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A B S T R A C T   

Purpose: In populations without contrast enhancement, the imaging features of atypical brain parenchyma in-
flammations can mimic those of grade II gliomas. The aim of this study was to assess the value of the conven-
tional MR-based radiomics signature in differentiating brain inflammation from grade II glioma. 
Methods: Fifty-seven patients (39 patients with grade II glioma and 18 patients with inflammation) were divided 
into primary (n = 44) and validation cohorts (n = 13). Radiomics features were extracted from T1-weighted 
images (T1WI) and T2-weighted images (T2WI). Two-sample t-test and least absolute shrinkage and selection 
operator (LASSO) regression were adopted to select features and build radiomics signature models for 
discriminating inflammation from glioma. The predictive performance of the models was evaluated via area 
under the receiver operating characteristic curve (AUC) and compared with the radiologists’ assessments. 
Results: Based on the primary cohort, we developed T1WI, T2WI and combination (T1WI + T2WI) models for 
differentiating inflammation from glioma with 4, 8, and 5 radiomics features, respectively. Among these models, 
T2WI and combination models achieved better diagnostic efficacy, with AUC of 0.980, 0.988 in primary cohort 
and that of 0.950, 0.925 in validation cohort, respectively. The AUCs of radiologist 1’s and 2’s assessments were 
0.661 and 0.722, respectively. 
Conclusion: The signature based on radiomics features helps to differentiate inflammation from grade II glioma 
and improved performance compared with experienced radiologists, which could potentially be useful in clinical 
practice.   

1. Introduction 

World Health Organization (WHO) grade II glioma is the common 
primary brain tumor and surgery is the first-line treatment [1]. Brain 
parenchyma inflammation is a common non-tumor lesion with associ-
ated neurologic dysfunction, and non-operative therapy is the main 
treatment [2]. In clinical practice, clinicians should be vigilant for dis-
tinguishing inflammation from grade II glioma. In particular, in some 
cases, laboratory tests are atypical and clinical symptoms and signs of 
these entities often overlap [3–8]. This diagnostic dilemma might lead to 

a biopsy, an inadvertent operation, and even radiation therapy, which 
eventually can aggravate patient’s condition. Therefore, it is of utmost 
importance to seek alternative noninvasive diagnostic tool to guide 
appropriate treatment. 

Magnetic resonance imaging (MRI), as a non-radiation and non- 
invasive imaging technique, offers superb resolution for qualitative 
diagnosis of intracranial lesions [9,10]. However, MR diagnostic 
dilemma still exists in atypical cases for distinguishing inflammation 
from grade II glioma. Based on conventional MR sequences, both 
inflammation and glioma can manifest as lesions with mass effect, 
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hypointensity on T1-weighted image (T1WI), hyperintensity on 
T2-weighted image (T2WI), no enhancement on post-contrast T1WI 
(T1CE). Although a few study reported that MRI features based on 
conventional MRI can help distinguish inflammatory lesions from gli-
oma [11], but the subjective feature evaluation and lack of quantitative 
indicators limit its clinical application. Even though various functional 
MR techniques are used for differential diagnosis, no expert consensus 
has been established [3,12–14]. Therefore, it is urgent to find a more 
efficient and stable way to distinguish inflammation from glioma based 
on MRI in non-contrast enhanced populations. 

Radiomics, which is a promising and rapidly growing discipline, 
refers to extraction of large number of quantitative features from 

medical images and converting the information into mineable data [15]. 
Subsequent quantitative analysis of these data can support clinical 
decision-making [16]. Compared with human eyes, radiomics conquer 
the limitation of visual assessment of images that offer little information 
on heterogeneity of lesions [17]. Currently, radiomics has been widely 
used in neurological diseases to facilitate improved clinical 
decision-making [18–20]. 

To our knowledge, there is no radiomics-based study for differenti-
ating brain inflammation from grade II glioma in non-contrast enhanced 
populations. The aim of this study was to explore the utility of extracted 
radiomics features in discriminating brain inflammation from grade II 
glioma. 

Fig. 1. Flow diagram for patient selection.  

