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Abstract
Introduction  In the last decade, a number of genomic and pharmacological studies have demonstrated the importance 
of epigenetic dysregulation in medulloblastoma initiation and progression. High throughput approaches including gene 
expression array, next-generation sequencing (NGS), and methylation profiling have now clearly identified at least four 
molecular subgroups within medulloblastoma, each with distinct clinical and prognostic characteristics. These studies have 
clearly shown that despite the overall paucity of mutations, clinically relevant events do occur within the cellular epigenetic 
machinery. Thus, this review aims to provide an overview of our current understanding of the spectrum of epi-oncogenetic 
perturbations in medulloblastoma.
Methods  Comprehensive review of epigenetic profiles of different subgroups of medulloblastoma in the context of molecular 
features.
Summary  Epigenetic regulation is mediated mainly by DNA methylation, histone modifications and microRNAs (miRNA). 
Importantly, epigenetic mis-events are reversible and have immense therapeutic potential.
Conclusion  The widespread epigenetic alterations present in these tumors has generated intense interest in their use as 
therapeutic targets. We provide an assessment of the progress that has been made towards the development of molecular 
subtypes-targeted therapies and the current status of clinical trials that have leveraged these recent advances.
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Introduction

Medulloblastoma (MB), a malignant embryonal tumor of 
childhood, accounts for 20% of all brain tumors in pediatrics 
[1]. Current multimodal treatment is associated with poten-
tial lifelong morbidities and a high risk for relapse [2]. Previ-
ous classification was based upon histopathological designa-
tions of classic, desmoplastic nodular, MB with extensive 
nodularity (MBEN), and large cell/anaplastic [2]. However, 
significant heterogeneity in outcomes exists among patients 
treated uniformly based on histopathological and clinicora-
diographical findings, underscoring the need to understand 
tumor biology as means to impact a patient’s clinical course. 
Thus, work from several groups has led to the molecular 
stratification of MB into four major subgroups: WNT, SHH, 
Group 3, and Group 4 [3]. Current World Health Organiza-
tion (WHO) classification is based upon integration of these 
two methods of classification, with the WNT, SHH, Group 
3, and Group 4 tumors further sub-divided based on histo-
pathology (Fig. 1).
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Historically, prognosis and therefore treatment was deter-
mined by a limited number of factors including age, extent 
of resection, and metastatic disease [4]. However, recent 
advances in tumor profiling have important prognostic 
implications [2], leading to a therapeutic shift with a greater 
emphasis on molecularly based risk adapted therapy and 
targeted therapy. Here, we provide an overview of our cur-
rent understanding of the molecular landscape of MBs and 
the clinical implications.

Because children have not lived long enough to acquire 
spontaneous mutations, they tend to develop tumors with 
low mutational burden [5]. Indeed, several studies over the 
last decade have highlighted aberrations in developmental 
programs such as lineage specification, which are governed 
by spatial and temporal changes in epigenetic processes, 
as a hallmark of MB tumors [6]. Several lines of evidence 
suggest that epigenetic mechanisms play significant roles 
in subtype specific MB tumorigenesis, which in turn has 
engendered an active focus on targeting these processes 
for therapeutic purposes either alone or in combination 
with standard of care [7]. Broadly speaking, epigenetics 
refers to any heritable phenotypic changes in the absence 
of changes in nucleotide sequence. Here, we will discuss 

DNA methylation, post-translation modification of histones, 
and non-coding RNAs, specifically microRNAs (miRs) as 
effectors of epigenetic changes in MB cells.

DNA methylation

In mammals, DNA methylation occurs almost exclusively 
within the context of CpG dinucleotides and an estimated 
80% of all CpG sites are methylated. CpG islands (CGI) are 
clusters of CpG dinucleotides that are often located near the 
5′ end (promoter region) of genes. Methylation of promoter 
CGIs is rare in normal tissues, but frequent in cancers, and 
is usually associated with a closed chromatin structure and 
transcriptional silencing of the gene [8, 9]. However, the 
genome-wide DNA hypomethylation seen in parallel con-
tributes to genomic instability and carcinogenesis [10, 11].

