
REVIEW

Cross-sectional imaging techniques have a central role in 
the initial diagnosis and surveillance of brain tumors. 

CT and MRI are used for tumor identification, mapping, 
and determination of tumor extent and posttreatment sur-
veillance as a routine part of standard of care. However, 
beyond the traditional, largely anatomic and qualitative- 
oriented role of imaging for the evaluation of brain tumors, 
there is increasing interest in more specific, noninvasive 
biomarkers that can be used for enhanced characterization 
of the tumor phenotype, prediction of response to ther-
apy, prediction of survival, and distinction of treatment-
induced changes or complications from tumor recurrence. 
Interest in discovering and developing better tumor bio-
markers is partly fueled by the recognition of the increased 
complexity of these tumors, as evident in the incorporation 
of molecular and histologic features for defining many tu-
mor entities in the 2016 World Health Organization Clas-
sification of Tumors of the Central Nervous System (1). 
There is also increasing complexity of different therapeutic 
regimens, including various systemic therapies, that are ei-
ther in current use or under investigation, with interest in 
therapies targeting specific molecular pathways (2). These 
therapeutic advances hold the promise of more effective, 
personalized therapy for brain tumors. At the same time, 
they highlight the need for more precise biomarkers that 
enable earlier and optimal patient stratification and treat-
ment selection. This represents both an opportunity and 

a challenge for medical imaging as it takes an even more 
central role in the decision-making process and optimal 
treatment selection in the future.

To meet these challenges, new MRI sequences that 
improve diagnostic performance have been developed. As 
a result, there has been significant progress in advanced 
imaging of brain tumors using a combination of standard 
sequences and more advanced MRI techniques, such as 
diffusion-weighted and tensor imaging, susceptibility-
weighted imaging, perfusion and permeability imaging, 
and MR spectroscopy (3). There has also been progress in 
developing more standardized and reliable approaches for 
assessment of response to treatment, such as the use of the 
Response Assessment in Neuro-Oncology criteria (4,5). 
However, despite these advances, the imaging criteria cur-
rently used in routine clinical practice rely on qualitative 
assessment and relatively basic quantitative evaluation of 
the sequences performed, perhaps with the exception of 
some advanced techniques such as perfusion and perme-
ability imaging, potentially ignoring or underusing large 
amounts of available quantitative data. To this end, there 
has been increasing interest in the use of advanced com-
puterized image analysis approaches that enable objective, 
high-level quantitative evaluation of image features and 
pixel-level relationships for tumor characterization, com-
monly referred to as texture or radiomic analysis (Table 1). 
The interest in these types of analyses has been further 
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Advances in computerized image analysis and the use of artificial intelligence–based approaches for image-based analysis and construc-
tion of prediction algorithms represent a new era for noninvasive biomarker discovery. In recent literature, it has become apparent that 
radiologic images can serve as mineable databases that contain large amounts of quantitative features with potential clinical signifi-
cance. Extraction and analysis of these quantitative features is commonly referred to as texture or radiomic analysis. Numerous studies 
have demonstrated applications for texture and radiomic characterization methods for assessing brain tumors to improve noninvasive 
predictions of tumor histologic characteristics, molecular profile, distinction of treatment-related changes, and prediction of patient 
survival. In this review, the current use and future potential of texture or radiomic-based approaches with machine learning for brain 
tumor image analysis and prediction algorithm construction will be discussed. This technology has the potential to advance the value 
of diagnostic imaging by extracting currently unused information on medical scans that enables more precise, personalized therapy; 
however, significant barriers must be overcome if this technology is to be successfully implemented on a wide scale for routine use in 
the clinical setting.
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variations and their relationships on the image. The goal of 
texture analysis is to extract and analyze fine variations that 
are not observed or consistently incorporated into the diag-
nostic decision making on evaluation by the naked eye during 
routine qualitative image interpretation performed in clinical 
practice. Interest in texture analysis has emerged partly from 
early studies of human perception that demonstrated that 
despite its impressive performance, the human visual system 
may have difficulty in effortlessly discriminating certain tex-
tural characteristics, for example those related to higher-order 
statistical features of an object or image (8,13). Interest in the 
use of computer-assisted analytic methods for image analysis 
is also driven partly by the increasing amount and complexity 
of the available information on a patient’s scan and electronic 
medical record.

The main objective and rationale behind texture analysis of 
tumors is to provide a noninvasive quantitative map of tumor 
heterogeneity, which in turn is used to predict a molecular or 
clinical end point of interest (9–12). Interest in texture analysis 
is not new, and reports of potential applications date back to 
the early days of computerized image analysis (7,8,14). However, 
there has been a revival of interest in texture analysis applications 
in the past decade, fueled by the impressive advances in com-
putational power, increasing interest in quantitative biomarkers, 
and a general trend toward digital health applications and more 
precise, personalized medicine.

There is not a uniform definition for texture analysis in the 
literature. In the medical and radiology literature, texture analy-
sis has been used to refer to a range of quantitative features that 
include primary (or first-order) statistical features, secondary 
statistical features, and higher-order statistical features or more 
complex relationships that are derived from model-based and 
transform-based methods (9–12) (Table 1). However, texture 
has also been defined more narrowly as the second-order deter-
minants of spatial interrelationships of pixel (or voxel) gray-level 
values or texture matrix–based features (15–17). For simplicity 
and clarity, the broader range of quantitative features that can 
be extracted—including the previously mentioned—will all be 
included under the umbrella of handcrafted radiomic features in 
this review. For the rest of this review, the term radiomics will be 
used to describe this process or articles performing this type of 
analysis. Table 1 provides a broad overview of handcrafted texture 
or radiomic features. A more detailed discussion of these features 
is beyond the scope of this article but can be found in a number 
of reviews or reference manuals on this topic (6–10,12,15,16).