Fig. 2. Study flow chart: First, VOI segmentation was done. Second, six types of texture features within VOIs were extracted by using MATLAB 2014b (MathWorks, 
USA), including the shape, global, GLCM, GLRLM, GLSZM and NGTDM features. Third, two-sample t-test and LASSO were adopted to select features. Finally, different 
radiomics signature models for discriminating inflammation from glioma were constructed. The predictive performance of model was evaluated via receiver 
operating curve and compared with the assessment of radiologists. 
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2. Materials and methods 

2.1. Patient population 

This retrospective study was approved by local ethics committee of 
our hospital, and informed consent was waived. Atypical cases in our 
study are defined as: patients have no symptoms of prodromal infection, 
and no inflammatory changes in the serum and cerebrospinal fluid (CSF) 
tests. The antibodies related to demyelinating diseases of the central 
nervous system and anti-neuronal autoantibodies are also negative. On 
MR images, the lesion shows hypointensity on T1WI, hyperintensity on 
T2WI without obvious mass effect, no enhancement on T1CE. 

Between September 2013 and October 2019, 63 cases from the Pic-
ture Archiving and Communication Systems (PACS) were investigated 
consecutively. The inclusion criteria were: (1) cases where the radiology 

report was undecided between inflammation versus glioma (the key-
words (inflammation or glioma) were set by the retrieval function of 
PACS); (2) inflammation or grade II glioma confirmed by pathology; (3) 
no history of surgery or treatment before MRI examination; (4) no 
enhancement on T1CE. The exclusion criteria were as follows: (1) poor 
image quality such as significant motion or susceptibility artifacts; (2) 
incomplete imaging data. 

Two cases without T1WI and T2WI, 4 cases with poor image quality 
(motion artifact, 3 cases; metal artifact, 1 case) were excluded. The final 
study population contained 57 cases. The included cases were then 
divided into two groups according to the time points. The first group 
(recruited from September 2013 to September 2017) consisted of 44 
patients (13 inflammations and 31 gliomas). They formed the primary 
cohort of 29 males and 15 females (mean age, 41.6 ± 14.5 years; age 
range, 8–68 years). The second group (recruited from October 2017 to 
October 2019) consisted of 13 consecutive patients (5 inflammations 
and 8 gliomas). They constituted the independent validation cohort of 6 
males and 7 females (mean age, 46.3 ± 17.1 years; age range, 18–72 
years). The patient selection flow chart is shown in Fig. 1. 

2.2. Imaging data acquisition 

The whole brain MRI examinations were performed on a 3 T MRI 
system (Discovery MR750, General Electric Medical System, Milwaukee, 
WI, USA) with an eight-channel head coil (GE Medical System). Pre- 
contrast axial T1WI, T2WI and sagittal T2WI were acquired in all cases. 
The imaging parameters are as follows: 1) axial T1WI: repetition time/ 
echo time (TR/TE), 1750 ms/24 ms; matrix size, 256 × 256; field of view 
(FOV), 24 × 24 cm2; number of excitation, 1; slice thickness, 5 mm; gap, 
1.5 mm. 2) T2WI: TR/TE, 4247 ms/93 ms; matrix size, 512 × 512; FOV, 
24 × 24 cm2; number of excitation, 1; slice thickness, 5 mm; gap, 
1.5 mm. 3) sagittal T2WI: TR/TE, 4338 ms/96 ms; matrix size, 
384 × 384; FOV, 24 × 24 cm2; number of excitation, 2; slice thickness, 
5 mm; gap, 1.0 mm. 

Table 1 
Characteristics of patients in the primary and validation cohorts.  

Characteristic 
Primary cohort (n = 44) Validation cohort (n = 13) 

