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Recent developments in glioma categorization based on biological genotypes and application of computational machine learning or deep
learning based predictive models using multi-modal MRI biomarkers to assess these genotypes provides potential assurance for optimal
and personalized treatment plans and efficacy. Artificial intelligence based quantified assessment of glioma using MRI derived hand-
crafted or auto-extracted features have become crucial as genomic alterations can be associated with MRI based phenotypes. This sur-
vey integrates all the recent work carried out in state-of-the-art radiomics, and Artificial Intelligence based learning solutions related to
molecular diagnosis, prognosis, and treatment monitoring with the aim to create a structured resource on radiogenomic analysis of gli-
oma. Challenges such as inter-scanner variability, requirement of benchmark datasets, prospective validations for clinical applicability are
discussed with further scope for designing optimal solutions for glioma stratification with immediate recommendations for further diag-
nostic decisions and personalized treatment plans for glioma patients.
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INTRODUCTION
G liomas are one of the most life threatening and com-
monly occurring brain neoplasms with an average age
adjusted annual incidence of 6 to 10 per 100,000 pop-

ulation depending upon the geographical region (1�3).
These tumors originate from the glial cells and have an abil-
ity to rapidly infiltrate the surrounding healthy tissues mak-
ing it one of most disparaging malignant tumors. Early
diagnosis and timely management of these tumors is crucial
as glioma pathogenesis is highly complicated with rapid
infiltration of the surrounding parenchyma and despite
intensive multimodal management involving surgical resec-
tion, adjuvant radiotherapy, and chemotherapy with temo-
zolomide, outcomes are often poor (4).
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Glioma Classification

The classification of brain tumors is broadly based on the his-
tological resemblance of tumor cells with their possible cells
of origin. These histological similarities are usually deter-
mined based on the microscopic features in hematoxylin and
eosin-stained sections, immunohistochemistry, and ultra-
structural features (5). Based on the histopathological charac-
teristics the tumors are classified into Grade I to Grade IV
lesions. Low grade gliomas (LGGs) include oligodendro-
glioma and astrocytoma while grade III gliomas are anaplastic
oligodendroglioma and astrocytoma. Grade IV also known as
glioblastoma and gliosarcoma are the most commonly occur-
ring and highly infiltrative tumors (6). Glioblastoma have a
very low survival period of approximately 15 months with
the strongest prognostic factors being age and extent of resec-
tion (7).

New emerging knowledge over the period of last twenty
years clearly demonstrates that specific genetic alterations are
significantly linked with tumorigenesis and characterize cer-
tain common and rare tumor entities (8). Growing body of
evidence suggests that molecular genotypes in addition to his-
topathology significantly impacts the survival of the patient
(9,10). Such categorization of gliomas is therefore critical as it
improves prognostication with potential to support patient-
specific treatment plans and tailored therapeutic interven-
tions. This compelling information was quickly incorporated
in the revised brain tumor classification in the year 2016 by
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Figure 1. The overall classification of glioma as per WHO 2016 edition. The above hierarchical structure shows the classification with histo-
logical subtypes of glioma at first layer, followed by associated genotypes with integrated diagnosis at next layers. Abbreviations: IDH, isoci-
trate dehydrogenase; WT, wild type; EGFR, epidermal growth factor receptor; PTEN, phosphatase and tensin homolog; TERT, telomerase
reverse transcriptase; TP53, tumor suppressor protein p53; ATRX, alpha thalassemia/mental retardation syndrome X-linked; NOS, not other-
wise specified.
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the World Health Organization (WHO) where for the first
time histological and genetic information (genotype and phe-
notype) was used together for classifying as well as character-
izing brain tumors (11).

Currently, one of the key known factors in predicting sur-
vival is the presence or absence of the isocitrate dehydroge-
nase (IDH) (IDH 1 and IDH 2) genotype (12�14). IDH 1
and 2 are metabolic enzymes converting isocitrate to a-keto-
glutarate (aKG) and confer neomorphic activity in the
mutant protein, resulting in the conversion of aKG to the
oncometabolite, D-2-hydroxyglutarate (15�17). The subse-
quent accumulation of D-2-hydroxyglutarate results in epi-
genetic dysregulation via inhibition of aKG-dependent
histone and DNA demethylases, and may block cellular dif-
ferentiation (18). The mutation can be identified even in the
early process of oncogenesis in low as well as high grade glio-
mas and is often associated with increased methylation in gli-
oma (19). Based on this mutation, glioma subtypes are now
being considered either as IDH positive (mutant) or IDH
negative (wildtype) (11,15,20). Another important genetic
alteration associated with low grade gliomas is the presence
or absence of 1p/19q codeletion, which refers to the loss of
short arm of chromosome 1(1p) and the long arm of chromo-
some 19 (19q). IDH mutant types of grade II and III can be
2

further sub-classified based on the presence or absence of 1p/
19q co-deletion (21�23). All 1p/19q co-deleted gliomas are
IDH1 mutated at arginine 132 or the analogous residue argi-
nine 172 in IDH2 and are classified as oligodendroglioma
(11). Other genetic alterations include mutations in telome-
rase reverse transcriptase (TERT) gene promoter (24,25),
methylation of the methyl-guanine methyl transferase
(MGMT) gene promoter (26), epidermal growth factor
receptor variant III (EGFRvIII) (27), alpha thalassemia/men-
tal retardation syndrome X-linked (ATRX) loss (28), tumor
suppressor protein p53 (TP53), and phosphatase and tensin
homolog mutations etc. (29). The overall classification as per
WHO 2016 edition is presented in Figure 1 with subtypes,
genotypes and grade.

Other than these techniques, glioma heterogeneity can also
be characterized using transcriptomic profiling identifying the
tumors as proneural, mesenchymal, classical, and neural (27).
Furthermore, epigenetic phenotypes may also provide critical
insights into the intertumoral classification and natural history
(30).

Currently, histopathology followed by immunohis-
tochemistry and Deoxyribo-Nucleic Acid (DNA) sequenc-
ing is required after biopsy or complete resection of the
tumor and is essential for correct subtyping of the tumor.
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In case this facility is not available, tumor is labeled as per
its histopathology followed by not otherwise specified
(8,11,31,32). These tests are considered as gold standard
and have shown to facilitate accurate diagnosis by correctly
identifying both histopathological subtype as well as the
mutation status.
One of the critical factors for poor response to therapy and

rapid recurrence is intra tumoral heterogeneity (33) where the
variation may occur structurally within a tumor with substantial
sub-clonality that may include a composite of molecularly dis-
tinct tumoral areas with no uniformity. Gaining deeper under-
standing of intra-patient tumoral heterogeneity is therefore
crucial. Previous studies using molecular biology, histo-pathology
techniques have tried to characterize intra-tumoral heterogeneity,
however, exhibit several limitations. These tests are highly
dependent on the tissue samples obtained and are therefore
restricted to a specific spatial location within the heterogeneous
tumor. In cases where part of tumor is left behind due to wide-
spread lesion or because of involvement of eloquent cortex as
well as in cases with multifocal lesions the lesion will be classified
based on the sampled tissue that may fail to provide a compre-
hensive marker as the left behind tumor may be pathologically
different. Furthermore, an invasive resection to sample for spatial
context may add to the risk of significant morbidity when lesion
is present in an eloquent location (34). Finally, the complexity of
coverage of the assay may impose challenges in multi-institu-
tional clinical comparisons (35).
Emerging work has started focusing on quantitative markers of

genotype information that can be captured from the first mag-
netic resonance imaging (MRI) scan as it would not only provide
a noninvasive preoperative prognosis of the grade/mutational sta-
tus but will also enable patient specific treatment plan early on
and support therapeutic intervention. Especially, quantitative
methods such as use of image textures and intensity features
which are broadly termed as ‘radiomics’ play a vital role in crea-
tion of prognostic markers for gliomas (36). Usually, these multi-
ple features are expected to facilitate complementary information
and consequently are used in a multivariate machine learning
framework to create a distinct probabilistic biomarker. Moreover,
recent advances in artificial intelligence (AI) such as deep learning
(DL) have become critical in computer aided diagnostic (CAD)
methods and have been applied to predict the genomic proper-
ties of tumors from radiological images (37). The utilization of
image features and data informatics to predict tumor genotypes
has been largely termed as ‘radiogenomics’, and is a forthcoming
area of interest with enormous amount of research carried out in
the recent few years (38,39).
MR Imaging in Gliomas

MRI is an advanced medical imaging technique and is generally
used as a primary care in tumor patients to identify the neoplasm.
The MR images facilitate a detailed image of soft tissues at a high
resolution and in multiple contrasts. In case of neuro-malignan-
cies clinics generally acquire either a 2D or 3D MRI scan
depending on the site, expenditure, time required for acquisition
and clinical/research interests (40). MRI sequences that are com-
monly acquired for tumor cases include T1-weighted MRI, T1-
weighted MRI with contrast enhancement (T1-CE), T2-
weighted MRI, and T2-weighted with Fluid Attenuated Inver-
sion Recovery (T2-FLAIR). Advanced MRI techniques includ-
ing diffusion weighted imaging (DWI) to compute apparent
diffusion coefficient maps (ADC), diffusion tensor imaging
(DTI) to measure mean, radial and axial diffusivity and/or frac-
tional anisotropy, functional resting state MRI using the blood
oxygen level dependent contrast, perfusion weighted imaging
(either dynamic susceptibility contrast (DSC) or dynamic contrast
enhanced (DCE)) to compute the cerebral blood flow (CBF)
and cerebral blood volume (CBV), amide proton transfer (APT)
imaging to reflect the cellular proliferation in tissues and magnetic
resonance spectroscopy (MRS) may also be acquired.