Radiomics
The term radiomics was first introduced in the medical litera-
ture in 2012, defined as “high throughput extraction of quan-
titative imaging features with the intent of creating mineable 
databases from radiological images” (18,19). In a more recent 
review, the definition of radiomics was expanded to “high-
throughput extraction of quantitative features that result in the 
conversion of images into mineable data and the subsequent 
analysis of these data for decision support” (15). So far, the ma-
jority of published radiomic studies have been based on analy-
sis of CT, MRI, or PET scans, but there is no reason to restrict 

fueled by recent advances in artificial intelligence (AI), especially 
machine learning (ML), for image analysis and prediction algo-
rithm development.

An increasingly large body of evidence suggests that ra-
diomics and AI applications can leverage existing information 
on scans that are routinely obtained as part of a patient’s workup, 
including information available on standard sequences and more 
advanced techniques, to enhance diagnostic evaluation of tu-
mors and develop clinically useful noninvasive biomarkers for 
tumor characterization. These noninvasive applications will be 
discussed throughout this review with a focus on brain tumor 
imaging. An overview of texture and radiomic approaches for 
tumor analysis and the central role of ML in constructing pre-
diction algorithms or classifiers will be discussed. The radiomic 
workflow and the use of “handcrafted” versus “deep” extracted 
features will be reviewed, followed by a general discussion of 
current applications for brain tumor analysis to demonstrate 
the potential of these approaches for tumor-specific biomarker 
development. The review will conclude with a discussion of the 
barriers and challenges for the adoption of this technology in the 
clinical setting and a brief discussion of potential next steps and 
early applications for deployment in the clinical setting.

Overview of Texture Analysis and Radiomics

Texture Analysis
There are variations in the use and definition of medical image 
texture analysis in the medical and computer science literature. 
Broadly defined, texture analysis refers to computerized analy-
sis of pixel position and fine pixel density or intensity variations 
on an image, with extraction of mathematically derived quan-
titative parameters that reflect those variations (6–12) (Fig 1). 
Texture analysis provides a quantitative map of different pixel 

Abbreviations
AI = artificial intelligence, CNN = convolutional neural network, 
DL = deep learning, ML = machine learning

Summary
Radiomic-based approaches and artificial intelligence can be used to 
analyze medical images and construct prediction algorithms with the 
potential to advance medical imaging into a new era of noninvasive 
biomarkers and predictive analytics toward more personalized, preci-
sion medical diagnostics for the evaluation of brain tumors.

Key Points
 n Radiologic images can serve as mineable databases containing 

quantitative features with potential clinical significance.
 n Texture or radiomic analysis combined with machine learning can 

be used to extract image quantitative features and combine them 
with other clinical information to construct “intelligent” predic-
tion algorithms that improve with algorithm use and “experience.”

 n Early studies suggest the potential for better characterization of 
brain tumors including prediction of tumor histologic characteris-
tics, molecular characteristics, and patient survival.

 n Wide-scale application of radiomic-based approaches in the clini-
cal setting will require overcoming scientific, workflow automa-
tion, and regulatory approval barriers.
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combined with other patient characteristics and clinically avail-
able information to develop decision support tools, and there-
fore some radiomics applications could be implemented as an 
extension of computer-aided diagnosis and detection.

When discussing radiomic features, one may make a distinc-
tion between semantic and agnostic features as the two broad 
categories of features that can be extracted using radiomics, as 
discussed by Gillies et al (15). Semantic features refer to char-
acteristics or features commonly used in the radiology lexicon 
to describe a lesion of interest (ie, size, shape, and the presence 
of necrosis), which may be quantified for incorporation into ra-
diomic models. The other broad category of features, agnostic 
features, can be characterized as mathematically extracted quan-
titative descriptors that are generally not part of radiologists’ 
lexicons (15). Examples of agnostic features include the first-, 
second-, and higher-order statistical features that were discussed 
earlier. Many of the published texture and radiomics studies are 
based primarily on agnostic features, but there is no reason to 
impose any such limitation as the ultimate goal is to take ad-
vantage of all available clinically useful information. Having a 
component that includes or reflects semantic features also has 
a potential advantage in the sense that making any algorithm 
more “explainable” (20,21) may improve user acceptance as well 
as regulatory approval.

radiomic analysis to these or any specific imaging modality. 
The exact definition and application of the term radiomics is 
likely to further expand with newly developed and increasingly 
sophisticated image analytic methods, an example of which 
will be discussed in the following sections when discussing the 
use of features extracted using deep learning (DL).

It is important to note that traditional radiomic feature ex-
traction neither requires nor is based on AI, or more specifically 
ML. However, ML approaches such as convolutional neural net-
works (CNNs; a type of DL) can be used for direct image analysis 
and feature extraction (Table 1). Regardless of the method used 
for extracting radiomic features, ML is a powerful approach for 
developing algorithms based on extracted quantitative features 
to construct clinically useful prediction models or classifiers. 
It is worthwhile to distinguish the radiomics process from the 
traditional computer-aided diagnosis and detection systems. As 
discussed by Gillies et al (15), computer-aided diagnosis and de-
tection systems are usually stand-alone systems designated by the 
Food and Drug Administration for use in either the detection or 
diagnosis of disease and are typically designed to deliver a single 
answer (eg, presence or absence of an abnormality). On the other 
hand, radiomics is a process designed to extract vast amounts of 
quantitative features from digital images that can be mined for 
hypothesis generation, testing, or both. These data can then be 

