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Glioblastoma is the most common primary malignant neoplasm of the central nervous system in adults.
Standard of care is resection followed by chemo-radiation therapy. Despite this aggressive approach,
>80% of glioblastomas recur in proximity to the resection cavity. Brachytherapy is an attractive strat-
egy for improving local control. GammaTile R© is a newly US FDA-cleared device which incorporates 131Cs
radiation emitting seeds in a resorbable collagen-based carrier tile for surgically targeted radiation ther-
apy to achieve highly conformal radiation at the time of surgery. Embedding encapsulated 131Cs radiation
emitter seeds in collagen-based tiles significantly lowers the technical barriers associated with traditional
brachytherapy. In this review, we highlight the potential of surgically targeted radiation therapy and the
currently available data for this novel approach.
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Across adult and pediatric populations, malignant neoplasms are associated with substantial morbidity and mor-
tality [1]. Although progress has been made in the treatment of select cancers, glioblastoma remains an excep-
tion [2]. Glioblastoma is the most common malignant primary brain tumor in adults, with an incidence rate of
3.2/100,000 [3]. The mainstay of therapy is a multimodal strategy of neurosurgical resection followed by adminis-
tration of concurrent chemoradiation therapy 4–8 weeks after initial surgery [2,4,5]. More recently, tumor treating
fields has emerged as a US FDA-approved treatment option in combination with chemoradiation for newly diag-
nosed glioblastomas or in the recurrent setting. The expected overall survival has remained 14–21 months over the
past several decades [5,6].

Notably, most glioblastoma progression or recurrence occurs locally, in regions immediately adjacent to the
resection cavity [7–9]. While glioblastomas often appear as a discrete entity on MRI, surgical and autopsy studies
reveal microscopic tumor cells extending at least 2 cm away from the visible tumor [7,9,10]. The density of these
microscopic cells is greatest near the resection cavity and 50–70% of glioblastoma patients suffer tumor growth
adjacent to the resection cavity during the 4–8-week recovery period [11–13], which prognosticates poor survival [14].
Not unexpectedly, the majority of available studies suggest a delay in initiation of radiation therapy beyond this
recovery period is associated with poorer survival outcomes [14,15]. In patients who initiate concurrent chemo-
and radiation- therapy within the 4–8-week recovery period, >80% of recurrences occur adjacent to the resection
cavity [16,17]. These results suggest that therapeutic platforms that augment local control have the potential to
improve clinical outcomes. Recognizing the importance of local control in glioblastoma treatment, NRG-BN001
is a multi-institutional clinical trial that aims to determine whether radiation dose escalation targeting regions
surrounding the resection cavity improves survival when combined with temozolomide treatment.

Brachytherapy emerged as an attractive option in this context. Brachytherapy refers to the implantation of
interstitial or intracavitary radioactive sources adjacent to the target tissue [18,19]. The notion of brachytherapy was
proposed only a few years after the initial discovery of natural radioactivity over 100 years ago [20] and predates
other therapeutic radiation techniques. Brachytherapy continues to be a major therapeutic platform for prostate,
breast, gynecologic, ocular and other non-CNS neoplasms [21–23]. A key lesson learned during this century of
brachytherapy development is an appreciation for the critical importance of the physical properties of the radiation
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source. Consequently, radioactivity emitting sources utilized in the past have mainly been replaced by safer and
more efficacious isotopes, in other words, capable of delivering a more targeted dose and exhibiting shorter
half-lives [24–26].

Pertaining to brachytherapy for CNS tumors, the first application of brachytherapy dates back to 1936, when
radon was used as treatment for an intrasellar tumor [27]. Later, other sources such as iridium-192 (192Ir), gold-198
(198Au) and iodine-125 (125I) were tested, with 125I becoming the most commonly utilized isotope in recent
years [28,29]. However, the aggregate of available studies suggests that 125I is associated with increased risk for
radiation necrosis, which has been hypothesized to be related to a combination of the long half-life time of 125I and
cavity dynamics [9,30–34].

