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Abstract
Among brain tumors, Medulloblastoma (MB) is one of the most common, malignant, pediatric tumors of the cerebellum. It 
accounts for ~20% of all childhood central nervous system (CNS) tumors. Despite, tremendous advances in drug development 
processes, as well as novel drugs for MB the morbidity and mortality rates, remain high. Craniospinal radiation, high-dose 
chemotherapy, and surgical resection are the primary therapeutic strategies. Tremendous progress in the field of “genomics” 
with vast amounts of data has led to the identification of four distinct molecular subgroups in medulloblastoma: WNT group, 
SHH group, group-III, and group-IV. The identification of these subgroups has led to individualized treatment strategies for 
each subgroup. Here, we discuss the various molecular subgroups of medulloblastoma as well as the differences between 
them. We also highlight the latest treatment strategies available for medulloblastoma.

Keywords Medulloblastoma · Molecular subgroups · Therapeutics

Abbreviations
ATO  Arsenic trioxide
BBB  Blood-brain barrier
BRDi  Bromo-domain inhibitors
CNS  Central nervous system
CSF  Cerebrospinal fluid
EGL  External granule layer
GCP  Granule cell precursors
HDACi  Histone deacetylase inhibitors
MB  Medulloblastoma
MBEN  Medulloblastoma with extensive nodularity
MRI  Magnetic resonance imaging
PI3Ki  Phosphatidylinositol 3-kinase inhibitors
SHH  Sonic hedgehog
WHO  World health organization
WNT  Wingless

Introduction

The term “Medulloblastoma” (MB) was first coined by Per-
cival Bailey and Harvey Cushing in the year 1925 [1]. It can 
be described as a highly invasive pediatric tumor arising 
from the cerebellum and accounts for ~20% of all child-
hood central nervous system (CNS) tumors [2]. It is very 
uncommon in adult patients (post-pubertal) and accounts 
for ~1% of CNS tumors in this age category [3, 4]. Due to 
the high morbidity and mortality rates of MB, prompt treat-
ment is of high importance [5]. The genetics of MB differs 
across various age classes resulting in marked prognostic 
characteristics that can impact treatment decisions [4]. MB 
patients display a range of symptoms which include hear-
ing loss, lethargy, facial weakness, cranial nerve defects, 
vomitings, ataxia, headaches, head tilt, and Parinaud’s syn-
drome (upward gaze and pupillary defect) among others [6]. 
Multiple treatment strategies consisting of cytotoxic drugs 
and non-specific approaches introduced in the early 1980s 
are still used. The major disadvantages of these approaches 
are severe side effects and long-term disabilities. MB was 
previously categorized into (1) Classical MB and four dif-
ferent sub-groups, based on the histological features: (2) 
Desmoplastic or nodular (D/N); (3) Medulloblastoma with 
extensive nodularity (MBEN); (4) Anaplastic medulloblas-
toma, and (5) Large-cell variant [5, 6]. But, with advances 
in genomics MB has been reclassified by the world health 
organization (WHO) based on molecular profiling into four 
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subtypes: (1) WNT, (2) SHH, (3) Group-III, and (4) Group 
IV. All these subtypes have distinct molecular and clinical 
traits [7, 8].

WNT group

The WNT group of MB is the least common and accounts 
for ~10% of all MB cases [5]. Generally, this group of 
MBs manifests after 3 years of age [9]. But it has also been 
observed in post-pubertal and adult patients [4, 10–12]. It 
affects both genders (males/females) equally [9]. The pri-
mary origin of WNT MB is considered as lower rhombic 
lip progenitor cells [13]. Nearly, 85–90% of WNT-MBs 
exhibit somatic mutations in CTNNB1 gene that encodes 
β-catenin [7, 11, 12]. Such kinds of mutations result in con-
stitutive activation of WNT signaling pathway that occurs 
through the stabilization of β-catenin. Nuclear accumula-
tion of stabilized β-catenin acts as a co-activator for various 
transcription factors including the TCF-LEF family, lead-
ing to activation of WNT-responsive genes [14]. The other 
commonly observed feature of this group is monosomy 6 
that occurs along with CTNNB1 mutations [5]. In patients 
lacking somatic mutations in CTNNB1 gene, otherwise har-
bor mutations in APC, which is a tumor suppressor gene. 
APC belongs to a complex consisting of CSNK1A, GSK3β, 
axin1, and axin2 that facilitates phosphorylation-depend-
ent ubiquitylation and β-catenin degradation, explaining 
the constitutively triggered WNT signaling found in MB 
patients and APC loss-of-function mutations [15]. Further-
more, based on DNA methylation analysis and gene expres-
sion data, scientists have divided the WNT group into two 