Table 1: Summary of Handcrafted Quantitative Features

Feature Type Description

Intensity-based statistical features, intensity histogram–based 
features, and intensity volume histogram–based features

Describe the distribution of gray levels and their relationship

Morphologic features Describe the geometric characteristics of a region (area) or volume of 
interest

Local intensity features Describe voxel intensities around a center voxel within a defined neigh-
borhood*

Texture matrix–based features† GLCM: describes how combinations of discretized gray levels of neigh-
boring voxels are distributed along one of the image directions

GLRLM: evaluates the distribution of discretized gray levels in terms of 
run lengths (defined as the length of a consecutive sequence of voxels 
with the same gray level along a fixed image direction)

GLSZM: provides a count of the number of groups (or zones) of linked 
voxels

GLDZM: provides a count of the number of groups (or zones) of linked 
voxels that share a specific discretized gray-level value and possess the 
same distance to the ROI edge

NGTDM: the sum of gray-level differences of voxels with discretized 
gray level i and the average discretized gray level of neighboring voxels 
within a fixed Chebyshev distance

NGLDM: tries to capture the coarseness of the overall texture

Note.—The above summary is modified based on the Image Biomarker Standardization Initiative (16). All of the above features can fall 
under the category of handcrafted radiomic features. Handcrafted (or hand-engineered) refers to the fact that these are all derived using 
clearly defined or explicit mathematical formulas designed by experts, often independently and prior to the experiment, in contradistinc-
tion to deep features extracted using deep learning approaches, such as convolutional neural networks, that are learned from data (see text). 
GLCM = gray-level co-occurrence matrix, GLDZM = gray-level distance zone matrix, GLRLM = gray-level run-length matrix, GLSZM = 
gray-level size zone matrix, NGLDM = neighboring gray-level dependence matrix, NGTDM = neighborhood gray-tone difference matrix, 
ROI = region of interest.
* Only voxels within the ROI are used as a center voxel, but the corresponding local neighborhood can extend outside the ROI.
† The term texture analysis is sometimes used to refer only to extraction of texture matrix–based features, whereas others use the term more 
broadly to include the broader range of extracted features, similar to handcrafted radiomic features.
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be an advantage when compared with DL approaches. However, 
handcrafted features are prone to technical variations and noise, 
and they likely require image preprocessing and standardization 
to be generalizable and successfully applied on scans acquired us-
ing different techniques, scanners, or sites. Typically, handcrafted 
features work better on smaller data sets, which explains the pre-
ponderance of studies using this approach in the literature. DL 
is not constrained by a predetermined number or type of fea-
tures and has the significant advantage of having the potential to 
“learn” any imaging feature(s) predictive of a given end point of 
interest. There is debate on whether the same extent of prepro-
cessing would be needed for DL, and with sufficiently large and 

Traditional Handcrafted versus Deep Radiomics Features
There is an increasing use of CNNs for image analysis and 
tumor characterization. In the preceding sections, texture or 
radiomic features were described as including first-, second-, 
and higher-order statistical features as well as other complex 
features, including those based on more complex relation-
ships derived using model-based and transform-based meth-
ods (6–12,15,16). Regardless of the variety of features that can 
be extracted and their complexity, these approaches share the 
characteristic that they are derived using clearly defined or ex-
plicit mathematical formulas designed by experts, often inde-
pendent of or prior to the experiment. These features can be 
collectively referred to as “handcrafted” 
or “hand-engineered” features (Fig 2). In 
contradistinction to handcrafted features 
extracted using traditional radiomics, 
features extracted based on image analy-
sis with DL approaches such as CNNs 
are not explicitly defined by an expert. 
Instead, they are learned from data 
through a learning algorithm, such as 
backpropagation. These may be referred 
to as deep (extracted) features and the 
process as “deep radiomics” (Fig 2).

Compared with DL, handcrafted fea-
tures that include semantic features may 
be more limited in scope because they are 
based on a finite set of mathematically de-
rived relations. Therefore, their predictive 
ability may be potentially inferior to DL in 
very large data sets. Handcrafted features, 
by definition, are explainable, which may 

Figure 1: Texture or radiomic analysis for extraction of quantitative features reflecting higher-order pixel posi-
tions and relationships. Simplified diagram demonstrates two squares containing an identical number of white, 
gray, and black pixels. Using basic first-order statistical quantitative parameters, such as average or standard 
deviation, frequently used in traditional region of interest analysis, the boxes would have identical values, even 
though on visual inspection the patterns are clearly different. The objective of computerized image analysis ap-
proaches like texture or radiomic analysis is to extract quantitative parameters or features that capture the more 
complex, higher-order characteristics, such as those reflecting pixel positions and relationships.

Figure 2: Texture or radiomic feature extraction: handcrafted feature versus deep features. During the process of texture or radiomic analysis, quantitative imaging features 
are extracted with the potential to serve as quantitative biomarkers that can be used to predict a clinical or molecular end point of interest. Broadly, traditional radiomic features 
may be defined as those derived using clearly defined or explicit mathematical formulas designed by experts, often independently and prior to the experiment, which may 
in turn be referred to as handcrafted or hand-engineered features. In contradistinction, features extracted based on image analysis with deep learning approaches, such as 
convolutional neural networks, are not clearly definable or derived using expert-designed explicit mathematical formulas. Instead, they are learned from data through a learn-
ing algorithm. These may be referred to as deep (extracted) features and the process as “deep radiomics.”
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designed to analyze all the available features and optimize the 
set to the smallest number of characteristics that can accurately 
predict the outcome of interest.