In recent years, cesium-131 (131Cs) has emerged as a promising isotope for brachytherapy for CNS tumors.
While 131Cs shares many characteristics with 125I, the half-life of 131Cs is significantly shorter than that of 125I (9.7
vs 59.4 days, respectively). This shortened half-life translates into improved ease of use [34], improved efficacy [35],
as well as a superior safety profile [24,36].

There is long-standing interest in brachytherapy as a means of improving local control for patients afflicted with
glioblastoma [37]. Despite promising institutional experiences [38], interest in brachytherapy waned after failure of
two randomized controlled trials to demonstrate improved survival after 125I brachytherapy [39,40]. While these
studies failed to meet primary survival end points, there were nevertheless signals of efficacy. For instance, in the
Laperriere study [39], a “tail” of longer-term survivors was noted in the 125I brachytherapy treated arm, a finding
reminiscent of the landmark temozolomide trial and recent immunotherapy trials [6,41]; this tail was not observed
in the comparative arm. Moreover, improved survival was noted in the Brain Tumor Cooperative Group, with an
approximate 1-month survival difference that did not reach statistical significance (p = 0.101) [40]. It should be
noted that FDA clearances of carmustine wafers and temozolomide were based on survival differences of similar
magnitude [42]. Moreover, in a separate study, Laperriere et al. examined clinical specimens obtained after 125I
brachytherapy and showed decreased cellularity and increased necrosis in these samples relative to samples from the
comparative arm [43], suggesting brachytherapy contributed to improved local control.

In addition to these observations, there have been two developments that fueled a resurgence of interest in
brachytherapy. First, the efficacy of concurrent temozolomide therapy raises the possibility that the addition of
brachytherapy would further amplify efficacy, a possibility supported by two recently published case series [13,44].
Second, the advent of GammaTile R© (GT), a device with 131Cs radiation emitting seeds embedded in a resorbable
collagen-based carrier tile has significantly lowered the technical barrier to radiation planning and surgical applica-
tion.

Emerging data continues to demonstrate a favorable efficacy and safety profile of GT, described generically as
surgically targeted radiation therapy (STaRT), against a spectrum of CNS tumors, including recurrent menin-
giomas [45], high grade gliomas [13] and brain metastases (Table 1) [18,46–48]. Here, we review the technical specifica-
tions of STaRT, describe our preliminary clinical experiences and discuss opportunities and limitations pertaining
to clinical translation of STaRT as a glioblastoma therapy.

GammaTile R©

GT is an FDA-cleared brachytherapy platform where titanium encapsulated 131Cs seeds (Model CS-1, Rev. 2,
IsoRay Medical Inc., WA, USA) are embedded in a resorbable collagen-based matrix (Saturable DuraGen Matrix,
Integra Lifesciences, NJ, USA) tile (described as STaRT), providing a more modular system than previously available
(Figure 1). GT is approved as treatment for both newly diagnosed malignant brain tumors and recurrent brain
tumors irrespective of histology. A single tile measures 2 cm × 2 cm and contains four radioactive 131Cs seeds with a
half-life time of 9.7 days and mean photon energy of 30.4 KeV [50,51]. The modular nature, the pliability and tissue
adherent collagen matrix maximizes likelihood of conformal radiation delivery, facilitates dosimetric planning and
expedites surgical implantation. The tissue offset of 3 mm provided by the tile dimensions reduces the likelihood
of focal necrosis around the sources. The source delivers a low dose rate, which, when combined with the short
half-life, affords a favorable safety profile. GT delivers 120–150 Gy at the cavity surface and maintains 60–80 Gy
at 5 mm depth, exceeding the standard dose of external beam radiation therapy (EBRT) by 1.5-twofold [45,46].
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Figure 1. Shown is a 20 mm × 20 mm × 4 mm GammaTile R©

with 131Cs seeds (encircled in blue).
GT: GammaTile R©.
Image courtesy of GT Medical Technologies
(www.gtmedtech.com).