subtypes: WNTα and WNTβ [14, 15]. Although both these 
subgroups exhibit similar survival rates, the main difference 
being WNTα subtype is observed in children with high mon-
osomy 6 frequency whereas WNTβ subtype is largely seen 
in adults and older children with low monosomy 6 frequency 
[14, 15]. SMARCA4, TP53, DDX3X, CSNK2B, EPHA7, and 
PIK3CA are some of the other frequently mutated genes in 
WNT MB [16–19]. The most common type of histology 
seen in this subtype is classic and LCA [18]. Among the four 
MB subtypes, the WNT subtype has the highest patient sur-
vival (>90%) and the best prognosis [9] but the outcomes in 
adult WNT-MB patients is not as favorable as that of patients 
below the age of 16 years [4, 10–12] (Fig. 1).

SHH group

The SHH group of MB accounts for ~30% of all MBs [5]. 
It is mostly seen in adults (>16 years old) and children 
(<3 years old) [5]. Both genders are equally affected in 
this subgroup [20]. The characteristic location of SHH 
MBs is the cerebellar hemispheres. Granule cell precur-
sors (GCP) of the external granule layer (EGL) are the 
cells of origin of SHH MBs [8, 10]. The most common 
histological features of this subgroup are ND, LCA, and 
Classical [13]. The name SHH comes from the consti-
tutive activation of the sonic hedgehog (SHH) signaling 
pathway in this subgroup of MBs. Amplification of GLI-
1/2, mutations in SMO leading to gain of function, and 
perturbations in SUFU, PTCH1/2 which leads to loss of 
function are primary causes for SHH driven MBs [21]. 
Hyperactivation of SHH pathway is considered to be the 

Fig. 1  Graphical representa-
tion of molecular subgroups of 
medulloblastoma: Four different 
subgroups of medulloblastoma 
showing their frequency. This 
figure is based on the data from 
the specified reference [19]



Molecular Biology Reports 

1 3

principal reason for tumorigenesis in patients with SUFU 
germline mutations and are at a higher risk of develop-
ing MB in infancy [22]. Mutations in the PI3K pathway 
and p53 components have also been reported in SHH MB. 
Deregulated p53 signaling contributes to defective cell 
cycle, DNA repair, and apoptosis while mutations in PI3K 
(receptor tyrosine kinase) signaling promotes cell prolif-
eration, survival, and growth [22]. Further, based on gene 
expression datasets and DNA methylation pattern SHH-
MB has been categorized into four subgroups: SHHα, 
SHHβ, SHHγ, and SHHδ [23]. The SHHα subgroup is 
usually observed in children with GLI2/MYCN amplifica-
tion and TP53 mutations. While, both SHHβ and SHHγ 
manifest in young children. Whereas, SHHδ tumors are 
noticed in adults harboring mutations in TERT promoter 
[20]. It has been also demonstrated that adult MB patients 
harbor more mutational burden than that of childhood MB 
patients and exhibit 80% of mutations in SMO or PTCH1 
[4, 24–26]. In general, SHH MBs have an intermediate 
prognosis but variations within this subtype have been 
noticed [20]. For example, the survival rate of SHHβ-MB 
patients is worse than that of SHHγ-MB patients because 
of high frequency of metastases. Also, SHH MBs with 
TP53 mutations show a very poor prognosis [27] (Fig. 2).