Methylation status has been utilized to classify multiple 
tumor types, including MB, and for the identification of bio-
markers [12–17]. DNA methylation analysis is considered 
a method of choice for molecular tumor diagnosis, which 
may help further clinical stratification of patients with MB 
[18–23]. As mentioned above, MB has been historically 
classified into four major histopathological groups: classic, 
nodular/desmoplastic (ND), MBEN and large cell/anaplas-
tic (LCA). Of these forms, LCA tumors have been associ-
ated with the worst prognosis, and ND tumors have more 
favorable outcomes [24]. With recent advances in genom-
ics, gene expression profiling, and DNA methylation analy-
sis, MB has more recently been divided into the four major 
subgroups; WNT, SHH, Group 3, and Group 4, each with 
distinct molecular and clinical characteristics [25–28]. The 
recent development of advanced algorithms for integrative 
genomics has provided a deeper understanding of the het-
erogeneity within these subgroups, subdividing these four 
major subgroups into 7 to 12 subtypes [22, 29, 30]. In one of 
the largest of these analyses, Cavalli et al. used 763 samples 
to define 12 subtypes of MBs using the similarity network 
fusion method to successfully integrate gene expression and 
DNA methylation data [29].

First described by Toyota et al., CGI methylator phe-
notype (CIMP) is characterized by a high degree of con-
cordant CGI methylation in a subset of colorectal tumors 
[31]. In MBs, CDKN2A, CASP8, HIC1, CDH1, RASSF1 
(tumor suppressor genes) [32–35], MGMT (DNA repair 
gene) [36], PTCH1 (the negative regulator of SHH signal-
ing) [37], the SFRP family (inhibitors of the WNT signaling 
pathway) [38], DRD4 (brain development) [39], and ZIC2 
(the transcriptional repressor) [40] are silenced by promoter 
CGI methylation. Initially, Lindsey et al. suggested that 
the CIMP did not exist in MB [32]. MB showed slightly 
higher CGI methylation than normal cerebellum, but with-
out evidence for a CIMP. The gene silencing by promoter 

WNT SHH Group 3 Group 4
Sex ratio 

(M:F)

Age

Histology

Metastasis
at diagnosis

Overall 
survival

Proposed # 
of subtyles

Genomic
 features
Molecular 
aberrations

Cytogenetics

Targeted
Therapetics

Genetic 
inhibitors

Epigenetic
inhibitors

1:1 1:1 2:1 3:1

Classic, LCA
Classic, 

desmoplastic, 
MBEN, LCA

Classic, LCA Classic, LCA

5-10% 15-20% 40-45% 35-40%

>95%

TP53-mutated: 
~40%

TP53-wildtype: 
~80%

~50% ~75%

2 (WNT-α, 
WNT-β)

4 (SHH-α, SHH-β, 
SHH-γ, SHH-δ)

3 (Group 3α, 
Group 3β, and 

Group 3γ)

3 (Group 4α, 
Group 4β, and 

Group 4γ)