Advantages of GT
The novelty of GT is in its design, which has the following advantages.

• Embedding 131Cs (half-life of 9.7 days) within a bioresorbable collagen matrix tile (described as carrier tile
brachytherapy or STaRT) eliminates the need for subsequent surgical removal, which contributes to improved
quality of life for the patients [49]. The use of a resorbable matrix ensures minimal intracranial residue after
implant.

• 131Cs, which is considered low-dose rate brachytherapy, has a better adverse effect profile than other commonly
used isotopes, such as iodine-125 (125I) [52].

• The carrier material functions as a spacer and implanted compensator and avoids direct contact of the 131Cs seeds
with the brain parenchyma while the seeds are active, potentially preventing harmful interactions and reducing
the risk of necrosis. The 3 mm of tissue offset provides a clinically useful dose attenuation as a direct result of
the inverse square law [53].

• From a neurosurgical perspective, implant of STaRT is akin to the use of other resorbable collagen matrices
routinely implanted during surgery [54]. As such, GT implant does not require modification of routine surgical
maneuvers or lengthen surgical duration.

• The design and the characteristic adherence of the collagen matrix which makes up the carrier tile, minimizes
seed migration after implantation to maintain inter-source spacing after closure. As such, the design affords more
uniform coverage of the target area [55].

• The collagen carrier tile remains intact for the duration of approximately 6 weeks or more (equal to or greater
than 4 half-lives of 131Cs) and holds the resection cavity in a fixed configuration. Resection cavity contraction
could lead to overlapping of traditionally used individual or Tyvek suture enclosed radioactive seeds. Such overlap
increases the risk for brachytherapy morbidity, including radiation necrosis. The reduced risk for resection cavity
contraction minimizes the risk for such consequent dose inhomogeneity [34].

• STaRT circumvents any delay between surgical resection and radiation therapy. Typically, a delay of 4–8 weeks
between neurosurgical resection and the initiation of EBRT is anticipated in order to allow for surgical wound
healing. There are select centers that initiate therapy prior to 4 weeks postoperatively. However, some delay in

10.2217/fon-2020-0558 Future Oncol. (Epub ahead of print) future science group
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chemoradiation after surgery is universal. Implantation of STaRT bypasses this delay to initiate adjuvant RT at
the time of surgery.

• EBRT requires patient immobilization through face mask application. Some patients experience claustrophobia
in this context; the use of STaRT eliminates this risk while ensuring 100% patient compliance with their radiation
treatments.

• STaRT decreases the burden on the patient and to the healthcare system. Daily visits to the hospital are required
for EBRT, which compromises the quality of life for the patient and increases the burden on the healthcare
system. STaRT eliminates the need for daily visits. In the face of a pandemic, such as the one currently challenging
healthcare delivery, access to cancer surgery is still vital [56]; GT placement eliminates the need for up to 30
or more visits to healthcare facilities for radiation therapy (RT), reducing this exposure risk to a vulnerable
population.

• Cost-effective modeling suggests that GT may be more cost effective than EBRT for the healthcare system [57].
• There is no requirement for expensive equipment or lengthy training. Precise targeting is accomplished through

visualization of the surgical bed and placing the tiles typically takes a few minutes, so there is no steep learning
curve.

• In EBRT, the radiation beam must travel through healthy tissue, which carries the potential to harm non-
tumorous tissue. STaRT is localized to limit radiation delivery to the tumor affected parenchyma [53]. This
localized delivery reduces possible side effects and neurocognitive decline associated with EBRT [18]. Also,
STaRT minimizes the likelihood of treatment related hair loss, which occurs after EBRT.