Inflammation Glioma P Inflammation Glioma P 

No. of patients 13 31 NA 5 8 NA 
Age   0.724   0.449 
Mean ± SD  40.4 ± 14.3  42.1 ± 14.7   51.4 ± 12.4  43 ± 21.2   
Gender, n (%)    0.448   0.592 
Male  10/13 (76.9) 19/31 (61.3)  3/5 (60.0) 3/8 (37.5)  
Female  3/13 (23.1) 12/31 (38.7)  2/5 (40.0) 5/8 (62.5)  
Symptom, n (%)   0.522   0.346 
Seizure  4/13 (30.8) 8/31 (25.8)  2/5 (40) 1/8 (12.5)  
Headache/nausea/dizziness 3/13 (23.1) 11/31 (35.5)  1/5 (20) 3/8 (37.5)  
Loss of consciousness 0/13 (0) 3/31 (9.7)  0/5 (0) 0/8 (0)  
Dysphasia 1/13 (7.7) 2/31 (6.5)  0/5 (0) 2/8 (25)  
Blurred vison 0/13 (0) 1/31 (3.2)  0/5 (0) 0/8 (0)  
Memory deficits 2/13 (15.4) 1/31 (3.2)  1/5 (20) 0/8 (0)  
Psychiatric symptoms 1/13 (7.7) 0/31 (0)  1/5 (20) 0/8 (0)  
Numbness/weakness of limbs 2/13 (15.4) 5/31 (16.1)  0/5 (0) 2/8 (25)  
Onset, n (%)    0.205   0.239 
Acute (< 2 weeks) 7/13 (53.8) 8/31 (25.8)  3/5 (60.0) 2/8 (25.0)  
Subacute (2 weeks - 3 months) 3/13 (23.1) 9/31 (29.0)  2/5 (40.0) 2/8 (25.0)  
Chronic (> 3 months) 3/13 (23.1) 14/31 (45.2)  0/5 (0) 4/8 (50.0)  
Side, n (%)    0.879   0.739 
Left  8/13 (61.5) 17/31 (54.8)  4/5 (80.0) 4/8 (50.0)  
Right  4/13 (30.8) 12/31 (38.7)  1/5 (20.0) 3/8 (37.5)  
Bilateral  1/13 (7.7) 2/31 (6.5)  0/5 (0) 1/8 (12.5)  
≥2 lobe involved, n (%)   0.105   1.000 
Yes  3/13 (23.1) 16/31 (51.6)  2/5 (40.0) 3/8 (37.5)  
No  10/13 (76.9) 15/31 (48.4)  3/5 (60.0) 5/8 (62.5)  
Pathologic procedure, n (%)   NA   NA 
Biopsy  1/13 (7.7) 5/31 (16.1)  0 1/8 (12.5)  
Resection  12/13 (92.3) 26/31 (83.9)  5/5 (100) 7/8 (87.5)  

P values were calculated by two-sample t-test for continuous variables and Fisher’s exact test for categorical variables. 

Table 2 
Radiomics features selected by two-sample t-test.  

T1WI (n = 19) T2WI (n = 26) 

eccentricity; volume; glcm Textures. 
Contrast; glcm Textures. Homogeneity; 
glcm Textures. Dissimilarity; glrlm 
Textures. SRE; glrlm Textures. LRE; 
glrlm Textures. RLN; glrlm Textures. 
RP; glrlm Textures. RLV; glszm 
Textures. SZE; glszm Textures. LZE; 
glszm Textures. ZSN; glszm Textures. 
ZP; glszm Textures. ZSV; glszm 
Textures. LZHGE; ngtdm Textures. 
Coarseness; ngtdm Textures. Busyness; 
ngtdm Textures. Strength 

eccentricity; volume; global Textures. 
Variance; global Textures. Skewness; 
glcm Textures. Entropy; glcm Textures. 
Homogeneity; glcm Textures. Variance; 
glrlm Textures. SRE; glrlm Textures. 
LRE; glrlm Textures. RLN; glrlm 
Textures. RP; glrlm Textures. LGRE; 
glrlm Textures. SRLGE; glrlm Textures. 
LRLGE; glrlm Textures. RLV; glszm 
Textures. LZE; glszm Textures. GLN; 
glszm Textures. ZP; glszm Textures. 
LGZE; glszm Textures. SZLGE; glszm 
Textures. LZHGE; glszm Textures. ZSV; 
ngtdm Textures. Coarseness; ngtdm 
Textures. Contrast; ngtdm Textures. 
Busyness; ngtdm Textures. Strength  
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Finally, T1CE was acquired after intravenous administration of 
0.1 mmol/kg gadopentetate dimeglumine. 

