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Opinion statement

Medulloblastoma is the most frequently diagnosed primary malignant brain tumor among
children. Currently available therapeutic strategies are based on surgical resection, che-
motherapy, and/or radiotherapy. However, majority of patients quickly develop therapeu-
tic resistance and are often left with long-term therapy-related side effects and sequelae.
Therefore, there remains a dire need to develop more effective therapeutics to overcome
the acquired resistance to currently available therapies. Unfortunately, the process of
developing novel anti-neoplastic drugs from bench to bedside is highly time-consuming
and very expensive. A wide range of drugs that are already in clinical use for treating non-
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cancerous diseases might commonly target tumor-associated signaling pathways as well
and hence be of interest in treating different cancers. This is referred to as drug
repurposing or repositioning. In medulloblastoma, drug repurposing has recently gained
a remarkable interest as an alternative therapy to overcome therapy resistance, wherein
existing non-tumor drugs are being tested for their potential anti-neoplastic effects
outside the scope of their original use.

Introduction

Medulloblastoma (MB) is the most frequently diag-
nosed primary malignant brain tumor diagnosed in
children [1], accounting for around a quarter of all
pediatric central nervous system (CNS) neoplasms
[2]. It is a highly aggressive tumor that usually de-
velops early during embryonic life [3•]. It mainly
originates from the cerebellar vermis and thus primar-
ily affects children in their first year of life [4]. Studies
have shown that MB arises from remnants of the
primitive neuroectoderm within the germinal matrix
of the fourth ventricle roof [5,6] or from the external
granular layer precursor cells [7,8].

It is approximated that MB affects around 3.9 per
million children aged less than 19 years old [9], and it
affects males more than females [9]. Although MB is
aggressive and highly invasive, the 10-year survival rate
is around 60–70% [9] and the 5-year survival rate ranges
between 70 and 85% [10,11] due to the multimodality
treatment approach and improved treatments methods
[5]. Nevertheless, there still exists an imbalance in sur-
vival rates where low- to middle-income countries re-
cord 33% [12] to 45.6% [13] 5-year progression-free
survival rates.

Classification of medulloblastoma subtypes
Histological classification of medulloblastoma

According to the World Health Organization (WHO), MB can be either
classified based on a histological classification or according to molecular
and genetic features. Histologically, MB can be divided into four distinct
subsets [14]: classic MB (CMB), desmoplastic/nodular MB (DMB), MB with
extensive nodularity (MBEN), and large cell/anaplastic with subgroups of
melanotic MB and medullomyoblastoma which are extremely rare [15].
CMB represents the most common histological subtype of MB and is
characterized by sheets of densely packed basophilic small round cells with
high nuclear-to-cytoplasmic ratio and showing a mitotic and apoptotic
activity [14]. Similar to CMB, MBEN shows small round tumor cells but is
associated with reticulin-free islands within a reticulin-rich stroma [16,17].
This subtype is also accompanied by a favorable prognosis [16]. As for
DMB, what distinguishes this subtype from CMB is the presence of
desmoplasia and marked tendency for neuronal differentiation [18]. Con-
sidering the large cell/anaplastic MB, it is a highly aggressive tumor subtype
that is usually located in the cerebellar vermis. Tumor cells show extensive
and marked nuclear pleomorphism with prominent nucleoli [18].
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Molecular classification of medulloblastoma
At the molecular level, according to the latest consensus nomenclature, 4 major
subgroups of MB were identified [19]: MBWNT-activated, MBSHH-activated,TP53-mutant,
MBSHH-activated,TP53-wildtype, and MBnon-WNT/non-SHH. The latter comprises two sub-
groups, MBnon-WNT/non-SHH, Group-3 [20,21] and MBnon-WNT/non-SHH, Group-4 [22,23],
which are characterized by high rates of disseminated disease and less under-
stood pathology [24•].