Clinical experience
Candidates for STaRT meet with both the treating radiation oncologist and neurosurgeon. Radiation safety
precautions are reviewed by the medical physicist with the patient prior to the surgery. The number of tiles to be
implanted is determined based on the anticipated postoperative surface contours of the tumor bed. The number
of tiles is then custom-ordered and is available within a week of request. The tiles are received by the radiation
oncology department and handled in accordance to institutional policy. On the day of surgery, the tiles are brought
to the operating room by the medical physicist, who performs radiation safety checks throughout the implantation
process. In our institution, maximum safe resection of tumor is verified through an intra-operative MRI before
STaRT. It should be noted that intra-operative MRI is not required for STaRT. After maximal resection, the
collaborating radiation oncologist scrubs in to sterilely unpack and prepare the STaRT implant, which is then
handed to the surgeon. Tiles are placed into the resection cavity under microscope or loupe magnification. Most
implantations take two minutes. Even in large resection cavities requiring a dozen or more tiles the implantation
has been completed within five minutes. A thin cut head computerized tomography (CT) and MRI are performed
in the postoperative setting to provide the basis for dosimetric calculations (Figure 2). At the completion of the
cranial repair, no special precaution is required of nursing staff during the patient’s hospitalization since native
cranium is able to block the emission of STaRT implant to exposure levels compatible with outpatient discharge
(typically considered to be less than 6mRm/h at 1 m [58]). These limited levels of exposure compare favorably to
the NCRP dose limit recommendations assuring safe levels of exposure to caregivers and medical personnel. In our
practice, STaRT has been well tolerated and patients are discharged home on postoperative day 1 or 2.

Our most common use of STaRT has been in the recurrent glioblastoma setting. Many of these patients had
several previous craniotomies and underwent multiple rounds of therapies, including radiation and bevacizumab.
A significant portion of our patients was treated with high-dose corticosteroid immediately prior to the resection.
Despite the anticipated heightened risk for wound related complications in this population, surgical resections
with STaRT implantations have been associated with an excellent safety profile. A dedicated report to describe our
experience will be presented elsewhere.

Limitations in clinical translation as a glioblastoma therapeutic
While the rapid dose falloff of 131Cs-based STaRT increases the safety profile in terms of wound healing and
radiation induced neurological morbidities, there are limitations in terms of treatment for the microscopic tumor
cells that extend beyond 2 cm of the resection cavity where STaRT is implanted. Ultimately, while STaRT affords
an increased likelihood of local control, meaningful improvements in clinical outcomes requires synergy with other
forms of adjuvant therapy [59,60].

future science group 10.2217/fon-2020-0558
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Figure 2. Head CT scan showing radiation dosage plan (top), computed tomography (bottom, left) and MRI
(bottom, right) showing GammaTiles R© placed after tumor resection. Arrows indicate the encapsulated 131Cs seeds
(left) and GT (right).
GT: GammaTile R©.

To maximize the probability of efficacy, gross total resection (or near gross total resection) will be required, given
tumor cells more than 5–8 mm distant to the resection cavity where STaRT is implanted are unlikely to benefit
from this therapy. The availability of intra-operative MRI and 5-aminolevulinic acid may facilitate maximal surgical
resection and facilitate STaRT efficacy in this context. Initiation or resumption of postoperative adjuvant systemic
treatment can be undertaken as soon as medically cleared.

The available literature suggests that a subset of glioblastoma patients suffered from microscopic tumor infiltration
into the brainstem. These patients exhibit poor survival [61] and are unlikely to meaningfully benefit from treatments
aimed to boost local control.

When applied in the newly diagnosed setting, the safety of combining STaRT with the standard-of-care
temozolomide/EBRT remains an unresolved matter (Tables 2 & 3) [62,63]. Thoughtful safety studies involving
dose titration of STaRT are warranted in this regard. One possible approach would be to deliver the typical EBRT

10.2217/fon-2020-0558 Future Oncol. (Epub ahead of print) future science group
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Table 2. GammaTile R© clinical trials.
ClinicalTrial.gov GT Clinical Trial Status

NCT03088579 Intraoperative brachytherapy for central nervous system lesions: a validation study of a radioactive
seed loading device

Unknown

NCT04365374 SRS compared with collagen tile brachytherapy Ongoing

GT: GammaTile R©; SRS: Stereotactic radiosurgery.

