fig 4a, b), whereas
only 0.6% of enriched GSCs were captured by tRG compared with 11.1% in whole-
tumor cells (Supplementary Fig. 4b). Some neuronal cell types also captured cancer
cells, as predicted by the cNMF (Fig. le) and GSC (Fig. 1b) analyses.

Five fetal brain cell types were retained for the creation of the cancer roadmap.
As was done above, fetal brain cells from these five subtypes were randomly
subsampled to balance their numbers. Genes common to both cancer cells and fetal
brain cells were kept for the analysis (n = 398 for whole tumor, n =401 for GSC,
and n = 345 for GSC and whole tumor combined) and z score normalization of the
log counts was done on the complete data set. Cell cycle-free PCA was performed
on these fetal brain cells (see above) and 10 PCs were kept. We defined this as the
roadmap. To refine this separation and better capture the transitional nature of this
data, we performed diffusion embedding on the roadmap. In brief, from the

| (2020)11:3406 | https://doi.org/10.1038/s41467-020-17186-5 | www.nature.com/naturecommunications 15


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

roadmap we calculated a transition matrix*! (diffusionmap.T_nn.m,

k = 50, nsig = 10). The top five eigenvectors were obtained and normalized
(eig_decompose_normalized.m). The first eigenvector was dropped as the steady
state of the transition matrix. Eigenvectors 2 to 5 were studied for their ability to
resolve all cell types. Eigenvectors 2, 3, and 5 were defined as DC1, DC2, and DC3,
respectively. The glial progenitor score was defined as DC3.

Mapping of cancer cells to the fetal roadmap. The aim of the roadmap was to
highlight the underlying hierarchical organization while de-emphasizing inter-
patient variability. Hence, we projected cancer cells (whole tumor, GSCs, or both)
onto the 10-dimensional fetal PC space of the roadmap. This represents the
mapping of cancer cells onto fetal PC space. We used these results to obtain the
diffusion and the simplified PC mapping of cancer, as we will explain below.

To obtain cancer mapping in diffusion space, we first obtained the transition
matrix of the fetal roadmap as described above. From the PC cancer mapping, a
separate transition matrix was obtained for cancer but solely as a function of the
fetal brain cells (diffusionmap.T_nn.m, k = 50, nsig = 10). The cancer transition
matrix (T,,,,) was then projected onto the roadmap DCs (¢y,) defined above.

cancer

¢£ancer = Lcancer (bfelal

The resulting DC vectors (¢,,,,..,) represented the mapping of cancer cells in the
roadmap diffusion space.

To rule out the possibility that this hierarchical distribution could be the
product of chance, we created control cells by randomly swapping the genes in our
whole-tumor cells. These control cells would have had the same depth of
sequencing, but gene signatures were absent. Using a Kolmogorov-Smirnov
statistic, we found that our cancer cells and control cells had a very significantly
different distribution when projected on the roadmap, both in diffusion space and
PC space (p value < le-22 for both).

Next, we sought to create a simplified PC roadmap, in an effort to better capture
biological relevance. This is because both GPC and OLC populations contain
progenitors, and a reliable surface marker to differentiate the two was not found. In
the PC roadmap, PC2 and PC4 separate fetal OPC and fetal GPC from the other
cell types, respectively. Therefore, to make a combined progenitor score, we
summed the values of PC2 and PC4 (Fig. 4c). PC1 already separated astrocytes/
tRGs (positive values) from interneurons (negative values). We defined the latter as
our lineage score. Cancer genes which correlated with each of these two scores (see
Supplementary Data 3) guided our search for markers for each cell type.

Classification of cancer cells by cell type. In order to compare the signatures of
cells at the extreme ends of the hierarchy, we aimed to classify the cancer cells by
cell type. Using the annotated fetal data in diffusion roadmap space as a training
set, we performed a LDA (Matlab, fitcdiscr.m). Cancer cells in diffusion roadmap
space were classified using this model (Fig. 3b). In order to classify extremes of the
hierarchy only, any cell with a probability of incorrect classification of more than
0.01% was left unclassified.

Similarities between cell types and signatures. Similar to the comparison with a
reference fetal data set described above, we first scored each cell for the sets of
markers (signatures) to compare. For example, when comparing Neftel et al.#2 with
our roadmap results, we used the cell states from Neftel et al.”> and scored all cells
in our data set as explained above. Then for each cell, the best ranked score, across
all signatures, was consider as the predicted cell type. In the next step, these
predicted cell types were compared with our original roadmap cell types and
reported and visualized as proportion summing up to 1 (Supplementary Fig. 4f).
The method was also applied for the comparison of the roadmap to the cNMF
signatures (Supplementary Fig. 4f). Finally, the same approach was applied to
compare our signatures from our roadmap and Neftel et al.? to the TCGA data set
(Supplementary Fig. 4g). We obtained similar results to what was reported by the
authors. Roadmap markers for each cell type were obtained using FindAllMarkers
function in Seurat package version 2.3.4 with default parameters and p value <
0.0176.