CTNNB1, DDX3X, 
SMARCA4, 

KMT2D, CREBBP, 
CDH1, ARD1A, 
ARID2, TP53

PTCH1, SUFU, 
SMO, GLI2, TP53, 
YAP1, IDH1, TERT

MYC, GLI1B, 
GFI1, OTX2, 

DDX31, 
SMARCA4

MYCN, CDK6, 
SNCAIP, KDM6A

Monosomy 6
Gain: 3q, 9p

Loss: 9q, 10q, 
14q, 17q

Isochromosome 
17q

Gain: 1q, 7, 18
Loss: 8q, 10q, 

11q, 15q, 16q, 17p

Isochromosome 
17q

Gain: 4, 7q, 17, 
18q

Loss: 8p, 10p, 11

PARP, EGFR, 
WEE-1, ALK 

PARP, EGFR, 
WEE-1, ALK 

PARP, EGFR, 
WEE-1, ALK 

PARP, EGFR, 
WEE-1, ALK 

HDAC, BET/BRD SMO, HDAC, 
BET/BRD 

HDAC, BET/BRD, 
EZH2 

HDAC, BET/BRD, 
EZH2, CDK4/6 

Fig. 1   Characteristics of the different subgroups of medulloblastoma. 
Age at diagnosis, histological features, subtypes, frequency of metas-
tasis, molecular abnormalities, and targeted therapies are summarized
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hypermethylation was not a prominent feature, and many 
differentially methylated promoters were at genes that were 
not expressed even in unmethylated samples [17]. However, 
in adult patients with gliomas, IDH1 mutations represent a 
hallmark genetic event that exhibits a distinct hypermeth-
ylation phenotype which is referred to as G (glioma)-CIMP 
[41–43]. Somatic mutation of the IDH1 gene was also found 
to establish CIMP in IDH-mutant astrocytomas and oligo-
dendrogliomas, as well as secondary glioblastomas arising 
from these tumors [41]. In MB, a recent study revealed that 
their five IDH1 mutated SHH-MB samples were CIMP posi-
tive [30], suggesting that IDH1 mutations are the molecular 
basis of CIMP in MB tumorigenesis. However, El-Ayadi 
et al. could not confirm the CIMP in their single IDH1-
mutated SHH-MB case [44]. This discrepancy may be due 
to low sample size of IDH1-mutated tumors in both studies. 
Further studies are needed to understand the wider role of 
DNA methylation patterns in MB, along with their clinical 
impact (Table 1).

Large genomic domains that are devoid of DNA methyla-
tion, which are termed as DNA methylation valleys, DMVs 
[45], or canyons [46], are generally hypomethylated in nor-
mal tissues. DMVs have been reported to contain CGIs that 
are particularly prone to silencing by hypermethylation in 
cancer [45, 47, 48]. In addition to these epigenetic gene 
down-regulations occurring in MB, highly prevalent regions 
of hypomethylation (linked to transcription factor binding 
sites) correlating with increased gene expression have also 
been detected, which may cause the differential transcrip-
tional networks between MB subgroups [17]. At the same 
time, an MB subgroup-specific gain of DNA methylation in 
DMVs was also linked to reactivation of repressed genes due 
to densely packed chromatin [17, 49]. Moreover, partially 
methylated domains affecting up to one-third of the genome 
showed increased mutation rates and gene silencing in an 
MB subgroup-specific manner [17].

Further, and most importantly, DNA methylation analysis 
can point to possible therapies using epigenetic drugs. For 
example, tumors that exhibit a CIMP may be responsive to 
drugs that inhibit DNA methylation [50]. Some of the first 
epigenetic drugs proposed as anti-cancer therapeutics were 
DNA methylation inhibitors such as 5-azacytidine (5-aza-
CR) and 5-aza-2′-deoxycytidine (5-aza-CdR) when it was 
realized that they can cause tumor cells to differentiate in 
culture. These nucleoside analogs incorporate into DNA and 
trap DNA methyltransferases onto DNA by preventing their 
release from the cytosine analog after adding the methyl 
group. This mechanism depletes their availability in the cell, 
preventing their activity and restoring expression of tumor 
suppressor genes [51].

Histone modifications

Histone modifications are crucial for spatial and temporal 
control of gene expression during development and for adult 
cell homeostasis. In eukaryotic cells, the amino-terminal 
tails of histones in nucleosomes are subject to covalent 
chemical modifications that cooperate to govern chroma-
tin state and gene expression. At least ten different types of 
histone modifications on more than 50 residues of histone 
tails have been described [52, 53]. Acetylation, methyla-
tion, phosphorylation, and ubiquitylation are the best stud-
ied modifications, although, sumoylation, GlcNAcylation, 
citrullination, butyrylation, crotonylation, and isomeriza-
tion are also known to occur [52–55]. Dynamic regulation 
of these modifications by families of enzymes that add 
(writers), remove (erasers), or read (readers) are key for 
functional translation and serve to turn “on” or “off” gene 
expression by modulating active and repressive chromatin 
states [56, 57]. Several lines of evidence support a role for 
aberrations in chromatin remodelers in MB development 

Table 1   Aberrant histone modification in medulloblastoma

Genes Histone modification Expression Pathways affected Sample type References

hMOF/KAT8 H416ac Decreased DNA damage Patient tumors [63]
PCAF/KAT2B H3K9Ac Decreased Proliferation, apoptosis Cell lines [64]
HDAC2 Histones (H2A, H2B, H3 

and H4)
Increased Proliferation Patient tumors, cell lines [69]