WNT-activated medulloblastoma
The WNT subgroup is the mostly known subgroup, with the best long-term
prognosis and survival rates that exceed 90% compared to other molecular
subgroups [25]. MBWNT-activated harbors activating mutations in the Wnt path-
way effector β-catenin 1 (CTNNB1) [26,27] and is characterized by positive
nuclear immunohistochemical (IHC) staining for β-catenin [28], AXIN1muta-
tion and AXIN2 deletion [29], and loss of chromosome 6 (monosomy six)
[30,31] which is considered a defining feature of this MB subgroup that is rarely
found in non-WNT MB tumors [32].

SHH-activated medulloblastoma
Regarding the SHH subgroup, it is most common in infants and adults. SHH-
activated MB constitutes 30% of all MB cases and is further subdivided into
TP53-mutant and TP53-wildtype [33]. It has a good prognosis in infants and is
usually caused by aberrant activation of the sonic hedgehog signaling pathway
[34]. Infantile MB can be due to germline mutations of the Shh negative
regulator SUFU. Somatic mutations, as in PTCH, SMO, and SUFU, and even
amplification of GLI1 and GLI2 were also observed in this MB subgroup
[35,36,32,37]. As for identification methods, immunohistochemical staining
for SFRP1 or GAB1, in addition to the deletion of chromosome 9q, is consid-
ered to be limited to SHH-MB (the gene for PTCH is located on the chromo-
some 9q22) [32].

Non-WNT/non-SHH medulloblastoma
The non-WNT/non-SHH MB group is subdivided into groups 3 and 4, both of
which have moderately high overall expression ofMYCN [38]. NPR3 has been
postulated to be a potential molecular marker for MBnon-WNT/non-SHH, Group-3,
while KCNA1, CDK6, andMYCNmarker genes characterize MBnon-WNT/non-SHH,

Group-4 [39]. In general, unlike the other groups, group 3 is the most common
type in infants and is associated with a very poor prognosis [32]. In non-WNT/
non-SHHMB groups 3 and 4, H3K27me3 is recurrently dysregulated. Normally,
H3K27 is methylated by a methyltransferase EZH2 and demethylated by
demethylase 6A (KDM6A) and KDM6B. KDM6A and other members of the
KDM family were found to be mutated in both groups 3 and 4. Besides, EZH2
overexpression and gain of 7q (where EZH2 is located) were observed in these
subgroups. Henceforth, disruption of genes in cooperation with histone meth-
ylation might represent major events leading to tumor development [40–42].
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Current treatment modalities for medulloblastoma:

Different treatment modalities are currently in use clinically for MB ranging
from surgical intervention to chemotherapy and radiation therapy [43,44].
Those therapeutic options, however, are accompanied with substantial adverse
effects including, for instance, 7–50% increased risk of postoperative cerebellar
mutism syndrome (pCMS) following surgery [45–47]. Also, although
craniospinal radiotherapy prolongs patient survival, it decreases patients’ intel-
ligence quotient (IQ) by 2–4 points per year [48] and is accompanied by other
toxicities like impaired spinal growth and endocrine dysfunction [49]. Despite
that surgery remains the major therapeutic option to remove the malignant
mass, radiotherapy is used to destroy tumor cells via proton therapy, and
chemotherapy is also given in single-drug or combinatorial approaches [50].
Other treatments are also available that include molecular targeted therapies,
such as silencing endogenous miRNA or targeting specific pathways that un-
derlie MB initiation and growth [51].

Despite the available therapies, MB like many other CNS tumors [52,3]
recurs in many patients pertaining to development of therapeutic resistance,
which necessitates looking for more effective treatments [53]. Recently, a prom-
ising approach has emerged which enables the usage of non-cancerous ap-
proved drugs that commonly target specific cancer-related pathways, for cancer
[54••]. This approach is known as drug repurposing or repositioning and serves
as a potential novel option for treating different tumors and overcoming
therapy resistance.