Group‑III

Group-III MBs accounts for ~25% of all MBs. Males are 
affected more than females [28]. Classic and LCA are the 
common histological variants of this group [9]. The cellular 
origin of this subgroup is neural stem cells [28]. The 5-year 
overall survival (OS) range of this group is ~39–58% [29]. 
In children, this is ~58% whereas in nonirradiated infants 
it is ~45% [25, 30, 31]. Contrary to WNT and SHH MBs 
where clear evidence of aberrant activation of molecular 
pathways has been demonstrated but for this group, the 
elemental cause has not been established yet [30]. The most 
common mutations observed in this subtype are overex-
pression of SMARCA4 and GABRA5 [32]. Amplification 
of the proto-oncogene MYC has also been observed [32]. 
Cytogenetic anomalies include isochromosome 17q, gain of 
chromosomes 18,7,1q as well as the loss of chromosomes 
16q,10q, and 8 [33]. Recently, a study based on DNA meth-
ylation pattern and integrated gene expression analysis led 
to the identification of three subtypes in this group. Namely, 
group 3α,3β, and 3γ [23]. Group 3α tumors are in general 
observed in young children whereas Group3β, and 3γ are 
seen in older children [20]. Prognostically group 3α and 3β 
are more favorable than 3γ [32]. In group 3α loss of chromo-
some 8q is very frequent and gain of 8q in group 3γ. Loss 

Fig. 2  Graphical representation of various medulloblastoma sub-
groups. Four different subgroups of medulloblastoma showing gen-
der, age at diagnosis, cellular origin, location, histology, relapse pat-

tern, and prognosis are illustrated. This figure is based on the data 
from the specified references [9, 19, 27]
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of DDX31, overexpression of GFI1/GFI1B as well as gain 
of OTX2 are also frequent in Group 3β [23]. One of the 
principal reasons for poor prognosis in this group can be 
attributed to metastases in 50% of the patients at the time of 
diagnosis [27, 28].

Group‑IV

Among the four medulloblastoma subgroups, group-IV is 
the most common with a frequency of ~35% [9]. The inci-
dence rate of this subtype is more prevalent in males than 
in females [28]. Classic and LCA are the common histo-
logical features of this subgroup [28]. The cellular origin 
of this group of MBs is unipolar brush cells [28]. A unique 
signature has not yet been identified for this group via tran-
scriptional profiling. However, KBTBD4 (6%), ZMYM3 
(6%), KDM6A (9%), and KMT2C (6%) somatic mutations, 
overexpression of GFI1/GFI1B (5–10%), and PRDM6 (17%) 
as well as amplification of CDK6 (6%), MYCN (6%), and 
OTX2 (6%) are common [33]. Furthermore, loss of 11p, 
8p, 8q, and X and gain of chromosomes 18q and 7 have 
been observed [9, 11]. Also, the most common aberration 
observed in this subgroup is isochromosome 17q (80%) [20]. 
Lately, three different subtypes in Group-IV MBs have been 
identified namely Group IV-α, Group IV-β, and Group IV-γ 
[34]. The overall rate of survival and frequency of metastasis 
at diagnosis among these groups is statistically not signifi-
cant [20]. Molecularly these three subgroups exhibit differ-
ences including CDK6 and MYCN amplification in Group 
IV-α, duplication of Synuclein Alpha Interacting Protein 
(SNCAIP) in Group IV-β, and amplification of CDK6 in 
Group IV-γ [21, 30].