RNA velocity of cancer cells. We performed this analysis as described by La
Manno et al.# using the Velocyto package on whole-tumor samples with one
thousand cells or more (10 samples) and analyzed them independently using
modifications described here. We calculated spliced and unspliced counts using the
Velocyto package as described, merged all patient data sets, and removed normal
cells based on the results of our previous analysis (see Identification of non-
cancerous cells above). Gene selection was performed with Velocyto in a manner
similar to our previous analyses: minimum expressed counts of 40 in a minimum
of 30 cells for the top 3000 most variable genes. Spliced and unspliced counts were
normalized separately, but no count imputation was used. Knn imputation had the
unwanted effect of amplifying patient-specific properties as cancer samples did not
overlap in transcriptomic space. We then calculated a gene-wise mutual infor-
mation between spliced and unspliced counts. We excluded genes below the 10th
percentile of mutual information. This did not change the trends observed in the
results but did remove some noise. The gene-specific steady-state constants
(gamma) were then calculated from the resulting data set with all patients

combined. Similar results were obtained when gamma was calculated separately
for each patient (data not shown). RNA velocity and extrapolated cell states (with
t=1) were then estimated as described. Thereafter, the data set was separated by
sample. Embedding was obtained using Uniform Manifold Approximation and
Projection (UMAP, sklearn.feature_selection)’’ or using PCA. UMAP was done
with correlation as the metric, no prior dimensionality reduction, minimum dis-
tance set to 0.4, and number of neighbors set to one tenth the number of cells in the
sample. PCA was performed after the normalization done by the Velocyto package.
Transition probabilities and embedding shifts were measured using all cancer cells
in a given sample. We ensured the results were not the product of random chance
by comparing them to that of randomized data (Velocyto, Supplementary Fig. 5b
for a representative example). Arrows were plotted on an absolute scale.

The embedding scatter and velocity quiver plots were overlaid, and the colors
were given based on the cell types attributed in the fetal roadmap analysis (see
Classification of cancer cells by cell type), with the exception of progenitor cells and
unclassified cells. These cells were instead colored according to a greyscale
proportional to their position in the glial progenitor axis (Fig. 5a). This was done to
better visualize the continuity of differentiation in the embedding.

Pathway enrichment for progenitors in whole tumor. Whole-tumor cells clas-
sifications were obtained using the LDA method described above. Progenitor and
astrocytic/mesenchymal classifications were used. As had been done previously*S,
each gene was ordered according to its signal to noise ratio (SNR) for the pro-
genitor vs the astro-mesenchymal cell types

SNR, =22 —Fin
Gip T %ja

where i,y is the estimated mean log expression of gene j for progenitor (P) and
astrocytic (A) cancer cells; and gjy is the estimated standard deviation of log
expression for gene j. A Mann-Whitney U test (Python, scipy.stats.mannwhitneyu)
was used to determine if the SNR values for genes in a given gene set were
significantly different than the SNR not in this gene set (Supplementary Fig. 7i for
an example). All gene sets in the c2.all.v6.0 data set from the Broad Institute$78
were tested, using the genes present in our combined whole-tumor data set (n=
970, see Supplementary Data 2 for list of genes). P values were adjusted for multiple
testing using the approach described by Storey’4, and reported as g value.

Mass cytometry. Metal tagged mass cytometry antibodies were purchased from
Fluidigm. Where tagged antibodies were not available, purified antibodies lacking
carrier proteins were labeled with heavy metal loaded maleimide conjugated DN3
MAXPAR chelating polymers (Fluidigm) according to the recommendations
provided by Fluidigm.

Cells were stained according to a well-established protocol for cell cycle
staining444 In brief, cells were incubated with IdU at 50 pm final concentration for
30 min at 37 °C and 5% CO; in stem cell media. A live/dead stain was performed
by incubating cells with 5 pm cisplatin (Fluidigm) at room temperature for 5 min.
Cells were washed twice with cell staining buffer (CSB), composed of standard PBS
with 0.5% BSA and 0.02% sodium azide, twice. Before cell surface antibody
labeling, Fc-receptors were blocked using human BD Fc block (BD biosciences).
Cells were then labeled with a surface antibody panel which included CD9, CD24,
CD44, CD133, PDGFRa, HLA-ABC, Olig2 and CD45, and CD31 and incubated on
ice for 25 min. Cells were then washed and fixed using Fix I buffer (Fluidigm) for
15 min. This was followed by two more washes with CSB and ice-cold methanol
fixation for 15 min on ice. Intracellular labeling was carried out for 25 min on ice. A
final two more washes with CSB were carried out followed by an overnight
incubation in Fix and Perm buffer (Fluidigm) with 125 nwm of iridium intercalating
dye (Fluidigm).