Diffusion MRI can be acquired using multiple shells for
example at b = 500, 1000, 2000 s/mm^2 as it enables comput-
ing multicompartment which extracts the extra-cellular free
water (FW) that may support in delineating vasogenic edema
from infiltration (41). Standard models such as bi-tensor
model (42) or neurite orientation and dispersion density
imaging (NODDI) (43) can be employed to extract the free
water. Perfusion scans of DSC and DCE require gadolinium-
based contrast agent, where DSC parameters are computed
from the first pass of the contrast agent (bolus tracking) while
for DCE exploits T1-shortening effects of gadolinium
(44�46). Arterial spin labeling is another technique that does
not require any contrast to compute the gain CBF, albeit pro-
vides low signal to noise ratio (47). The choice of perfusion
imaging depends on the clinician and the team’s interest,
however majority centers rely on DSC or DCE imaging.
APT, a recent modality is typically acquired only with
research interests as it has illustrated promising results in brain
tumors (48). It involves magnetization transfer (MT) imaging
where the signal loss in tissues with high protein content and
water- macromolecule interactions in captured (49). Figure 2
shows a sample MRI acquisition in clinical neuro-oncology.

Identification of the tumor genotypes from visual inspec-
tion is highly complicated and is practically unattainable in
standard radiology practice. However, these modalities,
together for a large patient population, can be used in a mul-
tivariate framework that usually involves the use of machine
learning algorithms, not only to learn the underlying patterns
of features from numerous subjects but also to provide a
meaningful probabilistic marker for the subtype, genotype or
grade. In addition, the learned model can be used to test new
cases effortlessly and can be applied in radiology workflow to
plan patient-specific treatment and management.
Radiomics

Radiomics is an emerging translational field where an array of
attributes that include geometry, intensity and histogram fea-
tures as well as image textures are computed from radio-
graphic images to capture the phenotypic patterns and may
illustrate a distinguishing marker for glioma subtypes. The
3



Figure 2. Sample MRI acquisition in neuro-oncology. Figure shows eight axial slices of two patients from the TCIA dataset. In the top row,
brain MRI images from a 28-year-old male with Oligoastrocytoma (Grade II, IDH Mutant), whereas in the bottom row, images from a 33-year-
old female with Glioblastoma (Grade-IV, IDH-Wildtype) are shown. From left to right: two slices are of each modality namely T1 contrast
enhanced (T1-CE), T2-weighted with Fluid Attenuated Inversion Recovery (T2-FLAIR), T2-weighted, T1-weighted are shown.
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features include shape features such as volume, sphericity,
mesh surface area etc., histogram features that may include
mean, median, energy, entropy, 10 percentile intensity, 90
percentile intensity etc., and texture features of Gray-Level
Co-occurrence Matrix, Gray-Level Dependence Matrix,
Gray-level Run Length Matrix, Gray Level Size Zone Matrix
and Neighboring Gray Tone Difference Matrix etc. A
detailed list of standard features can be found in (50). Usually,
radiomics is used in multi-variate predictive framework for
Figure 3. Typical flow of multimodal radiomic based predictive approach
tional steps to carry radiomic analysis of brain tumor. Any generic radiomic
steps like MRI preprocessing, feature selection may be performed in such w
conventional as well as advanced modalities including T1-weighted, T2-we
diffusion tensor imaging (DTI), dynamic susceptibility contrast (DSC), amide
as co-registration, skull stripping, noise removal, bias correction, intensity no
(ROI) can be segmentedmanually or using automatic or semi-automatic met
tumor size, location etc. as well as computational features including texture
tures may be selected and further used for classification into ‘n’ number of c
tor machine, random forest, K nearest neighbor, k-means, adaboost, decisio
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the purposes of prognosis, disease tracking and evaluation of
response to treatment (51). In neuro-oncology, radiomics is
gaining momentum for non-invasive prediction of the type
of neoplasm, tumor grading as well as genomic and transcrip-
tomic subtyping (52). Typically, analysis with MR based
radiomics in neuro-oncology includes the following steps: (1)
data acquisition, (2) brain extraction and data cleaning/
denoising, (3) intensity normalization (4) inter-modality reg-
istration (5) tumor segmentation (manual or semi-automated)
for glioma classification. It is a block diagram outlining the usual func-
process follows few or all above steps to predict tumor genotypes. The
orkflow execution. MRI data acquisition includes the scans taken from
ighted, T2-weighted with Fluid Attenuated Inversion Recovery (FLAIR),
proton transfer (APT), etc. Preprocessing involves different tasks such
rmalization, inhomogeneity correction, slicing, etc. The region of interest
hod. Further step focuses on extraction of various semantic features like
, shape, statistical, histogram, intensity etc. The most discriminant fea-
lasses using different machine learning classifiers including support vec-
n tree, artificial neural network, etc.
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(6) feature extraction (Radiomics), (7) feature selection, and
(8) multivariate classification, followed by cross-validation
and testing (53). The most discriminative features are usually
highlighted as these may facilitate clinical interpretability.
Figure 3 shows the typical flow for classification using radio-
mics on multi-modal MRI in neuro-oncology.
Deep Learning

Recent discoveries in Artificial Intelligence have illustrated
exceptional performance in complicated tasks by allowing
machines to better characterize and interpret the underlying
complex information. Non-deterministic deep learning mod-
els are loosely inspired by how the human brain works during
learning and/or execution of a task, and these facilitate more
automated and precise performance (54). Convolutional neu-
ral networks (CNNs), a type of deep learning architecture
where convolutions on the image capture the features that
are optimized to learn the task at hand, have proven to be
especially useful in medical image analysis (55). These have
the capability to automatically extract image attributes (fea-
tures) in hierarchical manner from local to global
Figure 4. Typical CNN architecture for glioma classification. (a) represen
model for glioma genotyping. A CNN model consists of ‘m’ convolutional
feature vector of size ‘c’ is obtained after global average pooling of the ou
The feature vector is fed to fully connected dense layer(s) and finally to
residual convolutional block used in ResNet architectures. The residual b
lowed by batch normalization and activation layers. The residual blocks le
of layers in CNN architectures.
representation of images effectively finding important fea-
tures as part of its search process and eliminating the steps
of manual feature engineering and selection that are
required in machine learning. Figure 4 shows the typical
CNN architecture and its workflow. Recent growing evi-
dence demonstrates superior performance of CNN for
genotype prediction such IDH mutation and has been dis-
cussed in the following pertinent sections.

This paper aims at comprehensively reviewing studies
that have proposed and utilized MRI based techniques for
prognostic molecular subtyping of gliomas using radiomics
and/or AI based methods. The paper also discusses the
current challenges in clinical translation and future scope
of such techniques.
METHODS

Our current review is focused on gliomas and particularly on
the molecular subtype delineation and grading based on
multi-modal MRI. Most of the studies have explored the
idea of association of imaging features with specific genotypes
either using basic intensity, volume-based attributes or by
ts ResNet50 � a frequently used convolutional neural network (CNN)
blocks (l1; l2 . . . ; lmÞ, typically followed by a global average pooling. A
tput of the final convolutional block (lm) with ‘c’ convolutional layers.
a SoftMax layer to obtain output class probabilities. (b) represents a
locks consist of two ‘1£ 1’ and one ‘3£ 3’ convolutional layers fol-
verage residual connections (skip connection) to stack large number
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employing more complex models of radiomics with multi-
variate learning and DL. We extensively searched the
PubMed database with combinations of keywords “glioma
molecular classification”, “IDH”, “MGMT”, “1p/19q”,
“EGFR”, “Glioblastoma” “radiogenomics”, “radiomics”,
“machine learning”, “support vector machine”, “random for-
est”, “convolutional neural nets”, “residual nets” and “deep
learning”, “glioma survival prediction”, “MRI”, “WHO
grading”, “low grade glioma”, “high grade glioma”, and
“classification” to gather the published work using multi-
modal MRI based features for predicting the grade and on
characterizing genetic profiles that include IDH, 1p/19q
codeletion, EGFR variant III (EGFRvIII), methylation status
of MGMT, other genetic profiles (TERT, TP53, phospha-
tase and tensin homolog etc.) and transcriptomic composi-
tions of Glioblastoma (classical, mesenchymal, proneural, and
neural), grading, and survival prediction. Table 1 and 2 sum-
marize the state of art research focusing on radiogenomics
where radiomics/machine learning (Table 1) or DL based
(Table 2) algorithms have been employed to predict the
molecular subtypes.

Radiomics and deep learning methods have been com-
monly used to assess the tumor grade as well as to predict sur-
vival in glioblastoma patients. Table 3 summarizes the
multivariate predictive studies performed to assess the tumor
grade and survival.
RESULTS AND DISCUSSION

IDH

IDH1 mutations are more frequent in younger patients with
grade II gliomas or secondary glioblastoma, and are generally
found to have more encouraging outcomes of higher survival
(16). Multiple studies have focused on the problem of delin-
eating IDH mutant gliomas from IDH wildtype from multi-
modal MR images and associating the radiophenotypic char-
acteristics to the mutation. Multiple studies on large and small
group of subjects (ranging from 25�750 subjects) using a
myriad of computational predictive models on multi-modal
MRI have demonstrated that IDH mutation can be identified
with very high accuracies ranging from 85% to 97% (56,57).