Prediction algorithms or classifiers can be constructed using a 
purely classic statistical approach or ML. ML is particularly well 
suited for development of prediction algorithms with the po-
tential for future translation into clinical decision support tools. 
One of the major advantages of ML over traditional software 
is that ML algorithms, as the name implies, can “learn” from 
experience and improve over time. There are many types of ML 
classification algorithms, and broadly, these can be divided into 
classic ML and DL (17,23–31). An example of DL that is widely 
used for medical image analysis is a type of artificial neural net-
work called the CNN, as was discussed earlier.

When using handcrafted radiomic features, the feature ex-
traction and prediction model construction steps are achieved 
in different steps (Fig 3). For example, features extracted from 
a lesion of interest are used as an input for a ML classifier for 
predicting an end point of interest. DL approaches, such as 
CNNs, can be used for direct image analysis and construction 
of a prediction model or classifier, combining the two steps 
and executing them using the same process. There is also a fun-
damental difference between classic ML and DL approaches. 
Generally, classic ML approaches are poorly suited to perform 
sophisticated image analysis, practically excluding them from 
the image analysis part of the radiomic process. However, the 
robust performance and complex architecture of DL makes 
DL-based approaches very attractive for image analysis and 
feature extraction applications. Although DL can be used both 
for image analysis and prediction algorithm reconstruction, it 
is not absolutely necessary, and one can combine DL and deep 
extracted features with other ML methods, including classic 
methods, for classification (32,33).

varied data sets, image standardization may not be required for 
DL. It may even be argued that not only is standardization un-
necessary, but it would have a negative impact by unduly remov-
ing information. However, these questions are unsettled at this 
time. In general, DL is more likely to have a poor or misleading 
performance on smaller data sets. Although many of the current 
texture or radiomic studies use handcrafted features for predic-
tion, it is likely that deep radiomics will play an increasing role 
for this purpose. Early studies may report an advantage for either 
approach; however, at this time, there is insufficient evidence to 
conclude that deep radiomics will completely replace traditional 
radiomics or whether a combination of the two will yield the 
most robust biomarkers (22).

Prediction Model Construction and ML Classifiers
Radiomic features need to be incorporated into a prediction 
(classification) algorithm, which is called a “classifier,” to be 
used for the determination of a molecular or clinical end point 
of interest. For example, analysis of a region of interest, such as 
a brain tumor, may yield hundreds or thousands of handcrafted 
radiomic features or deep radiomic features. There may also be 
nonradiomic features, such as clinical patient characteristics, 
biochemical results, or pathologic findings or molecular data 
obtained through biopsy that can be included as features in 
the classification model. Among the large number of features 
available, some will have variable associations (strong, weak, or 
insignificant) with the clinical end point of interest. Further-
more, among the different features, many may be redundant 
or highly correlated. Last, certain features may have a weak 
association with the outcome of interest when used in isolation 
but could increase in importance when used in combination 
with other features through interactions with those features. To 
predict a clinical end point of interest, an algorithm should be 

Figure 3: Overview of the radiomic workflow. The major steps in the radiomic workflow consist of lesion identification and localization, segmentation, feature extraction, 
and prediction model construction. In the short term, lesion detection and localization may be facilitated either by directing the algorithm using a bounding box approach 
by the radiologist or, alternatively, by the radiologist pointing at the lesion of interest using a cursor. However, in the long term, lesion identification may also be performed 
automatically by the algorithm. It should be noted that regardless of the degree of automation, these steps would be performed under the supervision of the expert radiologist, 
with the ability to make adjustments or modifications as needed.
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As a general rule, a traditional radiomic approach with classic 
ML may perform better with smaller data sets because DL typi-
cally requires larger data sets for algorithm training and develop-
ment (17). Early studies suggest that there may be an advantage 
to combining the two approaches, but this requires further in-
vestigation. Whether assessments of very large data sets with DL 
approaches will completely replace the traditional radiomic ap-
proach, or if the two will be combined for an optimal biomarker 
and classifier development, is not a settled question and will have 
to be determined in future investigations. A detailed discussion 
of different ML methods is beyond the scope of this article but 
can be found in various publications and review articles on the 
topic (17,23–31).

Summary of the Radiomic Workflow
The major steps in the radiomic workflow are illustrated in 
Figure 3 and include lesion identification and localization, seg-
mentation, feature extraction, and prediction model construc-
tion. Additional complexities and consideration related to vari-
ous steps in the workflow are discussed in Table 2. Familiarity 
with the radiomic flow is important both for understanding 
the process as well as the multiple levels of complexity involved 
and challenges that must be overcome for eventual translation 
into a clinical decision support tool. As should be evident based 
on the earlier discussion, DL can in theory be used to perform 
every major step in the radiomic workflow, including localiza-
tion and segmentation of a tumor (34,35), extraction of deep 
features, and construction of a prediction algorithm or classi-
fier. It is therefore likely that DL will play an important role 
in radiomic-based clinical decision support tools of the future. 
However, one should not write off other approaches such as 
those based on traditional computer vision or combination of 
classic ML with DL for certain processes. On the basis of early 
studies, there may be a need or at least an advantage of combin-
ing different approaches (22). Whether with sufficiently large 
data sets the DL can completely replace the other components 
will have to be determined in future investigations.