HDAC5 Not defined Increased Proliferation, differentiation Patient tumors, cell lines [70]
HDAC9 Not defined Increased Proliferation, differentiation Patient tumors, cell lines [70]
SIRT1 H4K16, H3K9 Increased Cell cycle, apoptosis Patient tumors, cell lines [79]
EZH2 H3K27me3 Increased Proliferation, differentiation Patient tumors, cell lines [91]
UTX/KDM6A H3K27 Increased Proliferation, differentiation Mouse model, cell lines [94]
JMJD3/KDM6B H3K27 Increased Proliferation, differentiation Mouse model, cell lines [94]
JMJD2B/KDM4B H3K9, H3K36 Increased Not defined Patient tumors [89]
JMJD2C/KDM4C H3K9, H3K36 Increased Not defined Patient tumors [89]
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[6] (Table 2). Mutations, deletions, or amplifications in 
genes encoding epigenetic modifiers are seen across all four 
molecular subgroups [58–61]. These contribute to abnormal 
acetylation and methylation of lysine (K) in MB tumors [7].

Histone acetylation decompacts DNA, most commonly to 
upregulate gene expression [52]. The enzymes that catalyze 
the addition of acetyl (Ac) groups to histone lysine residues 
are called histone acetyltransferases (HATs), and are divided 
into three major families: the Gcn5-related N-acetyltrans-
ferase family (GNAT), the MYST family (MOZ, Ybf2, Sas2, 
TIP60), and the orphan family (CBP/EP300 and nuclear 
receptors) [62]. Human MOF (hMOF), a HAT for H4K16 
acetylation, is downregulated in MB tumors and is associ-
ated with poor outcomes for patients [63]. Downregulation 
of PCAF, a HAT, reduces H3K9Ac on SHH target gene 
promoters (Ptch1 and Gli1) and decreases proliferation and 
increases apoptosis of tumor cells [64]. The HATs, CBP 
and p300, which catalyze H3K27Ac, a marker for active 
enhancers, are mutated in MB tumors. Genome-wide studies 
to assess H3K27Ac and recognition of the mark by BRD4 
revealed a consequent widespread disruption of enhancer 
and super-enhancer activity in medulloblastomas [65, 66]. 
Additionally, p300 can also acetylate Gli2 to modulate SHH 
pathway activity [67].

The opposing process of deacetylation is catalyzed by his-
tone deacetylases (HDACs), which causes chromatin com-
paction and transcriptional repression. There are four distinct 
families of HDACs: Class I, II, and IV are Zn2+-dependent, 
whereas the Class III/Sirtuins are NAD-dependent [62, 68]. 
Several HDACs are implicated in MBs [69, 70]. HDAC2 
expression is higher in the SHH, Group 3, and Group 4 MBs 
compared to normal brain and WNT-driven tumors [69]. 
HDAC2 depletion promotes MB cell death and pre-clinical 
studies showed that MYC-amplified group 3 MB cell lines 

exhibit sensitivity to class I HDAC inhibitors [69]. Upregu-
lation of HDAC5 and HDAC9 expression in MB samples 
has been shown to be associated with poor overall survival 
[70]. Consistent with their role in cell cycle regulation and 
differentiation, HDAC5 and HDAC9 loss promotes a reduc-
tion in tumor cell viability [70–72]. MBs exhibit recurrent 
somatic mutations in N-CoR-HDAC corepressor complexes 
[65]. Elevated expression of transcriptional repressors that 
HDACs associate with has also been shown, suggesting that 
their activity could be perturbed independent of expression 
changes. For example, expression of the RE1 silencing 
transcription factor (REST) is elevated in SHH and Group 
4 MBs, and is associated with poor prognosis [73–76]. 
HDACs 1 and 2 are required for REST-mediated silencing of 
neuronal differentiation genes and inhibition of their activity 
blocks MB growth in vitro and in vivo [76, 77]. Similarly, 
HDACs 1 and 3 interact with the transcriptional repressor 
insulinoma-associated 1 (INSM1) to regulate the expression 
of NeuroD/Beta2, a gene involved in neuronal differentia-
tion [78]. Finally, expression of SIRT1, a class III HDAC, is 
upregulated in MBs and its knockdown or inhibition caused 
G1 arrest and apoptosis in tumor cells [79].