Earlier techniques relied on single (T2-weighted MRI or
FLAIR or DTI) or fewer (two to three) modalities and exem-
plified gross features such as tumor volume (58), location of
the neoplasm (59,60), enhancement on T1-CE, larger pro-
portion of non-enhancing tumor and extent of FLAIR
hyper-intensity (61) to potentially correlate with IDH muta-
tion and can be considered as gross visual features to identify
the mutation (62,63). Another key feature that has been stud-
ied extensively is the T2-FLAIR mismatch sign among non-
enhancing low-grade gliomas. The mismatch sign (as shown
in Figure 2) displays relatively hypo-intense signal on FLAIR
throughout the majority of the lesion compared to T2-
weighted with the exception of the peripheral rim of hyper-
intense signal and is indicative of IDH-mutant, 1p/19q non-
6

codeleted astrocytoma (64,65). Although the sign is highly
specific in identifying IDH-mutant, 1p/19q non-codeleted
astrocytoma, the mismatch intensities vary significantly with
the scanning protocol consequently facilitating lower inter-
rater agreement and inferior sensitivity (sensitivity = 10.9%,
specificity = 100%) (66). Moreover, the cause for mismatch
sign is unclear and biological elucidation is necessary (65).

In terms of other advanced modalities, perfusion weighted
imaging has demonstrated higher relative CBV (rCBV) in
IDH wildtype cases while diffusion MRI based studies have
illustrated lower ADC values in IDH mutant cases (67,68).
However, all the above discussed features are not sensitive to
the variability that has been observed between patients mak-
ing it complicated to assign a precise and robust biomarker.

Instead of relying on a single feature of interest, extraction
of multiple imaging features such as image textures, intensity
features etc., and pooling these into a multivariate framework
may provide more sensitivity and predictive power. To this
end, radiomics with predictive models have been employed
to identify IDH mutation. The majority of the studies to this
date have mainly focused on the online open-source TCIA
(The Cancer Imaging Archive) data (56,69�73) while
remaining studies have employed local datasets (74�80) (as
listed in Table 1). Studies on TCIA have demonstrated IDH
predictive accuracies ranging from 72-95% while on other
datasets the accuracies ranged from 73-90% based on multi-
modality features (T1, T1-CE, FLAIR, and T2). A consensus
from all these studies shows that the attributes computed
from T1-CE and FLAIR have been highly distinctive of
IDH mutation than the ones computed from T1 and T2
weighted MRI. In addition to these, work on diffusion imag-
ing has been promising where radiomics on fractional anisot-
ropy (FA) and diffusion kurtosis can be crucial in delineating
IDH genotype (81,82). Lower mean diffusion kurtosis meas-
ures with area under curve (AUC) of 0.88 and local binary
patterns (LBP) on FA (with AUC of 0.92) have been highly
discriminative of the IDH mutation (83). At the same time,
however, advanced diffusion models such as NODDI may
not play any significant role in the classification with a non-
significant p-value in the range of 0.3 to 0.9 (82). Nonethe-
less the utility of multi-compartment models using multi-
shell diffusion acquistion has not yet been extensively evalu-
ated.

The features of importance have been highly dependent
on the grade of the tumor under consideration. For example,
Javier et al. reported that ADC feature maps were more dis-
criminative in grade II gliomas where IDH wildtype were
highly associated with lower ADC values with poor clinical
outcomes (61), however a similar trend was not observed in
high grade gliomas (84). Similar findings were also illustrated
by Matteo-Figini et al. (82). Recent work has started focusing
on textural analysis on advanced modalities such as DSC
images and has illustrated that DSC features alone can predict
IDH mutation with an accuracy of 71% (85).

Other than radiomics, deep neural nets have been widely used
to delineate gliomas with IDH mutation. Specifically, CNNs



TABLE 1. Summary on Experimentation and Results of Research Work Using Radiomic Methods. It Summarizes the State-of-art Research Focusing on Radiogenomics Where
Multimodal Radiomic Analysis Using Machine Learning Based Algorithms Have Been Employed to Predict the Molecular Subtypes of Glioma. It Provides the Summary Details for
Histological Subtypes Used, Genotypes, Number of Classes Used, Number of Patients, MRI Modalities Used, Dataset Used, Number of Features Extracted, List of Features,
Machine Learning Method (ML), Evaluation Method, and Performance Measures. Multivariate Analysis is Assessed Using Train-Test Split Method, 5-Fold or 10-Fold Cross Valida-
tion Method. Evaluation is Performed on Freely Online Available and/or Local Datasets. Performance Measures Used are Accuracy, Area Under Curve (AUC) Value, p-Value, Sen-
sitivity, Positive Predictive Value (PPV), Negative Predictive Value (NPV), and Sensitivity

Reference
Details, Year

Glioma histological
Subtype

[Glioma genotype], [No. of
classes]

[Sample size], [MRI
modality], [dataset]

[No. of features],
[Feature list]

[ML method], [Evaluation
method]

Performance Testing

Wu (56), 2019 LGG, HGG [IDH mutant, IDH wild], [2] [126], [T1, T1-CE, T2, T2-
FLAIR], [TCIA]

[704], [GLCM texture, Vol-
ume, intensity, histo-
gram, diffusion]

[SVM, KNN, RF, NB, ANN,
FDA, Adaboost], [10-fold
cross validation]

Accuracy: 88.5 % for RF
algorithm

Qi (59), 2014 LGG, HGG
(Astrocytoma)

[IDH1/2 mutant, IDH wild],
[2]

[193], [Local] [intensity, growth pattern-
location, tumor margin,
contrast enhancement,
mass-edema effect]

[2-sided Chi-square statisti-
cal test]

p-value: <0.001 for IDH
wild in combined lobes,
p-value: <0.001 for IDH
mutant in less-risk
regions

Villanueva-
Meyer (61),
2018

LGG (Grade II) [IDH mutant, IDH wild], [2] [100], [T1, T2, T2-FLAIR,
DWI, DSC, SPGR],

[Location, extent, margin
sharpness, cystic com-
ponent, contrast, diffu-
sion& perfusion
measures]

[Logistic regression] ADCmin sensitivity: 91%

Ding (62), 2019 LGG [IDH mutant, IDH wild], [2] [76], [T1, T2, T1-CE,
FLAIR]

[Location, tumor border,
cystic change, presence
of edema, contrast
enhancement, MRS
(choline/creatine ratio)]

[Logistic regression] Accuracy: 79.3 % with
MRS parameter, p-
value: Cortical involve-
ment-0.0001, edema-
0.0381, border-0.0287

Wang (63), 2019 HGG (Glioblastoma) [IDH1 mutant, IDH1 wild], [2] [50], [T1, T2, T1-CE,
FLAIR]

[age, location, volume,
contrast enhancement]

[Logistic regression] AUC: 0.88

Broen (65), 2018 LGG [diffuse astrocytoma IDH
mutant 1p/19q non-code-
leted, diffuse oligo-den-
droglioma IDH mutant 1p/
19q co-deleted, anaplas-
tic astrocytoma IDH
mutant 1p/19q non-code-
leted, anaplastic oligo-
dendroglioma IDH mutant
1p/19q co-deleted, dif-
fuse astrocytoma IDH
wild], [5]

[154], [T2 FLAIR] [T2 FLAIR mismatch sign,
location, sex, age,
grade]

[statistical analysis] PPV: 100%, NPV: 68%

(continued on next page)

A
R
T
IC

LE
IN

P
R
E
S
S

A
cad

em
ic

R
ad

io
lo
g
y,V

o
l&

,N
o
&

&
,&

&
2020

R
A
D
IO

M
IC

S
A
N
D
P
R
E
D
IC

T
IV
E
M
O
D
E
LIN

G
IN

G
LIO

M
A
C
H
A
R
A
C
T
E
R
IZ
A
T
IO

N7



TABLE 1. (Continued)

Reference
Details, Year

Glioma histological
Subtype

[Glioma genotype], [No. of
classes]

[Sample size], [MRI
modality], [dataset]

[No. of features],
[Feature list]

[ML method], [Evaluation
method]

Performance Testing

Jagtap (69),
2019

LGG, HGG [IDH mutant with 1p/19q co-
deletion, without co-dele-
tion], [2]

[T2] [LBPH texture, statistical,
histogram, intensity
grading]

[ANN], [10-fold cross
validation]

Accuracy: 87.9%

Zhou (70), 2019 LGG, HGG [IDH wild, IDH mutant with
1p/19q co-deletion, IDH
mutant with 1p/19q non-
codeletion], [3]

[744], [T1-CE, T2-FLAIR],
[TCIA, Local]

[127], [age, histogram,
texture, shape]

[RF], [Train-test model] Accuracy: 78.2% for 3-
way classification

Lu (71), 2018 LGG, HGG [IDH mutant LGG, IDH wild
LGG, IDH mutant HGG,
IDH wild HGG, IDH mutant
LGG + 1p/19q co-dele-
tion], [5]

[284], [T1-CE, T2, T2-
FLAIR, DWI], [TCIA for
training, Local + REM-
BRANDT for validation]