Radiomic Models for Tumor Evaluation
Brain tumor evaluation applications consist of a mixture of 
traditional texture or radiomic studies using handcrafted fea-
tures as well as the use of DL for tumor evaluation. Because 
MRI is the advanced imaging modality most commonly used 
for tumor evaluation, the majority of the radiomic stud-
ies performed for brain tumor evaluation use MRI, so this 
section will focus on radiomics applications based on MRI 
scans. However, some studies also show potential for applica-
tion of radiomics to brain CT scans (36) or other modalities 
(37) for brain tumor evaluation. Although many of the stud-
ies are based solely on radiomic features, it is important to 
note that when planning investigation and development of 
clinical decision support tools, analysis should not be lim-
ited to radiomic features alone. On the contrary, all available 
information should be used, including clinical, biopsy, and 
molecular data, when available (34,38) for prediction model 
construction as part of a patient care pathway. There is also an 

important secondary consideration of ensuring that radiomic 
features have additional value and are not simply surrogates 
or redundant features to more basic parameters such as tu-
mor size or other routinely obtained information. Studies are 
beginning to incorporate and demonstrate the additive value 
of radiomics (38) to more routinely obtained image-based or 
clinical parameters.

Histologic Classification and Grading of Tumors
Despite the exquisite anatomic detail and functional infor-
mation provided using advanced MRI techniques, distinc-
tion of tumor type or grades is not always possible using 
current approaches for image interpretation. Radiomic ap-
proaches have the potential to further enhance noninvasive 
tumor characterization by enabling histopathologic classi-
fication or grading (Table 3 and Table E1 [supplement]). 
Preliminary studies have shown that tumor radiomic fea-
tures may be used to distinguish different tumor types, such 
as primary brain tumors from metastases (39–41), primary 
central nervous system lymphoma (41–44), or other tumor 
types (41). Radiomic analysis has also been reported to help 
the distinction of glioblastoma from pilocytic astrocytoma 
(45), distinction of different histologic types of craniopha-
ryngiomas (46), discrimination of meningioma subtypes 
(47), or distinction of nonfunctioning pituitary adenomas 
subtypes (48). Radiomic analysis combined with basic clini-
cal information can also help in distinguishing different 
types of brain metastasis, and for certain metastasis types, 
the performance has been reported to be superior to expert 
radiologist evaluation (49). Some studies also suggest that 
radiomic features can be used for predicting tumor grade, 
such as distinguishing different grade gliomas (50–58). Ra-
diomic analysis may also be used to estimate tumor prolif-
eration indexes such as Ki67 (57) or for the differentiation 
of infiltrating tumor from vasogenic edema (59).

Classification of Molecular Characteristics of Tumors
Incorporation of molecular characteristics of tumors into 
diagnostic and treatment algorithms is key for optimal tu-
mor therapy, explaining the incorporation of certain tumor 
molecular features into the most recent World Health Or-
ganization tumor classification. It is therefore no surprise 
that developing noninvasive biomarkers for predicting tu-
mor molecular characteristics is an area of great interest 
and active investigation. Multiple investigations have dem-
onstrated the potential of radiomic approaches for predic-
tion of tumor molecular phenotype (Table 3 and Table E1 
[supplement]). These include determination of isocitrate 
dehydrogenase 1 mutation status in gliomas (34,60–66), 
determination of nondeleted versus co-deleted 1p/19q sta-
tus (62,64,67,68), prediction of O(6)-methylguanine-DNA 
methyltransferase promoter methylation status (69), isoci-
trate dehydrogenase 1/2-mutant with a telomerase reverse 
transcriptase promoter mutation (61), or prediction of p53 
status or other molecular characteristics (70,71) in gliomas. 
One study also used radiomics for prediction of mutations 
in BRAF and catenin b-1 in craniopharyngiomas (46).
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Table 2: Overview of Major Considerations for the Lesion Identification and Segmentation Steps in the Radiomic Work-
flow

Consideration Description

Lesion identification and 
segmentation

Algorithm would detect a lesion automatically or by use of a bounding box, cursor, or interactive worksta-
tion

Tumor segmentation 2D versus 3D:
• 2D approaches typically analyze the largest or central slice
• 3D approaches typically analyze segmented volumes over multiple image slices covering the entire tumor
• 2D models are not necessarily inferior to 3D models in terms of predictive performance, at least based 

on small studies (102)*

Multisequence segmentation and feature extraction:
• Although many of the current investigations using MRI radiomic analysis rely on one sequence (eg, 

postcontrast T1-weighted images), the optimal combination of sequences for prediction remains to be 
established

• Future radiomic applications should ideally include the capability for multisequence analysis and feature 
extraction

• The above will raise a number of technical challenges that will have to be overcome, including image 
registration for analysis

Ground truth and manual versus automatic segmentation:
• Manual segmentation by experts in the field is often treated as ground truth
• A lesion’s contours may not always be clearly defined due to known intrareader and interreader varia-

tions†

• Manual segmentation is time-consuming and not practical for routine clinical implementation
• Information extracted from the area immediately adjacent to a tumor may also have predictive value
• Automatic or semiautomatic lesion segmentation could be considered to increase consistency and repro-

ducibility
Application of normalization 

or standardization post-
processing algorithms

• Even with standardized techniques, some degree of technical variation in scan acquisition parameters, 
quality, or simply model- or vendor-related variations are inevitable

• Handcrafted radiomic features are technique dependent (12,16,104–109), and reproducible application 
will likely require some degree of image “normalization”

• The use of image normalization for deep learning applications is more controversial‡

Examples of postprocessing 
steps

• Image quality enhancement (smoothing, denoising, artifact reduction, etc) is ideally performed in the 
projection space, and although not necessarily specific for radiomics, it could impact extracted features

• Registration (site dependent and variable need but commonly used in different brain imaging applica-
tions in which information from more than one sequence may have to be integrated)

• Skull stripping
• Intensity normalization
• Interpolation to isotropic voxel spacing to make data sets comparable and extracted features reproduc-

ible; two approaches include downsampling or upsampling, each with unique advantages and disadvan-
tages