Repurposing approved drugs in cancer
Repurposing drugs in cancer via experimental and computational approaches

Despite the advancement in cancer research, developing anti-tumor therapies is
still very challenging due to the different stages that any drug needs to pass
through before approving it for clinical use and more importantly due to
development of therapeutic resistance. Therefore, new approaches are required
to tackle this issue. Drug repurposing is a promising approach recently emerging
across different tumor types where existing drugs are being used beyond their
original non-cancer indications to be utilized in cancer therapy. Repositioning
of FDA-approved drugs for new clinical indications offers advantages of re-
duced drug development time and cost [55], taking into consideration that
pharmacokinetic, pharmacodynamic, and toxicological data have been already
assessed [56]. Drug repurposing has been effective in different oncologic con-
ditions. Anthracyclines, for instance, are class of antibiotics including doxoru-
bicin, daunorubicin, epirubicin, and idarubicin that have been shown to insti-
gate chemotherapeutic potentials in various tumor types such as breast cancer
[57,58] and lymphoma [59,60].

Repurposing FDA-approved drugs usually requires combining both experi-
mental (in vitro and in vivo screening of the potential drugs [61]) and compu-
tational “in silico” approaches (computationally determine drug interactions
with specific targets [62]). In the pediatric population, children with brain
tumors have not shown a significant improvement in their survival [63], raising
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the need for identifying more effective drugs to improve patients’ quality of life
and prolong survival [64,54••,65]. In this review, we summarize the drug
repurposing approaches that have been described so far in MBs (Table 1).

Overcoming the challenges in crossing the blood-brain barrier
The blood-brain barrier (BBB) comprises highly specialized microvascular en-
dothelial cells [66] that are characterized by specific properties such as lack of
fenestration, tight junctions, and presence of solute carriers and transporters
[67]. It is implicated in the maintenance of brain homeostasis and protecting
the brain tissue from different substances, toxins, and pathogens [68]. Brain
tumors recruit the vascular network of the brain for their continuous growth;
however, the BBB hinders delivery of some drugs to the tumor site in the brain
[69], particularly some chemotherapeutic agents that are too large or hydro-
philic to cross it [70,71]. Different factors compromise the drugs’ ability to reach
the brain, such as efflux pumps (P-glycoprotein) that actively transport drugs
back into the blood [72], physiochemical properties of drugs [73], and the
glymphatic system [74,75].

MB is subcategorized into different subgroups possessing distinct genomic
profiles [76]. Recently, it was declared that the MB genotype dictates the
phenotype of BBB, explaining the disparate prognoses pertaining to the differ-
ential chemotherapeutic responsiveness seen between the various MB subtypes
[77]. For example, while MBWNT-activated has an unfunctional BBB rendering it
more vulnerable to chemotherapy, MBSHH-activated has an intact BBB [77]. This
heterogeneity in the BBB phenotypes among the different MB subgroups raises
a need for identifying novel therapeutic targets and trying new drugs to improve
the management of MB. Using non-cancer drugs that have already gained FDA
approval and trying them as potential anti-cancer therapies for MB might be a
possible option to bypass the timely stages of drug testing needed. Those drugs
include antihyperlipidemic agents, medications used for cardiovascular dis-
eases, anthelmintic drugs, antimicrobials, antivirals and antiretroviral drugs,
nonsteroidal anti-inflammatory drugs (NSAIDs), medicines used in neurolog-
ical disorders, and others as outlined below.

Drug repurposing in medulloblastoma
Lipid-lowering agents

Statins are frequently prescribed drugs for the treatment of high cholesterol
levels in the blood [78]. Studies have reported anti-tumor effects of statins and
decreased cancer-related mortality among patients with different tumor types
who are taking statins; hence, they have been proposed for drug repurposing
studies [79]. Statins are effective competitive inhibitors of β-hydroxy β-
methylglutaryl-CoA (HMG-CoA) reductase [80], which is a key enzyme in the
cholesterol synthesis pathway [81,82]. Inhibition of HMG-CoA reductase via
statins decreases production of mevalonate derivatives that are essential for
many growth regulatory processes [83] such as proliferation, apoptosis, and
differentiation [84].