[39212], [Shape, size,
GLCM texture, LBP tex-
ture, first order
statistical]

[SVM, Decision Tree], [5-
fold cross validation]

Accuracy: 81.1% for 5-
way classification,
85.1% for IDH mutant/
wild LGG/HGG classifi-
cation, 89.2% for IDH
mutant LGG +1p/19q
co-deletion

Li (72), 2018 HGG (Glioblastoma) [IDH1 mutant, IDH1 wild], [2] [225], [T1, T2, T1-CE,
FLAIR], [TCIA + 3 local
hospitals]

[1614], [location, geome-
try, texture, intensity]

[RF], [Train test model] Accuracy: 97%

Voort (73), 2019 LGG [IDH mutant with 1p/19q co-
deletion, without co-dele-
tion], [2]

[413], [T1, T2],
[TCIA + local medical
centers]

[80], [location, intensity,
shape, texture, age, sex]

[SVM], [cross validation] Accuracy: 69.3%

Zhang (74), 2017 Primary HGG (III & IV) [IDH mutant, IDH wild], [2] [120], [T1, T1-CE, T2, T2-
FLAIR, DWI]

[391], [age, sex, location,
shape, volume, inten-
sity, histogram, GLCM
texture]

[RF], [Train-test model] Accuracy: 89%

Yu (75), 2017 LGG (Grade II) [IDH1 mutant, IDH1 wild], [2] [110], [T2 FLAIR] [671], [Location, intensity,
shape, texture, Wavelet]

{SVM, Adaboost], [Leave-
one-out cross validation]

Accuracy: 80% for both
classifiers

Hsieh (76), 2017 HGG (Glioblastoma) [IDH1 mutant, IDH1 wild], [2] [39], [T1-CE] [Morphological, Intensity,
texture]

[Logistic regression] Feature wise Accuracy:
51% for morphological
features, 59 % for inten-
sity and 85 % with
texture

Zhang (77), 2018 LGG [IDH mutant with TP53, IDH
mutant without TP53, IDH
wild], [3]

[103], [T1, T2, T1-CE,
FLAIR],

[276], [VASARI, texture,
histogram]

[SVM], [train-test model] Accuracy: 72.8%, 71.9%,
70% for 3 classes

Joo (78), 2019 HGG [IDH mutant, IDH wild], [2] [71], [APT] [APT signal, clinical
factors]

[Multivariate cox
regression]

APT signal p-value: 0.001

(continued on next page )
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TABLE 1. (Continued)

Reference
Details, Year

Glioma histological
Subtype

[Glioma genotype], [No. of
classes]

[Sample size], [MRI
modality], [dataset]

[No. of features],
[Feature list]

[ML method], [Evaluation
method]

Performance Testing

Jiang (79), 2017 LGG (grade II) [IDH mutant, IDH wild], [2] [27], [APT weighted] [APT weighted signal] [ROC-AUC analysis] AUC: 0.89 for maximum
APT value

Jakola (80),
2018

LGG [IDH mutant, IDH wild], [2] [25], [FLAIR], [Volume, Age, GLCM
Texture]

[logistic regression] AUC: 0.940

Bisdas (81),
2018

LGG, HGG [IDH mutant, IDH wild], [2] [37], [FLAIR, DKI] [GLCM Texture, Mean dif-
fusional kurtosis,
Skewness]

[SVM] Accuracy: 83.8 %

Figini (82), 2018 LGG, HGG [IDH mutant, IDH wild], [2] [192], [T1, T2, DTI, DKI,
NODDI]

[Mean Diffusivity, frac-
tional anisotropy, kurto-
sis anisotropy, etc]

[statistical analysis] Accuracy: 79% with frac-
tional anisotropy-max

Eichinger (83),
2017

LGG (II & III) [IDH mutant, IDH wild], [2] [79], [DTI] [101], [LBP texture,
volume]

[K-means clustering, ANN] Accuracy: 92% during
training, 95% during
validation

Sudre (85), 2019 LGG, HGG [Grade II, Grade III, Grade
IV, IDH mutant, IDH wild],
[3]

[333], [T1, T2, FLAIR, DSC
MRI], [6 medical
centers]

[29], [shape, intensity,
texture]

[RF], [cross validation] Accuracy: 53% for grade
classification and 73%
for IDH classification

Batchala (98),
2019

LGG (Astrocytoma,
Oligodendroglioma)

[IDH mutant with 1p/19q co-
deletion, without co-dele-
tion], [2]

[106], [T1, T2, T1-CE, T2-
FLAIR]

[Age, texture, T2* signal,
location, T2-FLAIR mis-
match, hydrocephalus]

[logistic regression] Accuracy: 86.3%

Kim (99), 2019 LGG, HGG [IDH mutant with 1p/19q co-
deletion, without co-dele-
tion], [2]

[143], [T1, T1-CE, T2,
FLAIR], [BRATS 2017
+TCGA]

[479+], [texture, topologi-
cal, CNN derived
features]

[RF, Logistic regression,
kTSP], [5-fold cross
validation]

Accuracy: 71.4% for RF
and 70% for logistic
regression

Rathore (102),
2018

HGG (Glioblastoma) [IDH1, MGMT, EGFRvIII], [3] [361], [T1, T1-CE, T2, T2-
FLAIR, DTI]

[267], [GLCM texture, Vol-
ume, intensity, histo-
gram, location,
biophysical growth]

[K-means clustering], [10-
fold cross validation]

Accuracy: 88%

Rathore (109),
2019

HGG (Glioblastoma) [GBM subtypes- classical,
mesenchymal, proneural,
neural] [4]

[112], [T1, T1-CE, T2, T2-
FLAIR], [local hospital
(HUP)]

[16+], [volume, location,
intensity, texture]

[SVM], [5-fold cross
validation]

Accuracy: 88.4% for clas-
sical, 75.9% for mesen-
chymal, 82.1% for
proneural, 75.9% for
neural

Macyszyn (110),
2015

HGG (Glioblastoma) [GBM subtypes- classical,
mesenchymal, proneural,
neural] [4]

[134], [T1, T1-CE, T2, T2-
FLAIR, DTI, DSC-MRI]

[60], [age, volume, inten-
sity, cell density, micro-
vascularity, diffusion
measures]

[SVM] Accuracy: 75.76% for 4-
way molecular classifi-
cation, 79% for 3-way
prognostic classification

Arita (112), 2018 LGG (II & III) (Astrocy-
toma,
Oligodendroglioma)

[IDH1/2 mutant, IDH1/2
mutant with TERT, IDH
wild], [3]

[169], [T1, T2, T1-CE,
FLAIR]

[110], [location, intensity,
shape, texture]

[Regression], [Train test
model]

Accuracy: 87% for IDH
mutation classification,
74% for 3-way
classification

(continued on next page)
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TABLE 1. (Continued)

Reference
Details, Year

Glioma histological
Subtype

[Glioma genotype], [No. of
classes]

[Sample size], [MRI
modality], [dataset]

[No. of features],
[Feature list]

[ML method], [Evaluation
method]

Performance Testing

Park (118), 2018 LGG (Grade II) [IDH mutant with 1p/19q co-
deletion, without co-dele-
tion, IDH wild], [3]

[215], [T1, T2, T1-CE,
FLAIR, DTI],

[26+], [VASARI features] [Least Absolute Shrinkage
and Selection Operator],
[10-fold cross validation]

AUC: 0.778 for validation
model

Looze (120),
2018

LGG, HGG [Grade II/III, Grade III/IV,
Grade II/IV, IDH mutant,
IDH wild], [5]

[[381], [T1, T2, T1-CE,
FLAIR, DWI]

[lesion size, cystic
change, ADC values,
age]

[RF] AUC: 98% for Grade II/III,
100% for III/IV, 97% for
II/IV, 88% for IDH
classification

Paech (123),
2018

LGG. HGG [IDH mutant, IDH wild,
MGMT with methylation,
MGMT without methyla-
tion, LGG, HGG],[6]

[31], [APT] [APT CEST signal] [ROC-AUC analysis] AUC: 91.84% & 97.96%
for IDH, 0.78 & 0.83 for
grading

Yang (132), 2015 HGG (Glioblastoma) [GBM subtypes- classical,
mesenchymal, proneural,
neural] [4]

[T1-CE, T2-FLAIR] [Texture] [RF], [Train-test model] Accuracy: 72% for classi-
cal, 70% for mesenchy-
mal, 82% for proneural,
75% for neural, 69% for
survival prediction

Lee (136), 2019 HGG (Glioblastoma) [IDH1 mutant, IDH1 wild], [2] [123], [T1, T2, T1-CE,
FLAIR, PWI, DWI]

[31+], [volume, ADC map,
CBV]

[KNN, SVM, RF, Adaboost,
decision tree, NB, LDA,
gradient boosting]

Accuracy: 66.3% to
83.4%

Abbreviations: SPGR, spoiled gradient recalled sequence; MRS, magnetic resonance spectroscopy; AUC, area under curve; LBPH, local binary pattern histogram; ANN, artificial neural net-
work; RF, random forest; SVM, support vector machine; KNN, k-nearest neighbor; NB, naïve bays; FDA, flexible discriminant analysis; REMBRANDT, The Repository of Molecular Brain Neopla-
sia Data; GLCM, gray level cooccurrence matrix; ROC-AUC, receiver operating characteristics-area under curve; BRATS, multimodal brain tumor segmentation; kTSP, k-top scoring pair; CEST,
chemical exchange saturation transfer.