Mass cytometry data were analyzed using FlowJo (v.10, FlowJo LLC) and a
hyperbolic arcsine transformation on all parameters after filtering out dead cells
and CD45 or CD31-positive cells.

Glioma stem cell sorting. Multiparametric flow cytometry was carried out by
labeling cells with CD9 preconjugated with BV421 (BD Pharmingen), CD24 pre-
conjugated with APC or APC-H7 (Miltenyi), CD44 preconjugated with AF700 (BD
Pharmingen), and CD133/PROMI preconjugated with PE or PE/Vio770
(eBioscience and Miltenyi). After leaving aside 1e5 cells as unstained control, cells
were resuspended in PBS at a concentration of 1e6/mL. Aqua live/dead dye
(Molecular Probes) was added at 1:1000 and incubated for 25 min on ice, protected
from light. Cells were washed and 1e5 cells were kept aside for fluorescence minus-
one (FMO) controls and 1e6 cells were used for complete staining with antibodies.
FMO controls were prepared for all colors except aqua (live/dead). All cells were
completely stained with antibodies at a final dilution of 1:50-1:20. FMO controls
were used to identify for positive/negative staining.

Sample preparation post-staining for sorting and data acquisition was carried
out as described above. Gating strategies are shown in Supplementary Fig. 7b, c.

Luciferase vector. The Red Firefly Luciferase sequence was amplified from the
pCMV-RedFLuc (Targeting Systems, CA, USA) and cloned into the bidirectional
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EF1/PGK promoter lentiviral vector (System Biosciences, Palo Alto, USA). The
final construct was named PGK-GFP-LUC. Lentivirus was produced as per the
protocol described by Ritter et al.”®. Expression of the construct was validated by
luciferase assay and fluorescence microscope.

Mouse xenotransplantation. All animal procedures were approved by the Insti-
tution’s Animal Care Committee and performed according to the guidelines of the
Canadian Council of Animal Care. We orthotopically injected 100k (for general
tumorigenicity and E2F inhibition) or 5k (cluster tumorigenicity) GFP*/Luciferin*
GSCs into female NOD-SCID gamma mice (Charles River, Wilmington, USA)80:81,
In brief, mice were anesthetized at 5 weeks of age using isofluorane (Fresenius Kabi,
Bad Homburg, Germany) and placed on a stereotaxic apparatus. A midline scalp
incision was made and a burr-hole (3 mm) was created 2.2 mm lateral to the
bregma using a high-powered drill. The injection needle of a Hamilton syringe
(Hamilton, Reno, USA) was then lowered into the burr-hole to a depth of 2.5 mm
and cells were transplanted into the striatum. Animals were frequently monitored
and then killed at the appearance of distress signs and/or 10% weight decrease.
These animals were perfused with PBS and their brain collected. Kaplan-Meier
curves were created according to the survival results. A Cox proportional hazard
ratio model was used to assess significance, with patient cell line and cell type
(Fig. 6e) or treatment group (Fig. 7f) as covariates. This analysis was performed in
R using the packages splines and survival. For the treatment experiment (Fig. 7f),
cells were treated in vitro with drug or vehicle, and 100k live cells were injected on
the third day of treatment for each treatment group.

Harvested brains were placed in 10% neutral buffered formalin for 72 h at room
temperature. After formalin fixation, specimens were processed and paraffin-
embedded. Five um tissue sections were prepared and mounted on a poly-L-lysine-
coated glass slides for subsequent analysis.

In vivo imaging. To monitor tumor growth, we imaged each mouse every 2 weeks
using the In Vivo Imaging System Sprectrum (Perkin Elmer, Waltham, USA)
according to the manufacturer’s instructions. In brief, we intraperitoneally injected
a solution (15 mg/ml) of luciferin (Perkin Elmer) at the dose of 150 mg/kg, and
after 3 min, mice were anesthetized using isofluorane. At 10 min from luciferin
injection, we positioned the mouse in the imaging system and began image
acquisition. The exposure time was automatically determined by Living Image
4.5.2 software (Perkin Elmer). Results are reported as number of photons emitted,
and a two-sample student's ¢ test was performed, two-sided.

Immunofluorescence. GSCs were grown on laminin (10 ug/ml) coated coverslips,
and fetal neural stem cells were grown on Matrigel in the supplemented mTeSR1
basal medium (STEMCELL Technologies). Both were fixed with 3% PFA and
permeabilized with 0.5% Triton X-100 before being immunolabeled with indicated
antibodies followed by secondary antibodies. Coverslips were mounted on glass
slides using ProLon Diamond Antifade Mountant with DAPI (Invitrogen) to
counterstain cell nuclei. Fluorescent images were acquired using ZEISS LSM 700
laser scanning confocal microscope with a x20 or x63 objective.