Table 3. Studies combining brachytherapy with other standard of care treatment.
Study Year # patients Tumor Treatment Median OS PFS Complications (total %) Ref.

Chen et al. 2007 18 Newly
diagnosed
GBM†

Resection, 125I BT and
postoperative RT

28.5 months 14.25 months Study terminated early
due to high toxicity,
radionecrosis, intracranial
hemorrhage, infection,
deep vein
thrombosis (61%)

[62]

Waters et al. 2013 11 Newly
diagnosed GBM

Resection, GliaSite (125I) or
MammoSite (192Ir),
postoperative radiation
therapy and
temozolomide

15.6 months 10 months Seizure, reversible
hemiparesis (18%)

[13]

Archavlis
et al.

2014 17 Recurrent GBM Reresection with 5-ALA,
HDR BT (192Ir),
temozolomide

9 months 7 months Thrombocytopenia,
leukopenia, increased
LFTs, infection,
radionecrosis (35%)

[63]

†Formal pre-operative dose planning was not feasible.
BT: Brachytherapy; GBM: Glioblastoma; RT: Radiationtherapy; PFS: Progression-free survival, 5-ALA: 5-aminolevulinic acid; HDR: High-dose rate; LFT: Liver function test; 192Ir: Iridum-
192; OS: Overall survival.

‘boost’ treatment via STaRT immediately at the time of resection such that 90% of the boost dose would be
delivered to the area at greatest risk of harboring residual disease, prior to initiation of wider field EBRT treatments.
This approach offers the advantages of immediate treatment, a more condensed treatment time frame and fewer
clinical visits. Moreover, it allows potential for dose escalation in the treatment of radio-resistant glioblastomas.

Future perspective
In many non-CNS tumors, brachytherapy has improved disease control and improved clinical outcomes. Thought-
ful application of brachytherapy to CNS tumors is likely to produce similar results. The new GT platform which
utilizes modular collagen-based carrier tiles to maintain spacing and provide a tissue offset of 131Cs brachytherapy
seeds, holds great potential in this regard. The modulatory properties lower technical barriers for clinical application
and allow for more accurate coverage. The 131Cs source and the offset affords a favorable safety profile and rapid
dose tapering, minimizing risk for adverse events such as radiation necrosis and wound compromise. At the same
time, cancers with tumor cells beyond the range of STaRT delivery will require integration of supplementary
therapy. Safety of STaRT in the context of standard EBRT warrants consideration as an upfront treatment.
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Executive summary

Background
• Most glioblastoma progression or recurrence occurs locally, in regions immediately adjacent to the resection

cavity.
• CNS brachytherapy holds promise for minimizing the risk of local recurrence.
• 131Cs is superior to 125I in biological efficacy and side effect profile.
GammaTile R©

• GammaTile R© consists of 131Cs seeds embedded in a resorbable collagen-based matrix tile. This device is US FDA
approved for newly diagnosed malignant brain tumors and recurrent brain tumors. It is described generically as
surgically targeted radiation therapy (STaRT).

• STaRT improves radiation dose delivery and safety due to its modular design.
Clinical experience
• STaRT leverages current surgical techniques and surgeon familiarity with the use of resorbable collagen matrix.
Limitations
• Tumor cells more than 5–8 mm distant to the resection cavity where STaRT is implanted are unlikely to benefit

from this therapy.
Future perspective
• Meaningful future advances in therapeutic efficacy against glioblastoma will require the understanding of STaRT

safety in combination with EBRT and other forms of adjuvant therapy.
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