A
R
T
IC

LE
IN

P
R
E
S
S

G
O
R
E
E
T
A
L

A
cad

em
ic

R
ad

io
lo
g
y,V

o
l&

,N
o
&

&
,&

&
2020

10



TABLE 2. Summary on Experimentation and Results of Research Work Using Deep Learning Methods. It Summarizes The State of Art Research Focusing on Radiogenomics
Where Deep Learning-Based Algorithms Have Been Employed to Predict the Molecular Subtypes of Glioma. It Provides the Summary Details for Histological Subtypes Used,
Genotypes, Number of Classes Used, Number Of Patients, MRI Modalities Used, Dataset Used, Number of Features Extracted, List of Features, Deep Learning Method (DL), Eval-
uation Method, and Performance Measures. Evaluation was Performed on Freely Online Available and/or Local Datasets

Reference Details, Year Glioma histological
Subtype

[Glioma genotype],
[No. of classes]

[Sample size], [MRI
modality], [dataset]

[No. of features],
[Feature list]

[DL method],
[Evaluation method]

Performance testing

Chang (86), 2018 LGG, HGG [IDH mutant, IDH wild],
[2]

[201], [T1, T2, T1-CE,
T2-FLAIR], [TCIA and
Local]

[Age and Auto-
extracted features]

[CNN], [Train test vali-
dation model]

Accuracy: 89.1%

Chang (89), 2018 LGG, HGG [IDH mutant, IDH wild,
IDH mutant with 1p/
19q co-deletion, IDH
mutant with MGMT],
[4]

[259], [T1, T2-FLAIR], [Auto-extracted fea-
tures, Feature selec-
tion with PCA]

[CNN], [train test
model]

Accuracy: 94% for
IDH, 92% for IDH
with 1p/19q co-dele-
tion, and 83% for
MGMT status

Liang (90), 2018 LGG, HGG [IDH mutant, IDH wild],
[2]

[167], [T1, T2, T1-CE,
T2-FLAIR], [TCGA-
BRCA]

[Age, sex, Auto-
extracted features]

[CNN], [5-fold cross
validation]

Accuracy: 91.4%

Li (91), 2017 LGG (II) [IDH1 mutant, IDH1
wild], [2]

[119], [T1-CE, T2-Flair], [16384], [Auto-
extracted features]

[CNN], [Leave one out
cross validation,
SVM]

Accuracy: 94.38%

Banerjee (92), 2019 LGG, HGG [LGG 1p/19q codele-
tion positive and
negative], [2]

[444], [T1, T1-CE, T2,
FLAIR], [BRATS and
TCIA]

[Auto-extracted
features]

[CNN- PatchNet, Slice-
Net, VolumeNet]

Accuracy: 97% with
VolumeNet for 1p/
19q codeletion

Nalawade (94),2019 LGG, HGG [IDH mutant, IDH wild],
[2]

[260], [T2], [TCIA] [Auto-extracted
features]

[CNN � ResNet-50,
Inception-v4, Dense-
Net-161]

Accuracy: 83.8%

Chandan (95), 2019 LGG, HGG [IDH mutant, IDH wild],
[2]

[214], [T1-CE, T2,
FLAIR], [TCIA]

[Auto-extracted
features]

[CNN] Accuracy: 97.14% with
only T2 data

Ahmad (96), 2019 HGG [IDH1 mutant, IDH1
wild], [2]

[71], [T2], [Local] [Auto-extracted
features]

[CNN], [4-fold cross
validation]

Accuracy: 86.7%

Choi (97), 2019 LGG, HGG [IDH mutant, IDH wild],
[2]

[463], [T1, T2, T1-CE,
T2-FLAIR, DSC-MRI],

[Auto-extracted
features]

[RNN] Accuracy: 92.8%

Akkus (100), 2017 LGG (Astrocytoma,
Oligodendroglioma,
oligoastrocytoma)

[IDH mutant with 1p/
19q co-deletion,
without co-deletion],
[2]

[159], [T1-CE, T2], [Auto-extracted
features]

[CNN], [train test
model]

Accuracy: 87.7%

Abbreviations: BRCA, breast invasive carcinoma; PCA, principal component analysis; BRATS, multimodal brain tumor segmentation; RNN, recurrent neural network.
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TABLE 3. Summary on Experimentation and Results of Research Work for WHO Grading and Survival Prediction. It Summarizes the Predictive Studies Performed to Assess the
Histological Grade of Glioma and Survival Prediction. Histological Grading Classifies the Glioma as Low-grade Glioma (LGG)/High-grade Glioma (HGG) or as per WHO Grade II/
III/IV. Survival Prediction Predicts Different Groups for Overall Survival and/or Progression Free Survival Based on Number of Months/Days. Analysis is Performed Either Using
Univariate/Multivariate Statistical Analysis or Machine Learning Classifier or Machine Learning Regression Method or Deep Learning-Based Methods. Table Provides the Sum-
mary Details for Histological Subtypes Used, Different Classes, Number of Classes Used, Number of Patients, MRI Modalities Used, Dataset Used, Number of Features
Extracted, List of Features, Analysis Method, Evaluation Method, and Performance Measures. Performance Measures Used are Accuracy, AUC Value, p-Value, Hazard Ratio
(HR), Concordance Index

Reference Details, Year Glioma
histological
Subtype

[Classes], [No. of
classes]

[Sample size], [MRI
modality], [dataset]

[No. of features],
[Feature list]

[Analysis method],
[Evaluation method]

Performance testing

Hwan-Ho (57), 2017 LGG, HGG [LGG, HGG], [2] [T1, T2, T1-CE, FLAIR],
[BRATS 2015]

[45], [Histogram,
shape, GLCM
texture]

[Linear regression],
[10-fold cross
validation]

Accuracy: 89.8%

Bisdas (81), 2018 LGG, HGG [Grade II as negative,
Grade III as positive],
[2]

[37], [FLAIR, DKI] [GLCM Texture, Mean
diffusional kurtosis,
Skewness]

[SVM], [Train test
model]

Accuracy: 75% for
WHO grading

Sudre (85), 2019 LGG, HGG [Grade II, Grade III,
Grade IV, IDH
mutant, IDH wild], [3]

[333], [T1, T2, FLAIR,
DSC MRI], [Local (6
medical centers)]

[29], [shape, intensity,
texture]

[RF], [cross validation] Accuracy: 53% for
grade classification
and 73% for IDH
classification

Tian (119), 2018 LGG, HGG [LGG, HGG, Grade III,
Grade IV], [4]

[153], [T1, T2, T1-CE,
DWI, spin labelling]

[510], [histogram, tex-
ture, location, vol-
ume, histologic
subtype]

[SVM] Accuracy: 96.8% for
LGG vs HGG and
98.1% for Grade III
vs. IV

Looze (120), 2018 LGG, HGG [Grade II/III, Grade III/
IV, Grade II/IV, IDH
mutant, IDH wild], [5]

[381], [T1, T2, T1-CE,
FLAIR, DWI]

[lesion size, cystic
change, ADC values,
age]

[RF] AUC: 98% for Grade II/
III, 100% for III/IV,
97% for II/IV, 88% for
IDH classification

Gao (121), 2016 LGG, HGG [Grade II, III and IV], [3] [124], [T2 FLAIR],
[Local]

[287], [Intensity, shape,
wavelet, GLCM
texture]

[SVM, Adaboost] Accuracy: 88.71 %
using SVM

Ranjith, (122) 2015 LGG, HGG [Benign- Grade II,
Malignant- Grade III
& IV], [2]

[28], [MR Spectros-
copy], [local medical
institute]

[5], [ratios of 3 metabo-
lites- Creatine, Cho-
line, NAA
concentration]

[MLP, SVM, RF,
Locally weighted
learning], [5-fold
cross validation]

AUC: 0.911 using RF
method

Paech (123), 2018 LGG. HGG [IDH mutant, IDH wild,
MGMT with methyla-
tion, MGMT without
methylation, LGG,
HGG],[6]

[31], [APT] [APT CEST signal] [ROC-AUC analysis] AUC: 91.84% &
97.96% for IDH, 0.78
& 0.83 for grading
with different APT
parameters

(continued on next page)

A
R
T
IC

LE
IN

P
R
E
S
S

G
O
R
E
E
T
A
L

A
cad

em
ic

R
ad

io
lo
g
y,V

o
l&

,N
o
&

&
,&

&
2020

12



TABLE 3. (Continued)

Reference Details, Year Glioma
histological
Subtype

[Classes], [No. of
classes]

[Sample size], [MRI
modality], [dataset]

[No. of features],
[Feature list]

[Analysis method],
[Evaluation method]

Performance testing

Wiestler (124), 2016 LGG, HGG [Class1- Grade II/III,
Class2- Grade IV], [2]

[37], [T1, T2, DSC-MRI,
BOLD]

[116], [contrast
enhancement, cere-
bral blood volume,
oxygenation factor]

[RF], [5-fold cross
validation]

Accuracy: 91.8% for
WHO grade classifi-
cation for both
classes

Wang (125), 2019 LGG, HGG [Grade II, Grade III,
Grade IV], [3]

[146], [Local] [morphological fea-
tures, intensity,
texture]

[SVM, RF, NN, gradient
boosting], [cross
validation]