Anti-cancer effects of lovastatin, a well-known and widely used statin, have
been reported inmany studies [85–87]. In one in vitro study, lovastatin induced
apoptosis, reduced cell viability, and inhibited cell proliferation of MB cell lines
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[88], and in another it induced DNA laddering and shrinkage of MB cells [83].
The anti-proliferative and apoptotic effects of lovastatin are mediated by mod-
ulation of p27K1P1, P53 and p21WAF1 gene expression [89]. Takwi et al. also
showed that lovastatin upregulatesmiR-33 gene expression, thus decreasing cell
proliferation and inducing apoptosis in vitro, besides reducing tumor growth
and improving survival in MB tumor-bearing mice in vivo [90].

Simvastatin, another antihyperlipidemic drug, was shown to induce
apoptotic cell death in a time- and dose-dependent manner in MB cell
lines in comparison to the control group via activation of different
caspases (Caspase 3, 7, 8 and 9) and down-expression of anti-apoptotic
Bcl-2 and Mcl-1 proteins [91]. An in vivo study revealed that simvastatin
treatment of Ptch1+/- CB17/SCID mice repressed the Shh signaling path-
way with a significant decline in glioma-associated oncogene 1 (Gli1)
expression level in MB cells due to disruption of cholesterol biosynthesis
[92]. In addition, simvastatin decreased the number of proliferating cells,
reduced MB growth, induced apoptosis, and inhibited SHH-MB progres-
sion when combined with vismodegib [92].

In the samemilieu, fenofibrate—which belongs to the “cholesterol-lowering
drugs” family—is usually prescribed as a monotherapy for treating elevated
triglyceride levels in patients with severe hypertriglyceridemia [93]. This drug
was found to induce peroxisome proliferator activated receptor alpha
(PPARα)–mediated cell cycle arrest and apoptosis in BsB8 mouse MB cell line
as well as human MB Daoy and D283 cell lines [94]. Fenofibrate also inhibited
IGF-I-induced phosphorylation events, which in turn attenuated the clonogenic
growth of MB cells [94].

Cardiac glycosides
Cardiac glycosides (CGs) comprise a wide range of naturally derived
steroid compounds prescribed for chronic heart failure [95]. They inhibit
the enzyme sodium-potassium ATPase (Na+/K+-ATPase) [96,95] leading
to depletion of potassium and raising sodium and calcium concentrations
within cells [97]. Many studies investigated the anti-neoplastic effects of
CGs mainly by inhibiting Na+/K+-ATPase [97,98]. CGs also exhibited
antiproliferative and proapoptotic properties in tumor cells by activation
of sarcoma (SRC) kinase and epidermal growth factor receptor (EGFR),
prompting activation of mitogen-activated protein kinase (MAPK)-ERK1/2
signaling pathway and upregulating cell cycle inhibitor P21CIP1 [99].
Moreover, a systematic in vivo study revealed that digoxin inhibits cell
growth, induces apoptosis, and instigates modulation of gene expression
related to ERK/AKT signaling pathway in groups 3 and 4 MB cell lines
(MED8A and D283). It also significantly prolonged survival in orthotopic
PDX mice models when combined with radiation therapy [100]. In the
same study, proscillaridin, another CG, was reported to decrease cell
viability in both group 3 and 4 MB cell lines (MED8A and D283)
[100]. In the same milieu, Wolle et al. studied the interplay between
ouabain and EGF signaling and demonstrated that this CG inhibits
EGF-induced Erk1/2-Akt activation, and attenuated EGF-induced actin
reorganization, prevented stress fiber formation, and inhibited MB cell
motility [101].
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Other cardiovascular disease drugs
Other medications used in heart diseases were also part of the repurposed drugs
in MB. Verapamil, a calcium channel blocker (CCB) and ABC transporter
inhibitor used in cardiovascular diseases, was reported to hinder cell viability
and growth of TE671 human MB cell line [102] and inhibit xenograft tumor
formation in vivo [103]. Propranolol, a β-adrenergic receptor blocker, was
found to induce apoptosis and inhibit proliferation of MB cells by inhibiting
Akt and Erk phosphorylation andMAPK signaling cascades [104]. Additionally,
propranolol was shown to induce antiproliferative effects onDaoyMB cells due
to the inhibition of PMP-induced MMP-9/Erk and I B phosphorylation [105].