2.3. Volume-of-interest segmentation and feature extraction 

All images were anonymised and stored in DICOM format. Three- 
dimensional volume of interest (VOI) was achieved by using a free 
open-source software package (ITK-SNAP, version 3.6.0; http://itk 
-snap.org). Two experienced neuroradiologists (L.f.Y. and Y.H. who 
have 12 and 9 years of experience, respectively, in neuro-oncology im-
aging) manually outlined the edge of the entire high signal lesion area 
layer by layer on axial T2WI images. For each layer, the contour line was 
carefully drawn while attempting to maintain an approximate distance 
of 2− 3 mm from the lesion margin to minimize the partial volume effect. 
All layers were fused into a VOI (Fig. 2). Finally, VOIs on T2WI were 
copied to T1WI. 

Before feature extraction, all image data were normalized by trans-
forming the data into standardized intensity ranges for each imaging 
modality across all subjects, with a mean of 0 and a SD of 1 (i.e., z-score 
transformation). After data normalization, 3D quantitative feature 
extraction was conducted using MATLAB 2014b (MathWorks, USA). 
Three shape feature, 3 global feature, 8 gray level co-occurrence matrix 
(GLCM), 13 gray level run length matrix (GLRLM), 13 gray level size 
zone matrix (GLSZM) and 5 neighbourhood gray-tone difference matrix 
(NGTDM) were extracted from T1WI and T2WI, respectively. Therefore, 
for each mode, a total of 45 quantitative features were obtained. Details 
of the definitions and calculations of these quantitative features 
extracted in this study have previously been given [21–23]. To ensure 
intra- and inter-observer reproducibility, the robustness of all the fea-
tures based on VOIs was evaluated by both test-retest and inter-rater 
analysis [24]. 

2.4. Features selection, radiomics signature building and validation 

To improve the accuracy and efficiency of classification, irrelevant 
and redundant features were identified and excluded. Two feature se-
lection methods were employed sequentially to select informative 
radiomics features from 45 features (Fig. 2). First, two sample t-test was 
adopted to select those features with statistically significant difference 
between inflammation and glioma (P < 0.05). To increase the model 
interpretability and reduce overfitting, least absolute shrinkage and 
selection operator (LASSO) regression algorithm [25] was then applied 
in T1WI, T2WI and combination model (T1WI + T2WI) to select a subset 
of the most significant radiomics features with nonzero coefficients. 
Radiomics signature score (Rad-score) was calculated using a linear 
combination of selected features weighted by the corresponding LASSO 
coefficients. The receiver operating characteristics (ROC) curve (AUC) 
was used to evaluate the predictive performance of the radiomics 
signature in differentiating inflammation from glioma in both the pri-
mary and validation cohort. 

2.5. Pathologic diagnosis 

The final diagnosis was determined by surgical or puncture biopsy 
specimen and confirmed with pathology. Two neuropathologists (L.l.F. 
and J.M., with 10 and 8 years of experience in pathological diagnosis of 
central nervous system diseases, respectively), who was blinded to the 
MR findings, re-evaluated the pathological data. Histologically, variable 
chronic inflammatory cell infiltration and reactive gliosis are found in 
the inflammatory group. In some cases, distinction between gliomas and 
reactive gliosis is difficult by histology alone, especially in small biopsies 
from the infiltrating edge of lesion. Reactive gliosis features uniformly 
distributed astrocytes with regular spacing within the tissue and abun-
dant processes, which can be demonstrated by glial fibrillary acidic 
protein (GFAP) immunohistochemistry. In contrast, diffuse infiltrating 
gliomas will be less uniformly distributed, tend to form cell clusters, and 