Accuracy: 90% for
SVM

Lo (126), 2019 Diffuse gliomas [Grade II, III and IV], [3] [130], [T1 axial], [TCIA] [Auto extracted
features]

[CNN], [10-fold cross
validation]

Accuracy: 97.9 %

Yang (127), 2018 LGG, HGG [LGG, HGG], [2] [113], [T1, T2, T1-CE,
FLAIR, DWI, DCE,
ASL]

[Auto extracted
features]

[CNN- GoogLeNet &
AlexNet], [5-fold
cross validation]

Accuracy: 90.9% using
GoogLeNet

Survival Prediction:
Wang (58), 2015 HGG

(Glioblastoma)
[Overall survival (OS),
Progression free sur-
vival (PFS)]

[280], [T1, T1-CE, T2],
[Local]

[age, sex, KPS, con-
trast enhancement
and patterns, edema,
MGMT status, IDH
status]

[Univariate, multivari-
ate statistical
analysis]

p-value: 0.022 for IDH
association with PFS
and 0.018 with OS

Kickingereder (104), 2016 HGG
(Glioblastoma)

[OS & PFS - low and
high-risk groups], [4]

[119], [T1, T1-CE,
FLAIR, DWI]

[12190], [first order
statistics, volume,
shape, texture, clini-
cal data]

[Supervised Principal
Component Analysis]

Concordance index:
0.696 for OS, 0.637
for PFS

Macyszyn (110), 2015 HGG
(Glioblastoma)

[OS � long, medium,
short] [3]

[134], [T1, T1-CE, T2,
T2-FLAIR, DTI, DSC-
MRI]

[60], [age, volume,
intensity, cell den-
sity, micro-vascular-
ity, diffusion
measures]

[SVM] Accuracy: 79% for 3-
way prognostic
classification

Osman (128), 2018 HGG
(Glioblastoma)

[OS � long: >18
months, medium: 6
to 18, short: < 6] [3]

[291], [T1, T1-CE, T2,
T2-FLAIR], [BRATS
2017]

[age, tumor size,
location]

[SVM- regression and
classification both]

Accuracy: 0.49 for
regression and 1.0
for classification of
validation data

Bae (129), 2018 HGG
(Glioblastoma)

[OS, PFS � low and
high-risk groups], [4]

[217], [T1-CE, T2, T2-
FLAIR, DTI], [Local]

[796], [MGMT & IDH
status, age, KPS,
resection extent,
postoperative treat-
ment, texture, shape,
ADC histogram

[RSF] AUC: 0.782 for OS,
0.737 for PFS

(continued on next page )
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TABLE 3. (Continued)

Reference Details, Year Glioma
histological
Subtype

[Classes], [No. of
classes]

[Sample size], [MRI
modality], [dataset]

[No. of features],
[Feature list]

[Analysis method],
[Evaluation method]

Performance testing

Jones (130), 2019 LGG of older
population
(Grade II)

[OS, PFS] [111], [T2, FLAIR, pre-
operative and post-
operative MRI],
[Local]

[Age, seizure, tumor
size, biopsy, chemo-
therapy, radiation,
IDH status]

[Univariate and bivari-
ate statistical
analysis]

Univariate- HR: 0.17
and p-value < 0.001
for IDH association
with OS, Bivariate �
HR: 0.22 and p-
value: 0.008 for age
and IDH association
with OS

Suchorska (131), 2019 LGG, HGG
(Grade II, III)

[OS, PFS � low and
high-risk groups], [4]

[301], [T1, axial T2,
axial FLAIR, axial
DWI], [Local]

[Age, KPS, 1p/19q
codeletion status,
presence of contrast
enhancement (CE),
IDH status, WHO
grade]

[Univariate and multi
variate cox regres-
sion analysis, RSF
analysis]

Univariate analysis: p-
value for association
of CE: 0.001 for OS,
0.002 for PFS, RSF
Concordance index:
0.859 for OS, 0.704
for PFS

Yang (132), 2015 HGG
(Glioblastoma)

[12-month survival sta-
tus- long, short] [2]

[82], [T1-CE, T2-FLAIR] [976], [Texture] [RF], [Train-test model] Accuracy: 69% for sur-
vival prediction

Sun (133), 2019 LGG, HGG [OS � short (<10
months), medium
(10-15), long (>15
months)], [3]

[442], [T1, T1-CE, T2,
T2-FLAIR,], [BRATS
2018]

[14 selected], [Shape,
texture, first order
statistical]

[RF regression] Accuracy: 61.0%

Sanghani (134), 2018 HGG
(Glioblastoma)

[OS 2-class groups:
short (< 400 days) &
long (>400 days), OS
3-class groups: short
(<10 months),
medium (10 to 15) &
long (>15)], [2 or 3]

[163], [T1, T1-CE, T2,
T2-FLAIR], [BRATS
2017]

[2201], [Texture,
shape, volumetric,
age]

[SVM], [5-fold cross
validation]

Accuracy: 98.7% for 2-
class, 88.95% for 3-
class

Chaddad (135), 2018 HGG
(Glioblastoma)

[OS, PFS � short and
long survival], [4]

[40], [T1, FLAIR] [Texture] [Univariate analysis �
log rank, spearman
rank correlation, mul-
tivariate RF], [5-fold
cross validation]

AUC using RF: 74.38%
for OS, 83.5% for
PFS

Peeken (140), 2018 HGG
(Glioblastoma)

[OS, PFS] [189], [T1, T1-CE, T2,
FLAIR, DWI],
[REMBRANDT]

[Age, KPS, gender,
MGMT & IDH status,
VASARI features]

[Multivariate cox
regression]

Concordance index:
0.716 for OS, 0.643
for PFS

(continued on next page )
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TABLE 3. (Continued)

Reference Details, Year Glioma
histological
Subtype

[Classes], [No. of
classes]

[Sample size], [MRI
modality], [dataset]

[No. of features],
[Feature list]

[Analysis method],
[Evaluation method]

Performance testing

Chato (141), 2017 LGG, HGG [OS groups � short (<
10 months), medium
(10 to 15 months),
long (> 15 months)],
[3]

[163], [T1, T1-CE, T2,
T2-FLAIR], [BRATS
2017]

[volumetric, intensity,
texture, histogram,
statistical, deep CNN
features]

[SVM, KNN, LDA,
logistic regression,
CNN]

Accuracy: 73% using
LDA

Li (142), 2017 HGG
(Glioblastoma)

[OS - low and high-risk
groups], [2]

[92], [T1, T1-CE, T2,
T2-FLAIR], [Local &
TCIA data]

[45792], [Texture at dif-
ferent voxel size,
quantization and
gray levels]

[Cox regression
model]

Concordance index:
0.705

Shboul (143), 2018 HGG
(Glioblastoma)

[OS groups � short (<
10 months), medium
(10 to 15 months),
long (> 15 months)],
[3]

[163], [T1, T1-CE, T2,
T2-FLAIR], [BRATS
2017]

[1207 extracted, 240
selected], [Texture,
volumetric, location,
histogram]

[RF regression] Accuracy: 63%

Han (144), 2020 HGG [OS � short, long sur-
vivor], [2]

[178], [T1-CE], [Local &
TCIA data]

[8540], [348 hand
crafted � volume,
size, texture, inten-
sity, first order statis-
tical + 8192 deep
CNN features]

[Elastic net-cox
modelling], [Train-
test]

Log-rank test p-value
< 0.001

Nie (145), 2019 HGG [OS groups � short (<
650 days), long (>
650 days)], [2]

[68], [T1-CE, DTI, rs-
MRI], [Local]

[Age, size, histological
type, 3D deep CNN
features]

[SVM], [3-fold cross
validation]

Accuracy: 90.66%

Lao (146), 2017 HGG
(Glioblastoma)

[OS - low and high-risk
groups], [2]

[112], [T1, T1-CE, T2,
T2-FLAIR], [Local &
TCIA data]

[99707 extracted and
150 selected], [1403
hand crafted � tex-
ture, intensity, geo-
metrical + 98304
deep CNN features]

[Multivariate cox
regression model]