Anthelminthic drugs
Anthelminthic drugs are widely used to treat parasitic worm infections [106].
Pyrvinium, prescribed to treat pinworm infections, was documented to inhibit
Wnt [107] and SHH pathways [108] and decrease the expression of SHH
markers, Gli1 and Ptch2 [109] besides reducing tumor growth and size of MB
allograft [109]. Mebendazole, another antiparasitic drug, has recently been
characterized by its anti-tumor properties via inhibition of a number of protein
kinases [110] including vascular endothelial growth factor receptor 2 (VEGFR2)
kinase activity in Ptch+/-, p53-/-MB allograft [111,112]. It also improved survival
and reduced tumor growth in tumor-bearing mice [113]. Another study by Bai
et al. showed that combination therapy of elacridar and mebendazole poly-
morph C improved survival in D425 MB xenograft model [114]. The therapeu-
tic effect of nifurtimox, another anthelmintic drug, was also tested in MB in
combination with tetrathiomolybdate showing increased ROS cellular level in
MB cell cultures [115].

Antimicrobial drugs
Antimicrobial drugs have gained considerable attention in cancer treatment.
Adjuvant antimicrobial therapy is usually given to cancer patients prophylacti-
cally to prevent opportunistic infections by bacteria and viruses following
chemotherapy due to immunosuppression [116]. Salinomycin, anticoccidial
drug, is involved in treating many cancer types mainly by modulating Wnt, NF-
B, and p38 MAPK signaling pathways [117–119]. It suppressed cell prolifera-
tion and metastasis, disrupted cell cycle progression, and induced cell death in
MB cells by modulation of different proteins including MYC, PDGFRβ, Bcl-2,
and p21 [120], besides suppressing Notch signaling [120] which is linked to the
development and progression of MB [121]. Itraconazole, a commonly used
anti-fungal drug [122], was also studied inMB revealing an inhibition in tumor
growth in a mouse allograft model via suppression of the SHH pathway [47].

Antiviral/antiretroviral drugs
Antiviral drugs were also tested as antineoplastic agents due to their antiprolif-
erative and cytotoxic properties [123]. Valganciclovir, anti-human cytomegalo-
virus (HCMV) drug, was shown to inhibit MB tumor growth in vitro and in vivo
and reduce tumorigenic and clonogenic capacity of D324 MED, D283 MED,
and UW228-3 cell lines by targeting DNA polymerases and decreasing prosta-
glandin E2 (PGE2) synthesis [124]. Abacavir (ABC), one of the most effective
drugs for acquired immunodeficiency syndrome (AIDS) [125], is well
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characterized by its telomerase inhibition activity and termination of DNA
elongation [126]. Rossi et al. showed that abacavir treatment decreased cellular
growth, disrupted cell cycle progression, and reduced proliferation of Daoy and
D283MED MB cell lines [127]. Interestingly, both MB cell lines showed sub-
stantial senescence features after abacavir treatment [127].

NSAIDs
Nonsteroidal anti-inflammatory drugs (NSAIDs) are highly selective cyclooxy-
genase (COX) inhibitors that suppress prostaglandin (PG) synthesis [128].
Recent studies have provided evidence that NSAIDs might serve as potential
candidates for cancer treatment in various tumor types [129–134]. Celecoxib, a
NSAID, has been used in many treatment protocols for pediatric tumors due to
its anti-angiogenesis and immune-modulating effects [135]. It was shown to
induce in vitro and in vivo anti-tumor effects in MB [124] via downregulating
the expression of phosphorylated-STAT3 and STAT3-related genes (JAK2, BCL2,
and c-MYC) [136]. It also enhanced the efficacy of radiotherapy [137] and
synergistically improved survival of MB-bearing mice [136]. Noticeably,
in vivo results indicated a potential role of celecoxib in inhibiting angiogenesis
gene expression (KDR, VEGFC and PDGFRA) as well as stem cell genes (Nestin,
CD133, Sox-2, MSI1, and Bmi-1) [137]. These potential effects of celecoxib in
MB were also documented by Baryawno et al., suggesting the prospective
benefit of celecoxib for treating patients with MB [138].