Fig. 3. Selection of features to subject LASSO regression and correlation-matrix heat map: a-c, selection of the tuning parameter (λ) in the LASSO model via 10- 
fold cross validation based on minimum criteria. Binomial deviances from the LASSO regression cross-validation procedure were plotted as a function of log(λ). The 
y-axis indicates binomial deviances. The lower x-axis indicates the log(λ). Numbers along the upper x-axis represent the average number of predictors. Red dots 
indicate average deviance values for each model with a given λ, and vertical bars through the red dots show the upper and lower values of the deviances. The vertical 
black lines define the optimal values of λ, where the model provides its best fit to the data. d-f, the correlation-matrix heat map based on the correlation between each 
feature pair of the selected feature. 
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have much more variable degrees of perinuclear cytoplasm and pro-
cesses. Besides, the loss of alpha thalassemia retardation syndrome X- 
linked (ATRX), mutation of TP53 and isocitrate dehydrogenase (IDH) 
based on immunohistochemistry are detected in the glioma. In light of 
the 2016 World Health Organization (WHO) classification of central 
nervous system tumors, genetic changes such as status of 1p/19q dele-
tion, mutation of IDH-1/2, and mutation of H3K27 M can provide more 
information on differential diagnosis. Consensus was achieved by 
discussion. 

2.6. Radiologist’s assessment 

To compare the diagnostic performance of the radiomics signature 
with visual assessment, all 57 cases were independently reviewed by two 
associate professors of neuroradiology (G.b.C and Y.c.H with 27 and 17 
years of neuroradiology experience, respectively). All patient names 
were de-identified prior to analysis and both radiologists had no prior 
knowledge of the final results. They had access to conventional MR 
images (T1WI, T2WI and T1CE) and other functional sequences 
(depending on the MRI sequence requested by the clinician). In addition, 
clinical information (age, gender and onset) were also provided to the 
radiologists. Diagnosis was based on image and clinical analysis ac-
cording to their respective clinical experience. They recorded the final 
diagnosis using a 4-point scale (1 = definite glioma; 2 = likely glioma; 3 
= likely inflammation; and 4 = definite inflammation) [26]. To assess 
intra-observer agreement, radiologists re-evaluated images after a two 
months’ washout period. 

2.7. Statistical analysis 

The normal distribution of data was investigated with Kolmogorov- 
Smirnov (K–S) test. Numerical variables with normal distribution were 
denoted as mean and standard deviation. Continuous and categorical 
variables were compared using two-sample t-test and Fisher’s exact test, 
respectively. ICCs were used to assess intra- and inter-observer repro-
ducibility of extracted features by two radiologists. Intra-observer 
agreements of radiologist’s assessment were evaluated with Cohen’s 
kappa coefficient. All statistical analyses above were performed with 
SPSS 20.0 software (IBM Corp, Chicago, IL, USA). Feature selection 
using two-sample t-test, Lasso regression algorithm, and correlation- 
matrix heat map generated using Pearson’s correlation were carried 
out in R software (version 3.3.2). Receiver operating characteristic 
(ROC) curve analysis was performed to determine the performance of 
radiomics signature and radiologist’s assessment, and accuracy and area 
under the curve (AUC) were obtained. Differences between the AUCs 
were compared by using a Delong test and performed using Medcalc 
version 18.5 software (MedCalc). P < 0.05 indicated a significant 
difference. 

3. Results 

3.1. Patients characteristics and feature robustness 

Chronic inflammatory cell infiltration with reactive gliosis were 
found in 18 inflammations. All 39 grade II gliomas included 29 cases of 

Fig. 4. Rad-score of different models for patients in primary and validation cohort.  
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diffuse astrocytoma, 6 cases of oligodendroglioma, and 4 cases of diffuse 
midline glioma. Relevant patient characteristics and MRI findings were 
summarized in Table 1. There were no significant differences in age, 
gender, onset and 2 MRI findings (side and ≥2 lobe involved) between 
the two groups (P > 0.05). 

The ICCs of 45 features for both test-retest analysis (T1WI, 0.816–1; 
T2WI, 0.875–1) and interrater analysis (T1WI, 0.756–1; T2WI, 0.831–1) 
were greater than 0.75, thus were robust for further analysis (the seg-
mentation results of the senior radiologist were used for further 
analysis). 

3.2. Feature selection, radiomics signature score building and diagnostic 
validation 

In the primary cohort, 19 features on T1WI and 26 features on T2WI 
with statistically significant difference between inflammation and gli-
oma (P < 0.05) were selected using two sample t-test (Table 2). After the 
Lasso regression algorithm was applied for further feature reduction, 4 
features in T1WI model, 8 features in T2WI model and 5 features in 
combination model (T1WI + T2WI) were chosen based on the corre-
sponding lambda (λ) value with minimal deviance. The selected features 
and corresponding heat map of correlation matrix were shown in Fig. 3. 