For the GSC assays, the total number of Ki67+ cells relative to total cell number
were quantified from 10 fields for each patient cell line (n = 3).

For tissue sections (brain and tumor) immunohistochemistry, samples were
baked overnight in a standard laboratory oven at 60 °C, then deparaffinised and
rehydrated using a graded series of xylene and ethanol, respectively. Antigen
retrieval was done using citrate buffer (pH 6.0) for 10 or 20 min at 120°C in a
decloaking chamber (Biocare Medical). The slides were then blocked for 20 min
with a commercial protein block (Spring Bioscience), incubated overnight at 4 °C
with indicated antibodies, then slides were washed with IF buffer (PBS+0.05%
tween20+0.2% triton X-100), following by incubation (1 h at room temperature)
with according secondary antibodies (Invitrogen). Coverslips were mounted on
glass slides using ProLong Diamond Antifade Mountant with DAPI (Invitrogen) to
counterstain cell nuclei. Fluorescent images were acquired using ZEISS LSM 700
laser scanning confocal microscope with a x63 objective.

For tumors, total number of CD133+ or Ki67+ or both CD1337 and Ki67+
cells relative to total cell number were quantified from at least 10 images from each
patient. A y? test was performed to obtain the level of significance. A significant
association of Ki67 and CD133 was found in all patients.

For xenografts, quantification was based on capturing 10-20 high-powered
images per slide from multiple slides from each mouse per GSC type implanted
from the 12-week cohort. For the apical GSC mice 2712 cells were counted, for the
neuronal GSC mice 1261 cells were counted, and for the astro-mesenchymal GSC
mice 2720 cells were counted. Error bars were measured as the standard error
between HPF for each GSC cell type.

Primary antibodies used: anti-GFAP (Abcam); anti-Olig2 (EMD Millipore),
anti-Ki-67 (Invitrogen and Abcam), and anti-CD133 (Miltenyi Biotec), anti-ASCL1
(Abcam), anti-CD44 (EMD Millipore), anti-DCX (Abcam).

Chemotherapy and targeted therapy assays. TMZ-GSCs from each cluster type
were seeded on laminin (10 ug/mL, Sigma) at a concentration of 10,000 cells/well in
a 96-well plate and were subsequently treated for 5 days with varying concentra-
tions of TMZ (Sigma Aldrich) ranging from 1 pm to 750 um. In all, 50 pL of XTT

was prepared according to the manufacturer’s instructions (Life Technologies), and
the XTT mix solution was added to the cells and further incubated for 3 h at 37 °C.
The absorbance at 450 nm was measured on an Epoch Microplate Spectro-
photometer (Biotek Instruments, USA).

HLMO006474-GSCs from each cluster type were plated on laminin (10 pg/mL,
Sigma) at 5000 cells/well in 96-well overnight in culture media. The following day,
HLMO006474 (or DMSO) was added to a 10 um final concentration in a final volume
of 200 pL. Following 7 days of incubation at 37 °C, an XTT was performed as
described above.

Combination therapies—-GSCs (BT326-GSC) were plated on laminin (10 ug/mL,
Sigma) at a concentration of 7000 cells/well in a 96-well plate and treated with
either TMZ (50-450 pm) for 6 days, HLM (2.5-10 pm) for 6 days, or HLM006474
for 3 days followed by TMZ for 3 days. After these 6 days of treatment at 37 °C, an
XTT assay was performed as described above. For the isobolographic analysis, 40%
efficiency isoboles were found for all biological replicates (n = 3). A curved
reference isobole was used because the maximum efficiency of HLM006474 is
significantly higher than that of TMZ82. P value was calculated using a Student's
t test.

Sphere forming assay-GSCs from each cluster type were plated at 150,000 cells/
well in six well plates with 20 um HLM006474 in a final volume of 3 ml. After
7 days, cells were imaged with x10 objective with Invitrogen EVOS FL/FL color
microscope. Sphere diameter measurements were made with Image J. 6502 spheres
were measured in two different patient GSC cell lines. An arbitrary cutoff for big
and small spheres was set at 65 uM. A multivariate logistic regression was used to
assess the likelihood of finding big spheres in each of the different GSC cell types
treated, using patient cell line and cell type as variables. There was no significant
difference between patient cell line (p = 0.69). An analysis of odds ratio is depicted
as a forest plot in Fig. 7c.