• Discretization of image intensities within an ROI or volume of interest

Note.—For the foreseeable future, key steps should proceed in a supervised manner, meaning that the expert radiologist should have the 
ability to make modifications to each step when warranted. The most important indicator of the utility of an algorithm as a biomarker 
would be judged based on the reliability for predicting the outcome of interest (eg, response to treatment, clinical outcome, etc) regardless 
of the intermediary steps used, as long as the algorithm yields reliable and reproducible results. DL = deep learning, ROI = region of inter-
est, 3D = three-dimensional, 2D = two-dimensional.  
* One reason that 2D models may not be inferior to 3D models is the concept of tumor habitats or subregions within the tumor volume 
that have distinct composition in terms of cellularity, blood flow, necrosis, and so forth. Consequently, features extracted from small sub-
regions of the whole tumor volume may have unique predictive value. Early studies also suggest that a combination of the approaches may 
yield the best results (103).
† Multiple manual segmentations could be performed but again are impractical and would furthermore have the additional caveat of 
difficult-to-determine boundaries and variations. With sufficiently large data sets, DL evaluation of the entire image may be the ultimate 
solution.
‡ This may not be necessary for deep radiomics using DL because DL is robust at evaluating different levels of complexity and incorporating 
them into the algorithms, assuming that there is sufficient data and exposure of the algorithm to represent the breadth of variations encoun-
tered. However, there are counterarguments to this and these will have to be addressed in future investigations.
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Posttreatment Change, Survival, and Other Studies of Interest
Distinguishing treatment-related changes in tumors contin-
ues to represent a challenge, even with the use of advanced 
MRI techniques. Preliminary studies suggest that radiomic 
analysis may be useful for distinction of progression or recur-
rence of primary or metastatic brain tumors from radiation 
necrosis and pseudoprogression (72–75). Multiple studies also 
suggest that radiomics can be used to predict patient survival 
(32,33,37,70,76–87). Radiomics has also shown potential for 
predicting the response of brain metastases to stereotactic ra-
diosurgery (36). For pituitary adenomas, at least one study 
suggests that MRI-based radiomic features may be useful for 
predicting cavernous sinus invasion (88). As discussed earlier, 
the goal of these studies is to improve patient care by enabling 
more accurate diagnosis or optimizing treatment planning. 
Therefore, beyond prediction of probability for a specific mo-
lecular phenotype, the most promising and exciting application 
of these biomarkers is the establishment of a reliable and re-
producible association with treatment response and outcomes. 
These associations may then enable better prediction of tumor 
response to different treatment, enabling earlier institution of 

the optimal therapy, with significant potential positive impact 
on patient care. Beyond prediction alone, quantitative and 
ML-based approaches also have the potential to optimize ra-
diation therapy plans, potentially reducing toxicity to healthy 
tissues (89). Image-derived parameters may also be used to es-
timate tumor proliferation indexes such as Ki67, which poten-
tially could be used to guide stereotactic biopsy (90).

The preceding sections have provided examples of potential 
applications of radiomics and ML for brain tumor evaluation. 
In the future, radiomic features can potentially be incorporated 
into staging systems and used to provide predictions for key tu-
mor characteristics of interest in the radiology report (Fig 4).

Radiomics, Pathology, and Molecular Profiling
When discussing the potential for radiomic prediction of cer-
tain molecular features of tumors, it is worthwhile to step back 
and evaluate the broader potential implications and limitations 
of this approach. Even if proven to be reliable, in the absence 
of tumor-specific contrast agents, radiomic predictions will be 
based on associations of tumor macroscopic or microscopic 
image features with the molecular features and not direct con-

Table 3: Broad Summary of Investigated Radiomic Applications for Brain Tumor Evaluation

Prediction Phenotype Specific Characteristics Predicted References

Tumor histologic 
classification or dif-
ferentiation of dif-
ferent tumor types 
(eg, glioma grades, 
GBM vs brain mets, 
met subtypes, etc)

• Differentiating glioma grade (I–IV, low vs high grade), Ki-67 labeling index
• Classification/differentiation of GBM and brain metastasis or metastasis subtypes
• Classification/differentiation of GBM, metastases, meningioma, PCNSL
• GBM vs PCNSL
• Prediction of type of brain mets (breast, SCLC, NSCLC, GI, and melanoma)
• Pilocytic astrocytoma vs GBM
• Meningioma subtype prediction (meningiothelial, fibrous, transitional)
• Prediction of nonfunctioning pituitary adenoma subtypes (null cell adenomas from other 

nonfunctioning pituitary adenomas)

33, 39, 40, 41, 42, 
43, 44, 45, 47, 
48, 49, 51, 53, 
54, 55, 56, 57, 
58, 64

Tumor response or 
distinction of tumor 
recurrence from 
treatment response

• GBM: differentiate pseudoprogression from true progression
• Primary or metastasis: differentiate radiation necrosis from recurrent brain tumor
• Metastasis: response to stereotactic radiosurgery
• Brain metastasis after SRS: true progression vs radionecrosis

36, 72, 73, 74, 75

Molecular end point 
prediction

• GBM IDH1 mutation status
• GBM 1p/19q status
• GBM TERT promoter mutation
• GBM MGMT promoter methylation status
• GBM Global DNA methylation subgroups and hallmark copy number variations
• GBM molecular subtype (classic, mesenchymal, proneural, and neural)
• Glioma p53 status
• Craniopharyngioma: BRAF and CTNNB1 mutations

34, 46, 57, 60, 61, 
62, 63, 64, 65, 
66, 67, 68, 69, 
70, 71, 94

Prediction of survival 
(gliomas)

• Progression-free and/or overall survival 18, 32, 33, 37, 38, 
77, 78, 79, 80, 
81, 82, 83, 84, 
85, 86, 87, 110