The bromodomain (BRD) and bromodomain extrater-
minal (BET) family proteins recognize and bind acety-
lated histone lysine residues to regulate the transcription of 
oncogenic transcription factor drivers. BET/BRD inhibition 
downregulates MYC, an important driver of Group 3 MB 
[66, 80]. In MB samples, targeting BRD4 decreased cell sur-
vival in pre-clinical models, suggesting an important role for 
this reader in MB growth [49, 81–83]. Interestingly, DNA 
methylation is seen to inversely correlate with distribution 
of activating enhancer-associated H3K27ac and BRD4 on 
chromatin in MBs [49]. Hovestadt et al. have shown that 
increased DNA methylation was associated with gain of 

Table 2   Alterations of miRs in medulloblastoma

miR Expression in tumor Targeted genes Pathways affected by targeted genes References

miR-9 Decreased REST/TrkC Proliferation, apoptosis, differentiation [137, 138]
miR-17 Increased TOPORS, BAMBI [139]
miR-17-92 cluster Increased – [121, 122]
mIR-34a – c-Met Cell proliferation, survival, metastasis [140]
miR100 Increased BTG2 [139]
miR106b Increased – [139]
miR124 Decreased CDK6, REST/NRSF, SLC16A Proliferation, apoptosis, differentiation [138, 141–143]
miR-125a Decreased TrkC Apoptosis [137]
mIR-128a Decreased BMI1 Self-renewal, cell proliferation, senescence [116]
mIR-199-5p Decreased HES1 Self-renewal, cell proliferation, differentiation [144]
miR218 Decreased EGFR, CTNND2 Cell proliferation [139]
miR-125b
miR-326
miR-324-p

Decreased SMO, GLI1 Cell proliferation [119]
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H3K4me3, loss of H3K27me3, and increased gene expres-
sion in DMVs [17].

Histone methylation, which can occur on lysine or argi-
nine residues, does not alter histone charge, but directly 
impacts chromatin structure and regulates gene transcrip-
tion. Changes in mono-, di-, or tri-methylated lysines of 
histones are seen in MB tumors [33–35]. Lysine methyla-
tion can occur on histone H3 (K4, K9, K27, K36, and K79) 
and histone H4 (K20) [84]. Whereas methylation of H3K4, 
H3K36, and H3K79 is associated with gene activity, that of 
H3K9, H3K27 and H4K20 mostly results in gene silencing. 
The coordinated activities of methyltransferases (writers) 
and histone lysine demethylases (KDMs) (erasers) control 
the state of methylation marks to turn transcription on and 
off [85]. Most histone lysine methyltransferases (HMTs), 
except Dot1L, contain a SET domain (Su(var)3–9, enhancer 
of zeste and trithorax) [86]. HMTs MLL1-5, SET1A, 
SET1B, SETD7, and PRDM9 modify H3K4; G9a, GLP, 
SUV39H1, SUV39H2 and SETDB1 methylate H3K9; 
SETD2, NSD1-3, ASH1L, and SYMD2, target H3K36; 
EZH1and EZH2 methylate H3K27; DOT1L targets H3K79; 
and finally, SET 8, SUV420H1, and SUV420H2 methylate 
H4K20 [87]. Genomic sequencing has identified inactivat-
ing mutations of MLL2/KMT2D and MLL3/KMT2C and 
deletions of histone lysine methyltransferases (EHMT1 and 
SMYD4) and Polycomb group (L3MBTL2 and L3MBTL3) 
genes in human MBs [88, 89]. Since MLL2 and MLL3 can 
catalyze monomethylation of histone H3K4 on enhancers, 
changes in their activity affect the enhancer landscape in 
tumors [88, 90]. Elevated expression of EZH2, EED and 
SUZ12, components of the PRC2 complex in MBs, together 
with the demonstration of high H3K27me3 in Groups 3 and 
4 MBs supports an oncogenic role for these remodelers in 
MB genesis [59, 66, 91].

Histone lysine demethylases KDMs are divided into the 
lysine demethylase 1 (KDM1) and the jumonji C (JmjC) 
containing protein families [87]. KDM1 family includes 
only two members, LSD1 (lysin-specific demethylase 1, 
KDM1A) and LSD2 (KDM1B). The Jumonji C (JmjC) 
containing protein family represents the larger KDM class, 
and include about 30 enzymes grouped into KDM2-7 sub-
families in humans [92]. UTX/KDM6A and ZMYM3 (zinc 
finger MYM-type3) control H3K27 and H3K4 methylation. 
UTX/KDM6A has a tumor suppressive function, and muta-
tions and homozygous deletions in the gene are enriched in 
Group 4 MBs [66]. Since UTX/KDM6A is also a subunit 
of MLL2/3 complexes and its K3K27 demethylating activ-
ity is coordinated with H3K4 methyltransferase activity of 
MLL2/3, mutations in these genes are mutually exclusive in 
MBs [59, 93]. Loss of SHH-dependent cerebellar granule 
neuron progenitor (CGNP) proliferation following JMJD3/
KDM6B inhibition suggest a role for the enzymes in Group 
4 and SHH medulloblastoma tumorigenesis [59, 94]. Finally, 