Three models of radiomics signature score were constructed with 
corresponding features selected above by means of linear combination 
according to their coefficients (Supplementary material). The rad- 
score for each patient in different modes are shown in waterfall plot 
(Fig. 4). In T2WI and combination model, there was significant differ-
ence in rad-score between inflammation and glioma in both the primary 
and validation cohort (Table 3). In T1WI model, the mean value of rad- 
score for patients with glioma was significantly higher than that of 
inflammation in primary cohort (P < 0.001), but no significant 

differences were found in validation cohort (P = 0.120). 
The diagnostic performance of the three models was evaluated using 

the ROC curve of the primary and validation cohort (Table 4). In the 
primary cohort, T2WI and combination models achieved higher diag-
nostic efficacy than T1WI model with an AUC of 0.980 and 0.988, and 
the same accuracy of 0.955, for differentiating inflammation from gli-
oma, respectively. In the validation cohort, efficacy of T2WI and com-
bination model was higher than T1WI model for differentiating 
inflammation from glioma, with an AUC of 0.925 and 0.950, and the 
accuracy of 0.846 and 0.923, respectively. 

Pairwise comparison of the AUCs revealed that significant differ-
ences were observed between T2WI and T1WI model (P = 0.029), and 
between combination and T1WI model (P = 0.013) in both primary and 
validation cohort, but no significant differences were found between 
T2WI and combination model (P = 0.106). 

3.3. Radiologist’s assessment 

The diagnostic performance of the two radiologists were summarized 
in Table 5. AUC and accuracy of the more experienced radiologist B’s 
assessment (AUC, 0.722; ACC, 0.737) were higher than those of radi-
ologist A (AUC, 0.661; ACC, 0.719). Excluding the possible diagnosis 
(scale 2 and 3), the accuracy of only counting definite diagnosis (scale 1 
and 4) is 0.544 for radiologist A, and 0.526 for radiologist B. However, 
no significant differences between AUCs from the two radiologists for 
differentiating inflammation from glioma (P = 0.237). Intra-observer 
agreement showed Kappa value of 0.813 for radiologist A and 0.865 
for radiologist B. 

4. Discussion 

In atypical cases with no contrast enhancement, distinguishing 
inflammation from grade II glioma based on MRI is challenging. In the 
current study of 57 cases, T1WI and T2WI were adopted to investigate 
the diagnostic performance of radiomics features in discriminating 
inflammation from glioma. We found that the MR-based radiomics 
signature (T2WI and combination model) was effective in discriminating 
inflammation from glioma, surpassing the level of experienced 
radiologist. 

T1WI and T2WI (rather than advanced MRI sequences, which would 
prolong the scanning time and generate higher costs), are the most 
commonly used imaging sequence set in daily clinical practice for pa-
tients with suspected glioma [27]. In addition, the patient does not need 
to be injected with contrast medium during T1WI and T2WI scanning, 
which is beneficial to those with renal failure or contrast medium allergy 

Table 4 
The diagnostic performance of three radiomics signature models.  

Model Primary cohort Validation cohort  

AUC 95 %CI Sensitivity Specificity ACC P AUC 95 %CI Sensitivity Specificity ACC P 

T1WI 0.811 0.665− 0.913 0.807 0.769 0.795 <0.001 0.775 0.505− 1.000 0.500 1.000 0.615 0.107 
T2WI 0.980 0.947− 1.000 0.936 1.000 0.955 <0.001 0.925 0.781− 1.000 0.750 1.000 0.846 0.013 
Combination 0.988 0.963− 1.000 0.936 1.000 0.955 <0.001 0.950 0.833− 1.000 0.875 1.000 0.923 0.008 

P values were calculated by the receiver operating characteristic (ROC) curve analyses. 
AUC = area under receiver-operating characteristic curve; CI = confidence interval; ACC = accuracy. 

Table 3 
Rad-score comparisons between inflammation and glioma in both the primary and validation cohort.  