All assays were performed in three different patient cell lines in three or more
different cell passages and five technical replicates. P values describe differences in
cell types and were calculated using a two-sample ¢ test, two-sided. Stock solutions
of TMZ (Sigma Aldrich), HLM006474 (Tocris-Bioscience) were prepared in
dimethyl sulfoxide (DMSO; Sigma Aldrich), and were added to cells for a final
DMSO concentration of <0.1%.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The single-cell sequencing data will be available on the European Genome-Phenome
Archive: EGAS00001004422. Full western blots are provided as a source data file. All
other data are available in the Article file, Supplementary Information or available from
the authors upon reasonable request. Source data are provided with this paper.

Code availability

All computations and quantifications were performed using Matlab, R, and Python
programming languages. Scripts can be found at: https://github.com/mbourgey/
scRNA_GBM. The single-cell CNV analysis package created in the course of this work
can be found at https://github.com/jmonlong/scCNAutils. Source data are provided with
this paper.

Received: 12 February 2020; Accepted: 17 June 2020;
Published online: 08 July 2020

References

1. Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell
plasticity. Nature 501, 328-337 (2013).

2. Burrell, R. A.,, McGranahan, N., Bartek, J. & Swanton, C. The causes and
consequences of genetic heterogeneity in cancer evolution. Nature 501,
338-345 (2013).

3. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer.
N. Engl. J. Med. 376, 2109-2121 (2017).

4. Hunter, KW., Amin, R, Deasy, S, Ha, N.-H. & Wakefield, L. Genetic insights
into the morass of metastatic heterogeneity. Nat. Rev. Cancer 18, 211-223
(2018).

5. Cavalli, F. M. G. et al. Intertumoral heterogeneity within medulloblastoma
subgroups. Cancer Cell 31, 737-754, e6 (2017).

6. Bao, S. et al. Glioma stem cells promote radioresistance by preferential
activation of the DNA damage response. Nature 444, 756760
(2006).

7. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer
therapies. Nat. Rev. Clin. Oncol. 15, 81-94 (2018).

8. Louis, D. N. et al. The 2016 World Health Organization Classification of
Tumors of the central nervous system: a summary. Acta Neuropathology 131,
803-820 (2016).

| (2020)11:3406 | https://doi.org/10.1038/s41467-020-17186-5 | www.nature.com/naturecommunications 17


https://www.ebi.ac.uk/ega/studies/EGAS00001004422
https://github.com/mbourgey/scRNA_GBM
https://github.com/mbourgey/scRNA_GBM
https://github.com/jmonlong/scCNAutils
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for
glioblastoma. N. Engl. J. Med. 352, 987-996 (2005).

Weller, M. et al. Molecular predictors of progression-free and overall survival
in patients with newly diagnosed glioblastoma: a prospective translational
study of the German Glioma Network. J. Clin. Oncol. 27, 5743-5750 (2009).
Cancer Genome Atlas Research Network. Comprehensive genomic
characterization defines human glioblastoma genes and core pathways. Nature
455, 1061-1068 (2008).

Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in
primary glioblastoma. Science 344, 1396-1401 (2014).

Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural
precursors from human glioblastoma. Cancer Res. 64, 7011-7021 (2004).
Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature
432, 396-401 (2004).

Vescovi, A. L., Galli, R. & Reynolds, B. A. Brain tumour stem cells. Nat. Rev.
Cancer 6, 425-436 (2006).

Lee, J. et al. Tumor stem cells derived from glioblastomas cultured in bFGF
and EGF more closely mirror the phenotype and genotype of primary tumors
than do serum-cultured cell lines. Cancer Cell 9, 391-403 (2006).

Johnson, B. E. et al. Mutational analysis reveals the origin and therapy-driven
evolution of recurrent glioma. Science 343, 189-193 (2014).

Chen, J. et al. A restricted cell population propagates glioblastoma growth
after chemotherapy. Nature 488, 522-526 (2012).

Verhaak, R. G. W. et al. An integrated genomic analysis identifies clinically
relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA,
IDH1, EGFR, and NF1. Cancer Cell 17, 98 (2010).

Wang, Q. et al. Tumor evolution of glioma-intrinsic gene expression subtypes
associates with immunological changes in the microenvironment. Cancer Cell
32, 42-56, €6 (2017).

Morrissy, A. S. et al. Spatial heterogeneity in medulloblastoma. Nat. Genet. 49,
780-788 (2017).

Sottoriva, A. et al. Intratumor heterogeneity in human glioblastoma

reflects cancer evolutionary dynamics. Proc. Natl Acad. Sci. 110, 4009-4014
(2013).

Elsamadicy, A. A. et al. Prospect of rindopepimut in the treatment of
glioblastoma. Expert Opin. Biol. Ther. 17, 507-513 (2017).

Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in
human oligodendroglioma. Nature 539, 309-313 (2016).