recurrent focal amplifications in JMJD2C and JMJD2B, 
genes involved in controlling histone H3K9 methylation, 
are described in human MBs [89]. Homozygous deletion 
of EHMT1, a H3K9 demethylase, is seen in MB, and global 
decreases in H3K9me2 levels are reported in nearly 40% of 
MB tumors compared to normal samples [61, 89].

Integrative deep-sequencing analysis has clearly identi-
fied recurrent mutations in SMARCA4, a key component 
of the SWI/SNF chromatin-remodeling complex, in WNT-
activated and Group 3 tumors [58]. Pre-clinical studies on 
histone phosphorylation and ubiquitination are restricted 
to a few examples in MBs. Inhibition of WEE1, a tyrosine 
kinase and a regulator of the S/G2 checkpoint, impairs MB 
cell growth [95, 96]. WEE1 phosphorylates H2B at Tyr37 
and inhibits transcription of multiple histone genes. The 
resultant change in DNA/histone ratio affects mitotic entry 
[97, 98]. Reduced expression and allelic deletion of REN 
(KSCTD11), a component of the Cullin3 E3 ubiquitin ligase, 
is seen in SHH-MBs [99]. It ubiquitinates and promotes deg-
radation of HDAC1, resulting in suppression of SHH signal-
ing and MB growth [99].

MicroRNA (miRNA)

miRNAs are short sequences about 19–25 nucleotides long 
that negatively regulate the expression of target oncogenic 
or tumor suppressive genes and drive cancer progression. 
Several reviews have covered the specific roles of miRNAs 
in MB and other pediatric brain tumors, which are summa-
rized in Table 2 [100–110]. As discussed below, small RNA 
signature changes correlate with initial transformation in the 
different medulloblastoma subtypes and may have potential 
application in risk stratification [111–116]. MBs are thought 
to arise from perturbations in normal brain development and 
neural lineage specification [117, 118]. From this perspec-
tive, the analyses by Ferretti et al. using proliferating and 
differentiating CGNPs, the proposed cell of origin for SHH 
medulloblastoma, provides an excellent view of changes 
in miR levels during normal neurogenesis and their altera-
tion during tumorigenesis [119]. These authors defined a 
signature of 34 murine miRNAs whose expression is also 
seen in human SHH medulloblastoma samples. Work by two 
separate groups showed the importance of the miR-17/92 
cluster in driving SHH-medulloblastoma progression in 
mice [120–122]. Gokhale et al. identified overexpression of 
miR-193a, miR-224/miR-452 cluster, miR-182/miR-183/
miR-96 cluster, and miR-148a in WNT-driven medulloblas-
tomas [123]. Ectopic expression of miR-193a and miR-224 
could inhibit proliferation and increase the radio-sensitivity 
of medulloblastoma cells in culture [123]. Non-WNT, non-
SHH medulloblastomas with downregulated miR-592 or 
overexpressing miR-182 were associated with poor survival 
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[124]. miR148a targets Nrp1, a gene involved in the control 
of invasion, metastasis and angiogenesis, and its upregulated 
expression in WNT-medulloblastomas confers a survival 
advantage [125]. Two complementary studies highlighted 
the link between miR-183-96-182 cluster and upregulation 
and activation of PI3K/AKT/mTOR pathway activation in 
MYC amplified Group 3 tumors [120, 126].

Finally, the expression of miRNAs can be inactivated by 
aberrant DNA hypermethylation, highlighting cross-talk 
between the two epigenetic regulatory pathways [127].