Diclofenac, another COX-1/COX-2 inhibitor, was shown to reduce cell
viability, proliferation, and colony formation in vitro and to further decrease
microvascular density and tumor size in vivo [138]. Tolfenamic acid, another
NSAID, also caused a decrease in tumor weight and volume by about 40% in
MB athymic nude mice model mediated by a decrease in targeting specificity
protein 1 (Sp1) and survivin expression [139] that are implicated in cell
proliferation, differentiation growth [140], and apoptosis [141] of MB. Another
in vitro study investigated the effectiveness of NSAIDs as antitumor drugs and
revealed that flurbiprofen treatment suppressed the growth of MB cells and
disrupted cell cycle progression via modulating cyclin B and P53 protein
expressions [142].

Drugs used for neurological disorders
Medications used in neurological disorders have recently gained huge popular-
ity in oncology as treatment options for the complications resulting from cancer
and its therapy among this population of patients [143] as well as being
repurposed to treat the cancer itself [144,145]. Ether-a-go-go 2 (EAG2) potas-
sium channels (which are present in brain regions [146]) are shown to be highly
expressed in MB tissues and involved in MB development and progression
[147] and hence are potential targets for the antipsychotic drug thioridazine
(a potent EAG2 channel blocker) [148]. Additionally, valproic acid, a histone
deacetylase inhibitor (HDACi), decreased cell viability of MB cell lines when
combined with cisplatin (CDDP) [149] and reduced tumorigenicity in vivo at a
clinically safe concentration [150]. The antitumor activity of valproic acid was
associated with histone hyperacetylation (H3 and H4) and modulation of
several genes expression (P21, c-MYC, CDK4, and TP53) [150].
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Lithium has been characterized by neurotrophic effects and considered as a
main therapeutic drug for the treatment of bipolar disorder [151,152]. It has
profound effects on cell cycle, metabolism, and cell proliferation by which it
potently inhibits cell cycle and accelerates cell death [153]. An in vitro study
revealed that lithium targeted GSK3-β, slowed cell metabolic activity, arrested
cell cycle, and induced non-apoptotic cell death in Daoy andD283MB cell lines
[154]. Another study documented that WNT activation by lithium improved
the effect of radiotherapy in TP53mutant MB cells [155] suggesting a therapeu-
tic property of lithium when combined with radiation for MB treatment but
specifically for the TP53-mutant subgroup. Other antipsychotic medicines, such
as sertraline, chlorprothixene, and chlorpromazine, were documented to inhibit
MB cell growth and sphere formation in Daoy cells via inhibition of
REST/NRSF-mSin3 interaction [156], raising the opportunity of new drug can-
didates for MB.

Dermatological drugs
Drugs used in dermatological diseases have also shown potential anti-tumor
effects in MB. For instance, 13-cis retinoic acid, a dermatological drug, was
shown to reduce cell viability and induce apoptosis via activating of bone
morphogenetic protein-2 (BMP-2) synergistically with SAHA, a histone
deacetylase inhibitor [157]. It also enhanced differentiation of D283 cells and
reduced tumor volume in xenograft MB models [158]. All-trans-retinoic acid
(ATRA) induced a dose-dependent decrease in cell viability and promoted
apoptosis by activating caspase-3/poly(ADP-ribose) polymerase I effector path-
way [159]. In addition, ATRA significantly inhibited cell and clonal prolifera-
tion and induced cellular differentiation of MB cells [159].