Venteicher, A. S. et al. Decoupling genetics, lineages, and microenvironment
in IDH-mutant gliomas by single-cell RNA-seq. Science 355, eaai8478 (2017).
Filbin, M. G. et al. Developmental and oncogenic programs in H3K27M
gliomas dissected by single-cell RNA-seq. Science 360, 331-335 (2018).
Kang, M.-K. & Kang, S.-K. Tumorigenesis of chemotherapeutic drug-resistant
cancer stem-like cells in brain glioma. Stem Cells Dev. 16, 837-847 (2007).
Chen, R. et al. A hierarchy of self-renewing tumor-initiating cell types in
glioblastoma. Cancer Cell 17, 362-375 (2010).

Cusulin, C. et al. Precursor states of brain tumor initiating cell lines are
predictive of survival in xenografts and associated with glioblastoma subtypes.
Stem Cell Rep. 5, 1-9 (2015).

Meyer, M. et al. Single cell-derived clonal analysis of human glioblastoma
links functional and genomic heterogeneity. Proc. Natl Acad. Sci. USA 112,
851-856 (2015).

Liu, G. et al. Analysis of gene expression and chemoresistance of CD133+
cancer stem cells in glioblastoma. Mol. Cancer 5, 67 (2006).

Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to
embryonic stem cells. Cell 161, 1187-1201 (2015).

Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of
individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).

Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of
single cells. Nat. Commun. 8, 14049 (2017).

Kotliar, D. et al. Identifying gene expression programs of cell-type identity and
cellular activity with single-cell RNA-Seq. eLife 8, e43803 (2019).

Kotliar, D et al. Identifying gene expression programs of cell-type identity and
cellular activity with single-cell RNA-seq. bioRxiv 310599 (2018).

Uchida, N. et al. Direct isolation of human central nervous system stem cells.
Proc. Natl Acad. Sci. 97, 14720-14725 (2000).

Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal
developmental hierarchies of the human cortex. Science 358, 1318-1323
(2017).

Zhong, S. et al. A single-cell RNA-seq survey of the developmental landscape
of the human prefrontal cortex. Nature 555, 524-528 (2018).

Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-dimensional
single-cell analysis of differentiation data. Bioinformatics 31, 2989-2998
(2015).

Haghverdi, L., Biittner, M., Wolf, F. A, Buettner, F. & Theis, F. ]. Diffusion
pseudotime robustly reconstructs lineage branching. Nat. Methods 13,
845-848 (2016).

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics
for glioblastoma. Cell 178, 835-849, e21 (2019).

Neumann, H., Cavalié, A., Jenne, D. E. & Wekerle, H. Induction of MHC class
I genes in neurons. Science 269, 549-552 (1995).

Behbehani, G. K. Cell cycle analysis by mass cytometry. Methods Mol. Biol.
1686, 105-124 (2018).

Behbehani, G. K., Bendall, S. C., Clutter, M. R., Fantl, W. J. & Nolan, G. P.
Single-cell mass cytometry adapted to measurements of the cell cycle.
Cytometry A. 81, 552-566 (2012).

Manno, G. L. et al. RNA velocity of single cells. Nature 560, 494 (2018).
Bhat, K. P. L. et al. Mesenchymal differentiation mediated by NF-kB promotes
radiation resistance in glioblastoma. Cancer Cell 24, 331-346 (2013).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl Acad.
Sci. 102, 15545-15550 (2005).

Holland, J. D., Klaus, A., Garratt, A. N. & Birchmeier, W. Wnt signaling in
stem and cancer stem cells. Curr. Opin. Cell Biol. 25, 254-264 (2013).

Joshi, K. et al. MELK-dependent FOXM1 phosphorylation is essential for
proliferation of glioma stem cells. Stem Cells 31, 1051-1063 (2013).

Kim, S.-H. et al. EZH2 protects glioma stem cells from radiation-induced cell
death in a MELK/FOXM1-dependent manner. Stem Cell Rep. 4, 226-238
(2015).

Chong, J.-L. et al. E2f1-3 switch from activators in progenitor cells to
repressors in differentiating cells. Nature 462, 930-934 (2009).

Dong, X, Hu, X, Chen, ], Hu, D & Chen, L-F. BRD4 regulates cellular
senescence in gastric cancer cells via E2F/miR-106b/p21 axis. Cell Death Dis.
9, 203 (2018).

Ma, Y. et al. A small-molecule E2F inhibitor blocks growth in a melanoma
culture model. Cancer Res. 68, 6292-6299 (2008).

Kurtyka, C. A., Chen, L. & Cress, W. D. E2F inhibition synergizes with
paclitaxel in lung cancer cell lines. PLoS ONE 9, €96357 (2014).

Donaires, F. S., Godoy, P. R. D. V., Leandro, G. S., Puthier, D. & Sakamoto-
Hojo, E. T. E2F transcription factors associated with up-regulated genes in
glioblastoma. Cancer Biomark. Sect. Dis. Markers 18, 199-208 (2017).
Tallarida, R. J. Quantitative methods for assessing drug synergism. Genes
Cancer 2, 1003-1008 (2011).