Clinical implications

The establishment of a clear role for epigenetics in MB 
tumorigenesis has allowed the development of novel diag-
nostic and therapeutic tools (Table 3). Methylation profiling 
of MBs has revealed additional subgroups within the desig-
nated subtypes of MBs, therefore providing diagnostic infor-
mation [7, 23, 25]. Though hypomethylating agents 5-aza-
cytidine and decitabine have been extensively evaluated in 
other pediatric tumors, their clinical application in brain 
tumors is surprisingly lacking, especially given the hyper-
methylation of tumor suppressor genes in SHH- and WNT-
MBs [33, 40, 128, 129]. A study is evaluating gemcitabine, 
a DNA synthesis inhibitor, in combination with the CDK4/6 
inhibitor ribociclib, in the setting of recurrent or refractory 
MBs in children [130]. Ribociclib is also being evaluated in 
combination with trametinib (MEK inhibitor) or sonidegib 
(a SMO inhibitor) in Group 3/Group 4, WNT/SHH-activated 
and SHH-activated tumors, respectively (NCT03434262). 
A phase I trial using a combination of prexasertib (a small 
molecule CDK inhibitor, mainly active against CHEK1, with 
minor activity against CHEK2) and cyclophosphamide in 
participants with recurrent/refractory Group 3 and Group 4 
medulloblastoma and recurrent/refractory Sonic Hedgehog 
(SHH) medulloblastoma is also ongoing (NCT04023669). 
CDK4/6 inhibitors are also being studied in combination 
with everolimus (mTOR inhibitor) as well as with irinotecan 
and temozolomide (NCT03387020, NCT03709680).

Histone modifiers have also been examined clinically 
in pediatric MB. The Children’s Oncology Group (COG) 
recently completed a phase I study of suberanilohydroxamic 
acid (SAHA)/vorinostat, an HDAC inhibitor in combination 
with temozolomide, in 19 children with relapsed/refractory 
CNS disease (NCT1076530) [131, 132]. This study using 5 
days of vorinostat along with temozolomide demonstrated 
safety and tolerability, with three patients exhibiting stable 
disease and one partial response [132]. A study combining 
vorinostat with the proteasome inhibitor bortezomib, has 
also been completed in children with recurrent/refractory 

solid tumors including CNS malignancies, but results have 
not yet been published (NCT01132911). Vorinostat was also 
investigated in combination with isotretinoin in a feasibility 
study, enrolling 33 participants (NCT00867178). And lastly, 
a phase I trial to study fimepinostat, a HDAC/PI3Kinase 
inhibitor, in children and adolescents with brain tumors is 
currently active and recruiting patients (NCT03893487).

EZH2 inhibitors are under investigation in several 
CNS tumors, including relapsed or progressive MBs 
(NCT03213665). Similarly, BRD/BET inhibitors are 
being assessed in children with recurrent cancers including 
MBs (NCT03904862). Drugs targeting EHMT1/EHMT2 
and LSD1 have shown efficacy in vitro and in pre-clinical 
investigations, but remain to be explored in the clinical 
context [73, 133].

In SHH MBs, early phase studies targeting the SHH path-
way using Smoothened (SMO) inhibitors vismodegib (GDC-
0449) and sonidegib (LED-255) as single agents revealed 
initial clinical response in some patients; however, the quick 
development of tumor progression prompted their evaluation 
in combination with traditional chemotherapeutic regimens 
[134] (NCT01125800, NCT01708174, NCT01878617). 
Since several SHH-pathway components including SMO 
and GLI oncogenes are subject to epigenetic modulation, 
the combination of SMO inhibitors in combination with 
epigenetic modifiers is attractive clinically. In recurrent/
refractory MB, a molecularly based group-specific targeted 
therapy utilizing ribociclib with sonidegib is currently being 
evaluated (NCT03434262) [134–136].

Conclusions

Medulloblastoma is a complex and heterogeneous dis-
ease entity, with each subgroup exhibiting its own dis-
tinct genetic profile and clinical treatment course. Despite 
advances in the molecular classification of these sub-
groups, treatment has historically been defined by histo-
pathological and clinicoradiological findings. Mutational 
targets are being investigated in this population but are 
limited by the relatively quiescent mutational landscape, 
particularly in Group 3, which shows the lowest overall 
survival. Our more recent understanding of epigenetics has 
elucidated several possible targetable aberrations in each 
subgroup, some of which are already being investigated in 
clinical trials. As these discoveries continue, their integra-
tion into the classification and therapeutic implications of 
these tumors provides hope for improved outcomes with 
decreased sequelae for this vulnerable population.
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