Treatments

For MB patients the standard treatment options include sur-
gical intervention with maximal tumor resection followed 
by radiotherapy (RT), and/or chemotherapy (CT) [20, 32, 
35]. Treatment with RT consists of a standard dose of 23.4 
Gray (Gy) for low-risk individuals whereas for high-risk 
individuals it ranges between 36 and 39 Gy [20]. Post radia-
tion MB patients are treated with chemotherapeutic agents 
like cisplatin, etoposide, methotrexate, cyclophosphamide, 
and lomustine [36]. For children below the age of 3 years, 
autologous stem cell transplantation and CT consisting of 
multiple drugs are considered to circumvent the long-term 
side effects of RT [37, 38]. Further, the therapeutic options 
vary subject to risk factors associated with a patient’s health 
[32, 35]. Due to the location of MB tumors, early detection 
is difficult and tumor metastasis is often observed in 30% of 
patients at the time of diagnosis [5]. Improved diagnostics 

like liquid biopsy methods and serum markers for early 
detection of MBs have been researched and are currently 
under preclinical evaluation [4, 39]. Additionally, cerebro-
spinal fluid (CSF) from MB patients as well as circulating 
tumor cells in the blood offer a novel method to detect MB 
in early stages [4, 39]. It has been demonstrated that ~25% of 
MB patients suffer from a multitude of side effects ranging 
from dysarthria, hearing loss, pituitary hormone deficiency, 
short stature, stroke, cavernous malformations, cataracts, 
cerebrovascular disease, intracranial hemorrhage, endo-
crine disorders, neurocognitive deficits, as well as secondary 
tumors which can be attributed to non-specific chemother-
apy, craniospinal radiotherapy, and surgery [8, 40] therefore 
new treatment modalities are imperative for MB patients to 
decrease the side effects [20].

In general, the treatment strategies for adult MBs are 
similar to that of pediatric MBs due to the assumption that 
in both the populations the tumors behave alike [4]. Also, 
the OS rates between adult MBs and that of pediatric MB 
are very similar [4]. However, certain differences between 
adult MBs and pediatric MBs have been noticed, late recur-
rences, desmoplastic histology, and lateral cerebellar loca-
tions are particularly observed in adult MBs. Furthermore, 
the prognostic factors that are well understood in childhood 
MBs patients have not been very well characterized in adult 
MBs patients. Due to the rarity of MB in adults, most of the 
data is based on retrospective studies, prospective studies 
are encouraged to determine as well as to establish prog-
nostic factors in adult MB patients [41]. The advances in 
MB genomics and the identification of various molecular 
subgroups of MB has opened new avenues for personalized 
targeted therapy for MB patients. Several clinical trials are 
presently underway that hold promise as an effective thera-
peutic strategy for individual molecular subgroups of MB. 
For example, it has been shown that the blood-brain barrier 
(BBB) which plays a crucial role in maintaining the tumor 
microenvironment (TME) prevents cancer cells from directly 
getting exposed to the chemotherapeutic drugs present in the 
bloodstream [20]. WNT MBs, however, have been reported 
as having a lack of functional BBB relative to other MB 
subgroups, rendering this subset of tumors potentially more 
vulnerable to chemotherapeutic drugs that cannot cross the 
BBB [20, 42]. For WNT group, clinical trials particularly 
focussed on CT and RT are given importance than target-
ing the WNT pathway itself as tumors in this subtype are 
permeable to BBB due to dysfunctional WNT pathway ena-
bling greater penetration of chemotherapeutic drugs into 
cancer cells [20, 30, 42]. Additionally, multiple clinical tri-
als with low doses of CT and RT are currently in progress 
(NCT02212574, NCT02066220, and NCT02724579) [20]. 
Histone deacetylase inhibitors (HDACi) involved in the dis-
ruption of chromatin remodeling are also suggested in treat-
ing WNT MBs [24].
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With regard to SHH MB group, several therapeutic strate-
gies have been developed and many more are under inves-
tigation. Due to the diverse mutational landscape observed 
in SHH MB patients, no one particular drug is effective in 
treating this group of MBs. Hence, high throughput stud-
ies are being undertaken to understand and characterize the 
tumor sample/s at various molecular levels (NCT02417324 
and NCT02238899) for precision-based medicine [4]. SHH 
MB patients with mutations in SMO and PTCH1 are treated 
with vismodegib [20, 43, 44] but high-risk SHH MB patients 
with GLI2 and MYCN amplifications as well as mutations 
in SUFU cannot benefit from vismodegib [26, 31, 45, 46]. 
Therefore, alternative treatment strategies are required in 
such cases [26, 31, 45, 46]. Alternative therapeutic strate-
gies such as proton therapy and tomotherapy are also being 
explored [4]. In clinical trial-NCT01857453 reduced RT 
dose along with CT was being tested in adult MB patients 
with intermediate-risk [4]. Combination therapy consisting 
of temozolomide with sonidegib or temozolomide with ribo-
ciclib is given to recurrent and refractory SHH MB patients 
[4, 20, 43, 47]. Furthermore, fimepinostat, a dual PI3K, and 
HDAC inhibitor have also been tested in recurrent SHH MB 
patients (NCT03893487) [20]. Besides this, oral combina-
tion therapy consisting of trofosfamide and etoposide has 
also shown promise. Chemotherapeutic agents like carbopl-
atin (NCT00749723) [4], arsenic trioxide (ATO), bromodo-
main inhibitors (BRDi) [48], and anti-angiogenesis therapy 
are also under consideration [48]. In one of the research 
studies, HDAC6 has been demonstrated to be a potential 
target for treating SHH MBs [49]. Other ongoing clinical 
trials include CX4945, a potent CK2 inhibitor which is being 
tested in recurrent SHH MBs (NCT03904862) [20].