Liu, C. et al. Mosaic analysis with double markers reveals tumor cell of origin
in glioma. Cell 146, 209-221 (2011).

Friedmann-Morvinski, D. et al. Dedifferentiation of neurons and astrocytes by
oncogenes can induce gliomas in mice. Science 338, 1080-1084 (2012).

Wu, C. et al. Dual effects of daily FTY720 on human astrocytes in vitro:
relevance for neuroinflammation. J. Neuroinflamm. 10, 41 (2013).

Robinson, M. D. & Oshlack, A. A scaling normalization method for
differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).
Newman, M. E. ]. & Girvan, M. Finding and evaluating community structure
in networks. Phys. Rev. E 69, 026113 (2004).

Reichardt, J. & Bornholdt, S. Statistical mechanics of community detection.
Phys. Rev. E 74, 016110 (2006).

Rand, W. M. Objective criteria for the evaluation of clustering. Methods J. Am.
Stat. Assoc. 66, 846-850 (1971).

Bassett, D. S. et al. Robust detection of dynamic community structure in
networks. Chaos Woodbury N. 23, 013142 (2013).

Maaten, Lvander & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579-2605 (2008).

Butovsky, O. et al. Identification of a unique TGF-B-dependent molecular and
functional signature in microglia. Nat. Neurosci. 17, 131-143 (2014).

Lee, S. et al. CX3CR1 deficiency alters microglial activation and reduces beta-
amyloid deposition in two Alzheimer’s disease mouse models. Am. J. Pathol.
177, 2549-2562 (2010).

Jacquet, B. V. et al. FoxJ1-dependent gene expression is required for
differentiation of radial glia into ependymal cells and a subset of astrocytes in
the postnatal brain. Dev. Camb. Engl. 136, 4021-4031 (2009).

Teves, M. E. et al. Sperm-associated antigen 6 (SPAG6) deficiency and defects
in ciliogenesis and cilia function: polarity, density, and beat. PLoS ONE 9,
€107271 (2014).

Bowman, R. L., Wang, Q., Carro, A., Verhaak, R. G. W. & Squatrito, M.
GlioVis data portal for visualization and analysis of brain tumor expression
data sets. Neuro-Oncol. 19, 139-141 (2017).

Blondel, V.D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of
communities in large networks. J. Stat. Mech.: Theory Exp. 2008, https://doi.
0rg/10.1088/1742-5468/2008/10/P10008 (2008).

Rubinov, M. & Sporns, O. Complex network measures of brain connectivity:
uses and interpretations. Neurolmage 52, 1059-1069 (2010).

Storey, J. D. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B
Stat. Methodol. 64, 479-498 (2002).

Aibar, S. et al. SCENIC: single-cell regulatory network inference and
clustering. Nat. Methods 14, 1083-1086 (2017).

| (2020)11:3406 | https://doi.org/10.1038/s41467-020-17186-5 | www.nature.com/naturecommunications


https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
www.nature.com/naturecommunications

ARTICLE

76. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-
cell transcriptomic data across different conditions, technologies, and species.
Nat. Biotechnol. 36, 411-420 (2018).

77. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using
UMAP. Nat. Biotechnol. 37, 38-44 (2019).

78. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics
27, 1739-1740 (2011).

79. Ritter, B., Ferguson, S. M., De Camilli, P. & McPherson, P. S. A lentiviral
system for efficient knockdown of proteins in neuronal cultures [version 1;
referees: 2 approved]. MNI Open Res. 1, https://doi.org/10.12688/
mniopenres.12766.1 (2017).

80. Dudley, A. et al. DRR regulates AKT activation to drive brain cancer invasion.
Oncogene 33, 4952-4960 (2014).

81. Le, P. U. et al. DRR drives brain cancer invasion by regulating cytoskeletal-
focal adhesion dynamics. Oncogene 29, 4636-4647 (2010).

82. Grabovsky, Y. Isobolographic analysis for combinations of a full and partial
agonist: curved isoboles. J. Pharmacol. Exp. Ther. 310, 981-986 (2004).