Other • Pituitary adenomas: prediction of cavernous sinus invasion
• Gliomas and metastases: differentiate vasogenic edema from nonenhancing tumor

59, 88

Note.—Please see Table E1 (supplement) for a more detailed list and description of specific studies. Some studies evaluate more than one 
category and therefore may be counted more than once in the table. CTNNB1 = catenin b-1, GBM = glioblastoma, GI = gastrointesti-
nal, IDH1 = isocitrate dehydrogenase 1, mets = metastases, MGMT promoter = O(6)-methylguanine-DNA methyltransferase promoter, 
NSCLC = non–small cell lung cancer, PCNSL = primary central nervous system lymphoma, SCLC = small cell lung cancer, SRS = stereo-
tactic radiosurgery, TERT = telomerase reverse transcriptase.
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firmatory tests of the presence of a given mutation. Therefore, 
one should not take away from this review that radiomics will 
replace pathologic assessment and molecular profiling. How-
ever, radiomics has the potential to expand the frontiers of im-
age-based noninvasive biomarkers further into the molecular 
realm. After all, even basic semantic image features have shown 
that imaging characteristics have an association with certain tu-
mor phenotypes. It is also worth noting that just like imaging, 
AI will expand the frontiers of pathologic assessment, includ-
ing in the semiautomated or automated analysis of pathologic 
slides and the use of ML approaches for incorporation of vast 
amounts of molecular data.

Notwithstanding the inherent indirect or statistical basis of 
radiomic approaches, there is true potential for radiomics and 
AI technology. This is because many treatment algorithms are 
far from perfect, some to the point of trial and error approach, 
especially for more advanced disease or disease that is unrespon-
sive to standard, first-line therapy. As such, a good noninvasive 
predictive algorithm, even if not perfect, has significant potential 
for a clinical benefit in optimizing patient therapy. Furthermore, 
although radiomic markers cannot be expected to match mo-
lecular profiling in terms of accuracy or depth of detailed infor-
mation provided, they do have the advantage of enabling whole- 
tumor analysis, in contradistinction to the sampling biases that 
are inherent in biopsy specimens due to tumor heterogeneity. By 
performing whole-tumor analysis, ML approaches can extract 
information from different tumor parts and surrounding re-
gions, which may in turn be used to predict outcomes of interest 
or guide biopsy (50,90–92). Certain molecular analyses may also 
not be practical or cost-effective for routine clinical implementa-
tion, and radiomic-based approaches have the potential to fill 
that gap. Importantly, radiomics is based on studies already ob-
tained as part of routine patient care, representing an additional 
added value without added inconvenience to the patient or new 

cost beyond that of the analytic platform. Although radiomics 
will not replace pathology or sophisticated molecular profiling, 
there is potential to reduce biopsies in select circumstances.

Radiomics and Advanced Imaging Techniques
Although many applications of radiomics so far are applied to 
conventional anatomic images, radiomics and ML can also be 
applied to advanced imaging techniques including, but not 
limited to, diffusion-weighted and tensor imaging, perfusion 
imaging, perfusion and permeability imaging, MR spectros-
copy, and functional MRI (52,73,93–98) (Table 3, Table E1 
[supplement]). The fusion of radiomics and advanced imaging 
techniques has the potential to enhance the use of informa-
tion extracted from advanced imaging techniques in the same 
way that radiomics and ML can be used to extract additional 
information with predictive value from standard anatomic im-
ages. Indeed, overcoming the practical barriers in the radiomic 
workflow could by extension result in more workflow-friendly 
implementation and enhanced use of advanced imaging 
techniques.

Scientific and Practical Barriers to Radiomic 
Applications
Thus far, a discussion of the many exciting potential applica-
tions of radiomics and AI has been provided. Notwithstand-
ing the potential for this technology, it should be evident that 
significant barriers must be overcome before these applications 
can be implemented on a routine basis in clinical practice. Cur-
rently, image segmentation is often the rate-limiting step in the 
implementation of radiomic approaches and clinical deploy-
ment, at least in the foreseeable future until whole-image or 
scan analysis becomes possible on a routine basis using DL. In-
deed, from a feasibility perspective, one may argue that segmen-
tation would be the most achievable (Table 4). Deployment of 

Figure 4: Potential example of a future radiology report incorporating radiomic features and machine learning for predictive modeling. One could 
even envision a preliminary draft of the report being generated automatically based on automated image analysis combined with natural language 
processing, which can then be modified by the expert radiologist as required. IDH1 = isocitrate dehydrogenase 1, MGMT = O(6)-methylguanine-
DNA methyltransferase.
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a reliable and automated tumor-segmentation algorithm could 
also provide actual tumor volumes—an additional intermedi-
ary benefit—when assessing treatment response in both clini-
cal and research contexts, which would provide supplemental 
information for assessing current disease response categories.

Some of the other barriers have already been alluded to and 
pertain to reproducibility and standardization of the radiomic 
process with appropriate quality controls ranging from image 
processing prior to feature extraction to the mechanics and ap-
proaches of the actual feature extraction and prediction algo-
rithm construction (Fig 3, Table 2). The technical variations in 
radiomic studies were highlighted in a recent systematic review 
(99) and must be overcome if these approaches are to be reliably 
deployed and used in the clinical setting. To this end, various 
important initiatives are being undertaken, such as the “image 
biomarker standardization initiative” (16). One approach for 
improving reproducibility of radiomic studies for which there 
is emerging evidence is the use of DL or CNNs as an image 
standardization or normalization approach that may then im-
prove the reproducibility of handcrafted radiomic approaches 
(100,101).