Concordance index:
0.739

Abbreviations: MLP, multi-layer perceptron; NAA, n-acytel aspartate; NN, neural network; RSF, random survival analysis; HR, hazard ratio; KPS, karnofsky performance status; LDA, linear dis-
criminant analysis; rs-MRI, functional resting state MRI.
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have illustrated this capability as learning imaging features auto-
matically alleviates the time-consuming preprocessing steps
required in radiomics. A variety of CNN architectures have
been tested (86�92), however ResNET architecture has been
demonstrated to be the most stable and robust in discriminating
IDH. The result of deep learning models on multi-modal MRI
yielded accuracy 85.7% during testing phase, which was
improved up to 89.1% with age as an additional contributing
marker (86). Furthermore, to avoid over-fitting, data augmenta-
tion techniques have been widely employed while transfer learn-
ing was adopted to improve generalizability of the classifier (93).
Another recent study employed patch based deep model and
demonstrated 97% accuracy in delineating IDH mutation on a
mixed data (TCIA and local) (94,95). To gain more interpret-
ability of the CNN, instead of using it as a black-box model,
studies have employed class activation mapping � where a map
of the most discriminative regions is extracted from the trained
model (93,96). A recent study employed convolutional long
short-term memory model on perfusion MRI illustrated an
accuracy of 92.8% (97). In summary, deep nets with increasing
available datasets, demonstrate a future potential for superior pre-
dictive models to characterize IDHmutation.
IDH Mutation With 1p/19q
In low grade gliomas, IDH mutation with 1p/19q co-deletion is
classified as an oligodendroglioma. It is demonstrated that IDH
mutant with 1p/19q codeletion exhibits less aggressive environ-
ment than IDH mutant without codeletion (22). In terms of
visual features, as described in the earlier section, the T2-FLAIR
mismatch sign is of importance as the mismatch indicates IDH
mutation with non-codeleted 1p/19q astrocytoma (64). The sig-
nificant contribution of T2-FLAIR mismatch sign was validated
with 100% sensitivity for non-codeleted LGGs (98). Variety of
radiomic features such as texture, shape, size, intensity, and histo-
gram have been analyzed for 1p/19q prediction. Out of these,
texture quantifiers carried a greater discriminative power in com-
parison to other attributes (69). Moreover, topological features
that quantify shape features or geometrical information such as
connected components, rings, cavity, etc. demonstrated higher
predictive performance with 5% improvement in accuracy than
texture features (99). Integration of age into radiogenomic model
contributed substantially and significantly improved the accuracy
(70). Furthermore, tumor location also played a vital role in 1p/
19q discrimination (97,100). In terms of DL, a recent multi-scale
CNN was used by Akkus et al. with 30-fold augmented data
that could predict the 1p/19q co-deletion with an accuracy of
87.7% (100).
Epidermal Growth Factor Receptor

Earlier studies on imaging characteristics of EGFR illustrated
higher T2/T1 ratio, with quantified enhancement on T1-CE
as a potential indication of lack of EGFRvIII mutation as well
as perfusion markers to be critical predictors of EGFRvIII
mutation (101). Moreover, diffusion and FLAIR markers
16
from solid tumors (uniformly vascularized with small sized
edema) were also crucial in delineating EGFRvIII mutation,
however were not important in non-uniform types (peri-
tumoral edematous tissue with large irregular shape, with
maybe deep but less dense infiltration) (102). Assessment of
the EGFRvIII mutation has been performed using radiomics
and has demonstrated around 80-85% accuracy of discrimi-
nating the EGFRvIII mutation (103). However, other studies
contradict such high predictive power as these could achieve
accuracies upto only 65% (104). Support vector machine
based classifiers were employed in the majority of these stud-
ies (102,105) while random forest and stochastic gradient
based methods were implemented by Kickingereder et al.
(104). Additionally, singular features such as border sharpness
coefficients on T2 have been related to EGFR amplification
(101). EGFR prediction has not yet been performed using
any deep models.
Methyl-guanine Methyl Transferase (MGMT)

Recently, radiomics has also been applied for MGMT status
prediction on multi-modal MRI (T1-CE, T1, T2, and
FLAIR) in gliomas. The predictive accuracies from multiple
studies have varied between 61% and 80% on cohorts ranging
between 82 and 193 subjects (104,106,107). Hajinafar et al.
applied an adaboost based classification framework and
reported that the Laplacian of Gaussian (LOG) filter in edema
single-handedly could discriminate MGMT status with 0.78
AUC (106). Li et al. used a Boruta algorithm to rank the fea-
tures and employed a random forest classifier to illustrate that
texture features on the whole tumor and specifically found
that Gray Level Size Zone Matrix of low grey level emphasis
could delineate the MGMT with an AUC of 0.71 (107).
Kickingereder et al. in addition to T1-CE, T2, T1, and
FLAIR also used perfusion images and demonstrated that
higher Gaussian-normalized relative CBV (nrCBV) in T1-
CE as well as higher ratio of contrast enhancing tumor to
complete tumor volume were the most crucial features for
identifying MGMT (104) . The prediction of IDH genotype,
1p/19q codeletion status and MGMT promotor methylation
in both high- and low-grade gliomas illustrated high accura-
cies using deep CNN. Each genomic type showed distinct
imaging features such as definition of tumor margins, T1 and
FLAIR suppression, amount of edema, amount of necrosis,
and textural features (108).
Transcriptomic Delineation of Glioblastomas (GBMs)

The four molecular subtypes of classical, mesenchymal, pro-
neural and neural as described by Verhaak et al. can also be
identified using radiomics based framework (27). Recent
works have demonstrated approximately 71% to 76% accura-
cies in delineating these four subtypes using T1, T1-CE, T2,
and FLAIR in Rathore et al. and in addition using DTI and
DSC MRI in Macyszyn et al. (109,110). Both the studies
relied on support vector machines (SVMs) where one
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demonstrated four distinct MRI phenotypes based on volume
of different regions of tumor and intensity distributions of
those regions (110) while Rathore et al. illustrated low T1-
CE signal and high FLAIR signal in edema in proneural and
neural subtypes respectively. Classical subtype was associated
with edge sharpness of the edema region as delineated from
multi-modal MRI images while mesenchymal correlated
with higher T2 and FLAIR signal in edema and higher vol-
ume of enhancement on T1-CE.
Other genotypes

Multiple common mutations in gliomas such as TERT pro-
moter (111), TP53, ATRX, phosphatidylinositol-4, 5-
bisphosphate 3-kinase catalytic subunit alpha (PIK3CA),
phosphatidylinositol-4, 5-bisphosphate 3-kinase regulatory
subunit 1 (PIK3R1), BRAFV600, histone 3-lysine-27-methi-
onine (H3K27M) etc. are changing the current view of gli-
oma diagnosis. Glioma patients with unmethylated MGMT
and TERT promoter mutation have poor prognosis than
those with wild-type TERT (112). Preoperative detection of
TERT promoter mutation is useful in patients with glioblas-
toma as it may help in selecting patients for therapeutic strate-
gies such as telomerase-targeted therapies (112).
Oligodendroglioma and astrocytoma having mutations in
IDH with TERT promoter are uniquely located in medial
frontal cortex region and radiomic features were able to dis-
criminate IDH1/2-mutant, IDH1/2-mutant with TERT
promoter mutation, and IDH-wild type with high accuracy
(81). Moreover, a recent study employed CNNs to discrimi-
nate TERT promotor genotype in LGGs and illustrated a
high accuracy of 84.0% (113).
Most infiltrating high grade gliomas, especially secondary

glioblastoma, have novel alteration in TP53 along with IDH
mutation (114) whereas the significant differences with 85%
accuracy were found in low grade gliomas for IDH and TP53
status prediction (115). Prediction of ATRX on TCIA data
could be achieved with an accuracy of 72.5% where features
such as sum average and variance were highly discriminative
on T2-weighted images (116). H3K27M, which is the most
frequent mutation in brainstem gliomas was accurately classi-
fied using radiomics (84.4%) with edge and texture features as
the most delineating attributes (117).
Grading

The prediction of histological tumor-grade as specified by
WHO is being investigated from several years to understand
its severity invasively as well as non-invasively. Even though
the recent recommendations as per WHO rely more on
tumor genomic profile, histologic grading is a vital pheno-
typic measure. Gliomas are either discriminated into grade II,
III and IV (118) or as LGG or high grade gliomas (HGG)
(59,119). Features such as necrotic core, T1-CE enhance-
ment, localization in supra-tentorial white matter define glio-
blastoma. However, these have significant variability in size
with infiltration that is present beyond the visible tumor. For
LGGs, the imaging features such isointense/hypointense T1,
as T2-FLAIR mismatch etc. as crucial in identifying the
grade. Combined grade differentiations (II-III / III-IV / II-
IV) have been driven by different radiographic features such
as shape, texture, volume, intensity etc. (85,120). T1-CE
could well predict the difference between LGG and HGG
with accuracy 89% by analyzing selected set of histograms
and Gray-Level Co-occurrence Matrix features (57). Around
287 features from single T2-FLAIR modality were analyzed
to decide the grade of glioma (121). Structural as well as
advanced MRI methods such as blood oxygen level depen-
dent, perfusion imaging, diffusion imaging, MR spectroscopy
has been evaluated for grade prediction. The features from
MR spectroscopy substantially improved the noninvasive
classification of glioma into benign with Grade II and malig-
nant with Grade III-IV yielding AUC up to 0.92 (122). The
performance of structural (T1-CE, T2) and diffusion modal-
ity (ADC) was better than perfusion MRI (CBFs) to classify
glioma into LGG and HGG. Furthermore, T1-CE and ADC
contributed significantly to discriminate Grade III and IV
(119). Moreover, grade discrimination between grade II and
grade III was better achieved from diffusion kurtosis imaging
(DKI) features than T2-FLAIR features (81). Delineation of
LGGs from HGGs has been enabled by APT (amide proton
transfer) measures with an AUC 0.78 (123). Overall, very
high accuracies of up to 98% have been achieved for grade
classification using multimodal analysis (119,120,124,125).
Furthermore, deep convolutional neural network with pre-
trained weights have also been employed in automated grad-
ing of gliomas (126,127).
Survival Prediction

The survival associations are well predicted with various
molecular markers suggesting the varying degrees of prognos-
tic impact. Overall survival (OS), progression free survival
(PFS) are examined with molecular analysis from 12-months
to 120-months survival period. These survival periods are
classified into two to three classes like short survival (less than
6 months), medium survival (6�18 months), long survival
(more than 18 months) (128). Radiomic phenotyping has
shown to improve the performance of survival prediction
model when integrated with clinical, pathological and genetic
profiles (129). IDH mutations have revealed better survival
prediction than IDH wildtype in LGGs as well as HGGs
(58,114,130,131). Furthermore, IDH mutation with 1p/19q
codeletion have improved impact on glioma prognosis
(21,131), which consequently may improve the survival out-
comes. Attributes such as voxel size, volume, texture, shape,
intensity etc. from multimodality datasets have been of
utmost importance in predicting survival (132,104,133).
Amongst these features, quantification of contrast enhance-
ment has been a crucial marker (131). Information on IDH
mutation significantly impacts the classification as mutant sta-
tus is more discriminative than the age of the patient and
17
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even for older patients demonstrates comparatively higher
survival. (110,130). Recent literature also demonstrates vari-
ous other features that are critical in survival prediction. For
example, Sanghani et al. demonstrated that 2D shape features
contribute more to determine the survival rate of GBM
patients (134). Dalu Yang et al. analyzed that texture features
are more effective in GBM characterization to assess 12-
months survival status (132). Chaddad et al. illustrated that
features extracted from edema and active tumor region are
highly associated with overall survival of GBM whereas the
texture features of edema region strongly correlate with PFS
(135). Incorporating diffusion and perfusion MRI into radio-
mic model has also shown to improve the performance of
GBM survival analysis (136).