The distinguishing feature of group-III MBs is the ampli-
fication of MYC proto-oncogene. In a study with murine 
models, overexpression of MYC and inactivation of TRP53 
led to the identification of the crucial role of PI3K/mTOR 
pathway in group-III MBs [50, 51]. Screening of drugs in 
this model led to the identification of HDACi like LBH-
589 showing synergy with phosphatidylinositol 3-kinase 
inhibitors (PI3Ki). In another animal study palbociclib, a 
CDK inhibitor was shown to be active against tumor cells 
[52]. Bromo-domain inhibitors (BRDi) indirectly target-
ing MYC activity have also been found useful in treating 
group-III MBs [53]. In a multicentral ongoing clinical trial 
(NCT01878617) group-III and group-IV MB patients are 
being treated with gemcitabine and pemetrexed [20, 25]. In 
clinical trials (NCT04023669 and NCT02255461) check-
point inhibitors like CDK1/2/4 and 6 in combination with 
CT drugs or alone are being tested in refractory and recur-
rent group-III as well as group-IV MBs [20]. Collectively, 
several ongoing clinical trials addressing various aspects of 
MB treatment are under investigation, and search for new 
targets and therapeutics is in great demand.

Conclusion and future perspective

Medulloblastoma is one of the most common and devas-
tating pediatric central nervous system cancers. Previously, 
MB was categorized based upon histopathological features. 
But, due to recent advancements in cancer genomics, scien-
tists have identified various subtypes of MB (WNT, SHH, 
Group-III, and Group-IV) based on molecular profiling of 
the tumors [20]. Standard treatment strategies were widely 
employed for almost all MB patients but now due to the 
identification of these molecular subtypes, an effective 
and more precise treatment regimen is possible. Moreover, 
with the molecular categorization of MB low and high-risk 
patients can be identified and treated accordingly. Despite 
these advancements, the side effects of current therapies 
are of major concern. Therefore, future treatment strategies 
should be particularly based upon identification of MB sub-
type upon diagnosis and tailor-made treatment strategy for 
individual patients based upon the type of mutation they 
carry. NCT01878617 and NCT02066220 are two clinical 
trials where the molecular classification of MB is being used 
and are currently recruiting. Diffusion tensor imaging and 
the latest magnetic resonance imaging (MRI) techniques are 
being utilized for visualizing tumors and very convenient 
in differentiating MB subtypes [4, 54–56]. Furthermore, a 
better understanding of the signaling pathways, mechanisms 
involved in MB progression, early diagnosis, and novel ther-
apeutics is the way to move forward.
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