Another fundamental requirement for developing reliable 
and generalizable DL algorithms is the use of large data sets that 
are varied and representative of the different techniques and 
variations that may be encountered at the time of independent 
testing or deployment of the algorithm. A survey of studies per-
formed thus far for brain tumor characterization shows that the 
patient numbers used in these studies are invariably small (Table 
E1 [supplement]). A majority of the studies evaluated fewer than 
200 patients, with only a few studies evaluating between 200 
and 500 or 500 and 1000 patients. Furthermore, the majority 

of studies are based out of a single institution. There is a need 
for large-scale, multi-institutional studies to advance the field. 
In this sense, multi-institutional collaborations and data shar-
ing will be key in the development of reliable and generalizable 
algorithms. Thus, there is a need for platforms that enable seam-
less, secure data sharing, annotation, and algorithm develop-
ment. These platforms are currently being developed by different 
vendors. Such collaborative platforms will accelerate algorithm 
development and translation from a protype to a potentially de-
ployable clinical tool. Ideally, such platforms will be auditable, 
which could facilitate future regulatory approval.

Although scientific considerations are obviously paramount, 
one should not ignore the more practical barriers related to 
workflow as well as regulatory requirements. Without addressing 
these barriers, radiomics and AI are unlikely to ever realize their 
true potential. There is an ever-increasing demand on imaging 
services, and these demands are a challenge for the radiologists 
who have to interpret the studies as well as the health care system 
in terms of cost and sustainability. Making the radiomic process 
workflow friendly and seamless is essential if this technology is 
to be used routinely in clinical practice. In the bigger picture, 
some of the challenges of AI implementation may be much more 
basic and related to the robustness of basic information technol-
ogy infrastructure within an organization or health system and 
the accessibility and connectivity of different components that 
unfortunately may frequently be in silos. These barriers must be 
broken down to enable seamless and optimal use of the informa-
tion in a patient’s medical chart and images for high-quality per-
sonalized care. For clinical implementation, the radiomic process 
needs to be automated and seamless. For example, image seg-
mentation could be initiated by clicking on a region of interest, 

Table 4: Next Step in Radiomic Tumor Evaluation: Potential Pilot Deployments

Example Advantages Important Considerations

Automatic or semiautomatic 
segmentation and volumetric 
analysis

• Important rate-limiting step and a principal 
barrier for large-scale radiomic investigations 
for the foreseeable future*

• Potentially the most straightforward achievable 
first step

• Volumetric analysis an intermediary benefit 
and parameter that can be provided in the 
radiologic report for tumor evaluation

• Bridge to radiomics

• Early iterations could be directed by the radiolo-
gist (bounding box, point to the lesion, interactive 
workstation) with automatic segmentation

• Semisupervised: radiologist can modify contours
• Later iterations could include automatic lesion 

detection (progressing to whole-image analysis)

Glioma grading • Sufficient number of studies suggest the 
potential value of radiomics for distinction of 
low- from high-grade gliomas

• From a standpoint of pilot deployment and 
testing in the clinical setting, this is one at-
tractive first option

• More challenging than volumetrics but important 
actual application of radiomics

• If the algorithm would significantly change manage-
ment, any pilot deployment may have to be done 
“passively,” that is, without affecting treatment 
planning beyond current standard imaging until 
appropriate prospective testing and validation has 
been performed

Distinguishing pseudoprogres-
sion from tumor progression 
and recurrence

• Currently a challenge and important for 
patient treatment

• Successful implementation may clearly demon-
strate value of radiomics in the clinical setting

* In the long term, it may become possible to perform whole-image analysis for tumor evaluation.
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and then an algorithm would work in the “background” with as 
little radiologist intervention as possible. There is sufficient evi-
dence for pilot deployments of some of these approaches in the 
clinical setting, establishing their feasibility and, more directly, 
evaluating their potential value to patient care (Table 4).

It is also important to demonstrate that the radiomic applica-
tions have added value, both in terms of quality and timeliness 
of patient care as well as in cost savings. For example, potential 
benefits of using radiomic applications could include enabling 
earlier institution of the optimal treatment regimen, avoiding 
harmful and potentially toxic costly therapies that have a low 
likelihood of success, and potentially reducing certain nonin-
vasive procedures and biopsies. These benefits will increase the 
likelihood that payors and decision makers will facilitate the im-
plementation and adoption of this technology. Last, implemen-
tation of radiomics and AI into clinical practice presents unique 
challenges, especially for the AI component. The current ap-
proach for regulatory approval of computer-aided diagnosis and 
detection may not be suitable for AI algorithms that are designed 
to “learn” and change for optimal utility. There is a need for de-
velopment of regulatory processes that are tailored for AI appli-
cation, which may be achieved by implementation of validated 
regulatory pathways and precertification of companies proven to 
be able to develop and monitor algorithm performance reliably, 
with periodic updates for optimizing performance. All of these 
represent important challenges that need to be overcome in the 
coming years for this technology to realize its full potential.

Conclusion
In this article, radiomic analysis and the use of ML for pre-
diction algorithm construction was reviewed. An increasingly 
large body of literature suggests that radiomic features are use-
ful for characterization of brain tumors, including prediction 
of tumor histologic characteristics, certain molecular character-
istics, and patient survival. There remain significant challenges 
and barriers to routine implementation of radiomic analysis 
in clinical practice. However, these challenges are not insur-
mountable, and radiomics, powered by AI, represents a new 
horizon in medical imaging and noninvasive diagnostic evalu-
ation of brain tumors. Implementation of these technologies 
represents an opportunity to further advance the essential role 
of medical imaging in the care of patients with brain tumors 
by enabling more precise, personalized tumor characterization, 
which in turn will direct optimal and personalized therapy.
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