Other drugs
The antitumor effects of many other drugs were also studied inMB. Rapamycin,
a well-known immunosuppressant drug, instigated a potent effect against cell
proliferation and migration [160]. In other CNS tumors such as glioblastoma
and neuroblastoma, rapamycin has proved to be effective in inducing anti-
tumor effects in vitro, by targeting a cancer stem cell (CSC) subpopulation of
cells [161]. In MB, treatment of Daoy cell lines with rapamycin showed a
marked anti-tumor effects via inhibition of mTOR signaling [162]. Fingolimod,
another immunosuppressant drug used in multiple sclerosis, was reported to
have a therapeutic potential in MB, where it arrested cell cycle, decreased
viability and proliferation, and enhanced apoptosis of MB cells, besides de-
creasing tumor growth in vivo [163].

Unexpectedly, contradictory results were obtained following MB treatment
with 17β-estradiol. Mancuso et al. showed an antiproliferative effect of 17β-
estradiol in Ptch1-associated MB [164]. However, Belcher et al. documented the
potential of estradiol to increase MB cell growth and migration [165], whereas
17β-estradiol treatment did not affect cell proliferation at any concentration
tested in MB cell lines [166].

Sulfasalazine, an inhibitor of nuclear factor Kappa-B (NF B) signaling, was
demonstrated to inhibit cell growth in MB cell lines [167]. The antitumor
therapeutic effect of phenformin, an antidiabetic drug, was also tested in vitro
and in vivo where phenformin treatment induced a significant inhibition ofMB
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cell growth and proliferation [168]. Interestingly, another antidiabetic medica-
tion metformin showed anti-tumor effects in glioblastoma and neuroblastoma
CNS tumors via targeting CSCs in vitro [169].

Disulfiram, an FDA-approved drug for treatment of alcoholism [170], has
been repurposed to study its anticancer effects owning to its multiple pharma-
cological mechanisms in targeting tumor cells and triggering oxidative stress
[171], activating MAPK pathway [172], and suppressing the proteasome system
[173]. In MB, disulfiram was shown to induce apoptosis and decrease cell
viability and colony formation in Daoy cell line. It also induced a significant
regression of tumor growth in MB xenografts [174].

Conclusions

In order to provide more comprehensive care for patients with cancer, it
is crucial to decipher the mechanisms of action pertaining to the differ-
ent drugs used clinically and understand the pleiotropic adverse effects
and perspective interactions they might have with other medications.
However, the dire need for developing and finding more efficient anti-
tumor drugs urges the scientific society to change its approach towards
seeking new strategies, most importantly via drug repurposing, to reach
its goals in treating cancer patients and improving their quality of life.
Repositioning previously FDA-approved drugs is indeed a promising
strategy in cancer treatment particularly pediatric tumors owning to its
various advantages including cost efficiency and shortened time-frame
for safety pharmacology testing in drug development. At a clinical level,
many FDA-approved drugs have been put under investigation in clinical
trials on medulloblastoma patients [175], including anthelminthic drug
“mebendazole” (ClinicalTrials.gov; phase I clinical trial; NCT02644291),
cholinesterase inhibitor “donepezil” that is used to treat Alzheimer’s
disease (ClinicalTrials.gov; phase I clinical trial; NCT00452868), brady-
kinin B-2 receptor agonist “lobradimil” (ClinicalTrials.gov; phase II clin-
ical trial; NCT00019422), and acetylcysteine, mannitol, and sodium
thiosulfate (ClinicalTrials.gov; phase I clinical trial; NCT00238173).

Although treatment by repurposing drugs might seem to be a long way
ahead to achieve, it carries potential hope for managing cancer in
general and MB in particular. This novel therapeutic approach could
help thousands of MB patients suffering worldwide and awaiting more
efficient therapies to come up for their disease. Further experimental and
clinical studies are needed to establish repurposed drugs as adjuvant
remedies for MB and other tumors.
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