VASARI (Visually AcceSAble Rembrandt Images) MRI
feature set (137�139) is a widely adopted feature set which
consists of 24 observations familiar to neuroradiologists, to
describe the morphology of brain tumors. Peeken et al. show
significant association of VASARI features like deep white-
matter invasion, multilocality, satellites, and ependymal inva-
sion with progression free survival and overall survival of
GBM patients (140).

CNN based methods are also being adopted for survival
prediction (141�143). Deep features are usually extracted
from final layer(s) of pre-trained CNN models (144). A SVM
based feature analysis framework which combines deep fea-
tures with radiomics features achieved an accuracy of 90.66%
for survival prediction (144,145). Lao et. al demonstrated that
the performance of deep features and radiomics features is
further improved by incorporating clinical factors like age
and Karnofsky performance score (KPS) (146).
Challenges

The emerging, non-invasive area of radiogenomics illustrates
enormous potential in genomic profiling, grading and sub-
typing of gliomas based on multi-modal MRI. The techni-
ques demonstrate prospective possibilities of overcoming
inaccuracies in tissue sampling, as it considers the complete
spatial extent of the tumor. Nonetheless, multiple challenges
that need to be accounted for while building the computa-
tion framework and during interpreting results are given
below.
Abundant Data Availability
To build more generalized and robust models, it is crucial to
train these on ample amount of data with sufficient variabil-
ity. This is more important in training DL algorithms as with
petite datasets, these tend to overfit and although may pro-
vide remarkable training accuracies, will fail on external test-
ing data.

Creating large open to public datasets for benchmarking
machine learning and DL based algorithms has therefore
become crucial as AI techniques require large amounts of
data to learn the underlying patterns for creation of robust
18
models. Usually, it is difficult for a single site to create large
amounts of data and therefore pooling data from multiple
sites is highly desirable. These datasets not only support prog-
ress in research but also provide a baseline to test the sensitiv-
ity and precision of the developed algorithms. To this end,
the Cancer Genome Atlas (TCGA) has made cancer datasets
publicly available with the comprehensive catalogue of geno-
mic profiles. The TCIA [https://www.cancerimagingarch
ive.net/] includes a large updated collection of cancer images
accessible for public to download. The DICOM (Digital
Imaging and Communications in Medicine) images of differ-
ent modalities (MRI, computed tomography (CT), etc.)
related to specific cancer type are provided along with other
auxiliary data such as genomic profile, patient profile, demo-
graphics, treatment information, outcomes, etc. (147). The
TCIA data has a small representation of brain tumors (700)
where around 50% of these are gliomas with multi-modal
MRI and information on genotypes, demographics and sur-
vival in many cases. A sub-set of this data has been robustly
preprocessed by Bakas. et al. (148) for direct usage in devel-
oping algorithms.
Inter-scanner variability
Radiomics may vary significantly based on the MRI
machine, the magnet strength, homogeneity, and acquisition
parameters (149). It is therefore crucial to account for such
inter-scanner diversity while using the data driven radio-phe-
notypic characterizations. Although models are trained using
datasets from multiple scanners for more generalizability,
leave-one-site-out type analysis creating uncertainties about
the adaptability to unseen datasets acquired from different
scanners with diverse scanning protocols has not been per-
formed.

To this end, data harmonization techniques could play an
important role in radiogenomic analysis. Harmonization has
been employed frequently in analysis of psychiatric and
neuro-degenerative diseases on multi-site diffusion and func-
tional MRI images (150). Moreover, methods have also been
developed to harmonize brain connectomes (networks)
(151). On similar lines, advances in harmonizing radiomics is
a crucial problem that needs to be addressed. With DL meth-
ods, the underlying assumption is that the model will learn
the inherent differences between the scanners and finally
only focus on the radiophenotypic discriminative patterns.
However, to substantiate this assumption leave- one-site-out
type studies are binding.
Pre-processing and Segmentation
Preprocessing methods include brain extraction, denoising,
histogram matching, intra-subject registration, registration to
a template, multi-modal tumor segmentation, and radiomic
feature extraction. In DL based techniques the final two steps
are generally not required. A variety of data preprocessing
routines and varying criteria to segment and to compute
radiomics adds to the challenge of consistency and

https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
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standardization. Furthermore, the varying parametrization
could stem from the quality of datasets itself. For example,
datasets from some scanners may be noisier than others and
may require additional preprocessing such as denoising. It is
therefore crucial to well document the acquisition protocols,
and the preprocessing pipelines in detail. Efforts by groups
such as Bakas et al. (148) have made preprocessed data avail-
able for benchmarking novel computational methods. The
preprocessing technique is described in detail so that it can be
adapted by other groups. This could be a potential approach
to alleviate this challenge. In DL based methods, since pre-
processing steps are limited, the variability in methods is of
lesser concern.
Over-fitting
While using multi-variate models with radiomics, many stud-
ies employ higher number of radiomic features than the num-
ber of samples, which leads to a commonly known issue of
‘curse of dimensionality’ that overfits the training data. The
overfitting reduces the robustness and generalizability of the
classifier and such classifier often fails while testing new data.
In terms of radiomic studies, feature selection can alleviate
this issue as it removes unwanted features and retains the
most discriminative/un-correlated ones. In DL based model,
a similar problem is encountered with lesser number of train-
ing samples as DL uses millions of auto-extracted features. To
mitigate this problem, the best solution is to have ample data.
In case big datasets are not available it is recommended to not
rely on DL based training algorithms.
Finally, in both these cases to establish the working of the

model, it is vital to perform n-fold cross-validation and exter-
nal testing. Cross-validation quantitatively validates the per-
formance of the model using various groups of test subjects in
a statistically robust manner, while external testing facilitates
potential of usage in the clinical workflow.
Interpretability
Clinical interpretability is of utmost importance to gain
deeper understanding of which radio-phenotypical features
relate to a certain genotype. Evidence from multiple studies
can support connections between radiographic signatures and
underlying genetic changes and consequently can be used in
clinical practice (152,153). The most discriminative radiomic
features computed by a certain statistical ranking method, can
assist in facilitating novel insights. However, with DL, despite
precise performance of CNNs, it remains a black-box model
(134,38). Especially, with limited sample size and where the
classes cannot be visually discerned, gaining clarity of the
CNN operation is particularly imperative, as although the
model achieves a good classification performance, it could be
susceptible to over-fitting. Attaining insight into the imaging
features and regions that are responsible for the delineation is
crucial for clinical explain ability. A few recent studies have
employed class activation maps to demonstrate which areas of
the image significantly participate in the classification. From
the study by Chougule et al. it can be observed that the dis-
criminative maps for IDH wildtype cases focus heavily on the
T1-CE enhancement (93). Other methods such as attention
maps etc. have also been employed with DL (65,154).
Retrospective and Prospective Validations
Majority of the studies published till now provide a prototype
model for classification. However, these studies do not take a
step forward in validating the model on external retrospective
data followed by prospective validation. The need of the
hour is to cross-validate these models sufficiently using multi-
center, multi-region (geographical location-wise) variety of
data to test the generalizability. One recent study attempted
to test local cohorts on a TCIA trained model and demon-
strated that despite 95% accuracy on TCIA, the testing on
local data was futile. It could only provide reasonable results
after transfer learning from TCIA model to the local data and
then testing the remaining local data (93). Usage of techni-
ques such as federated learning could support in comprehen-
sive validation (155).
CONCLUSION

Advances in quantification of imaging phenotypes to delin-
eate tumor genotypes have been prevalent in the past few
years. The utilization of such prognostic markers may not
only enhance the radiology workflow but also provide timely
and personalized treatment plan for the patient which may
consequently lead to better outcomes. However, for such
technology to translate into the clinic, it is crucial to closely
examine the quantum of recent works and gain insights
obstacles and challenges that may be presented. Our work
elaborated on all the recent work in classifying glioma geno-
types using data driven approaches and discussed the chal-
lenges of scanner variability, benchmark datasets as well as
aggressive retrospective and prospective testing of models. In
summary, current techniques lend credence to future com-
puter aided diagnostics for glioma genotype.
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