Acknowledgements

We would like to thank Carmen Sabau for her contribution to the administrative work of
the project, as well as Rozica Bolovan and Maryam Safisamghabadi for technical support.
We are grateful to Sara Baig for the design of the schematic in Supplementary Fig. 1a,
Greg Chang for supplying reagent for mass cytometry experiments, Jason Kar-
amchandani for help accessing and formatting the TCGA data, Adrian Veres for advice
with the initial phase of scRNAseq data processing, and Stefano Stifani for advice with
interpretation of the fetal data sets. We also thank the McGill University and Genome
Quebec Innovation Centre sequencing platforms, the bioinformatics platform at the
Center for Computational Genomics, the Cell Vision Core Facility for Flow Cytometry
and Single Cell Analysis, the Imaging Facility, the Histology Facility of the Life Science
Complex of McGill University, the Flow Cytometry and Cell Sorting Facility of the
Department of Microbiology and Immunology of McGill University, the Flow Cytometry
Facility of the Institut de Recherches Cliniques De Montréal, the Flow Cytometry Facility
of the C-BIGR of the Montreal Neurological Institute, the Mass Cytometry Core Facility
of the Life Science Complex of McGill University, the Immunophenotyping platform of
the RI-MUHC of McGill University. Funding provided by Compute Canada Resource
Allocation Project wst-164 (to J.R.), CFI Leaders Opportunity Fund, Genome Canada
Science Technology Innovation Centre, and Genome Innovation Node (all to G.B. and
J.R.), the Cancer Research Society, Canadian Cancer Research Institute, Brain Tumor
Foundation of Canada, and the Canadian Institute of Health Research (all to K.P.). We
wish to thank the TARGIT Foundation, the A Brilliant Night Foundation, and the
Argento Family Group Ercole for supporting this work. CPC is supported by the Fonds
de Recherche du Québec-Santé Resident Physician Research Career Training Program
Phase 1. SA is supported by a George H. Harris Fellowship and a MNI-Fisher Brain
Tumor Award. G.B. is supported by a Fonds de Recherche du Québec-Santé Junior 2
Award. K.P. is supported by a clinician-scientist salary award from the Fonds de
Recherche du Québec-Santé and the William Feindel Chair in Neuro-Oncology.

Author contributions

C.P.C. and K.P. conceived the project, designed the study, and interpreted the results.
K.P. performed the surgeries, and P.L. and X.Y. collected the single cells. Y.C.D.W.
generated the single-cell sequencing libraries. C.P.C. performed scRNAseq-related
computational analyses. J.M. performed CNA-related computational analyses. J.N. per-
formed the fetal data set comparison to Nowakowsky et al., the signature comparison to
Neftel et al., and the analysis of the TCGA data set. S.A. performed flow and mass
cytometry. P.L., S.B., and C.L. performed immunofluorescence imaging. P.L, X.Y., RA,,
and S.B. performed the drug and chemotherapy assays. R.A. performed the cloning of the
luciferase vector and produced the lentivirus. X.Y., G.R, S.A., and C.P.C. performed the
in vivo experiments. J.A. and V.W.Y. provided access to fetal brain samples. M.B,,
M.C.G,, G.B,, B.M,, H.N,, and J.R. provided analytical and experimental support. C.P.C.,
S.A., and K.P. wrote the manuscript with feedback from all other authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-17186-5.

Correspondence and requests for materials should be addressed to K.P.

Peer review information Nature Communications thanks Aaron Diaz and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
BY

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

| (2020)11:3406 | https://doi.org/10.1038/s41467-020-17186-5 | www.nature.com/naturecommunications 19


https://doi.org/10.12688/mniopenres.12766.1
https://doi.org/10.12688/mniopenres.12766.1
https://doi.org/10.1038/s41467-020-17186-5
https://doi.org/10.1038/s41467-020-17186-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy
	Results
	ScRNAseq highlights genomic heterogeneity in glioblastoma
	Conserved neurodevelopmental lineages in glioblastoma
	ScRNAseq of the normal developing brain
	Creation of a fetal brain roadmap
	Fetal brain roadmap reveals glioblastoma trilineage hierarchy
	Progenitor cancer cells are the most proliferative cancer cells
	Progenitor cancer cells at apex of glioblastoma hierarchy
	Progenitor cancer cells drive chemoresistance and growth
	Progenitor pathways expose therapeutic opportunities

	Discussion
	Methods
	Glioblastoma samples
	Preparation of the whole tumor and GSC samples
	Human fetal brains
	Human adult brain
	Fetal cell sorting
	Single-cell RNA sequencing
	Analysis of CNAs and identification of non-cancerous cells
	Signal processing for transcriptional data
	Filtering the fetal brain and cancer samples
	Cell cycle and principal components analysis
	Classifying cells by TCGA subtype
	Clustered non-negative matrix factorization
	Community detection in fetal samples
	Differential expression of fetal cell types and comparison with a reference fetal data set
	Creation of the fetal roadmap
	Mapping of cancer cells to the fetal roadmap
	Classification of cancer cells by cell type
	Similarities between cell types and signatures
	RNA velocity of cancer cells
	Pathway enrichment for progenitors in whole tumor
	Mass cytometry
	Glioma stem cell sorting
	Luciferase vector
	Mouse xenotransplantation
	In vivo imaging
	Immunofluorescence
	Chemotherapy and targeted therapy assays
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