Model Primary cohort Validation cohort  

Inflammation Glioma P Inflammation Glioma P 

T1WI − 7.313 ± 2.793 1.890 ± 1.016 <0.001 − 0.969 ± 2. 171 1.116 ± 2.175 0.120 
T2WI − 1.293 ± 1.451 2.697 ± 1.199 <0.001 − 0.854 ± 2.000 2.178 ± 1.444 0.009 
Combination − 1.349 ± 1.473 2.600 ± 1.066 <0.001 − 1.373 ± 0.961 2.367 ± 1.828 0.002 

P values were calculated by two-sample t-test. 

Table 5 
The diagnostic performance of two radiologists.  

Reader AUC 95 %CI ACC ACC§ P 

Radiologist A 0.661 0.519− 0.802 0.719 0.544 0.047* 
Radiologist B 0.722 0.591− 0.854 0.737 0.526 0.005* 

P values were calculated by the receiver operating characteristic (ROC) curve 
analyses. ACC =Number of cases with correct diagnosis (possible diagnosis 
(scale 2 and 3) + definite diagnosis (scale 1 and 4)) / 57; ACC§ = Number of 
cases with definite diagnosis (scale 1 and 4) / 57. 
AUC = area under receiver-operating characteristic curve; CI = confidence in-
terval; ACC = accuracy. 
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[28]. Therefore, using only two clinical routine sequences in the current 
study suggested that the proposed radiomics approach has the potential 
to be widely validated in clinical practice. To further investigate the 
contribution of each single MRI sequence for distinguishing inflamma-
tion from glioma, comparisons between T1WI and T2WI were performed. 

The diagnostic efficacy of T2WI was better than that of T1WI in primary 
and validation cohort. Moreover, 80 % of the features in the combina-
tion model are from T2WI, indicating that T2WI may provide more 
valuable information. Similar results were obtained in the study by 
Drabycz [29] and Petrujkić [30] where texture features extracted from 

Fig. 5. A 45-year-old male presented with left limb weakness for 2 months. MRI showed right temporal lobe lesion with mass effect hypointense on T1WI (a), 
hyperintense on T2WI (b, c, d), and no enhancement on T1CE (e, g, h). Mild restricted diffusion was observed on DWI (f). The value of Cho/Naa on proton magnetic 
resonance spectroscopy (i, j) was 1.48. No abnormality was found on magnetic resonance angiography (k). Postoperative histopathology confirmed chronic in-
flammatory cell infiltration with reactive gliosis. (l), hematoxylin and eosin (H&E) staining (×100). (m), glial fibrillary acidic protein (GFAP) immunohistochemistry 
(×200). (n), alpha thalassemia retardation syndrome X-linked (ATRX) immunohistochemistry (×200). The case was misdiagnosed as glioma by two radiologists 
(radiologist A, scale 4; radiologist B, scale 3). Correct diagnosis was predicted by three radiomics signature models. 
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T2WI performs better in differential diagnostic tasks. The possible 
explanation might be the fact that ischemia, edema and glioma are 
considered more obvious on T2WI, thus, texture features extracted from 
T2WI potentially provided more information reflecting the pathophysi-
ological changes of lesion than did on T1WI. The much longer echo time 
on T2WI may underlie this phenomenon [31]. However, interestingly, 
similar to previous study [32], combination model achieved higher AUC 
and ACC than did the use of either image model alone. The possible 
explanation is that biparametric MR images can provide more infor-
mation than the single parameter image. 

Redundant features are not conducive to model building. So Lasso is 
adopted in our study, a shrinkage method within linear regression 
models, which can automatically select features and produce sparse 
solutions [33]. It has the advantage of avoiding over fitting and is 
suitable for analyzing small samples with high-dimensional features. In 
our study, after the use of Lasso, fewer features are selected to recon-
struct the radiomics signature (4 in T1WI model, 8 in T2WI model and 5 
in combination model). It is worth noting that most of these selected 
features are first-order or second-order texture features, which have 
been proved to be very effective in distinguishing benign and malignant 

tumors [34–36]. 
The predictive performance based on radiomics signature was 

compared with radiologist’s assessment for the first time. Although the 
diagnosis of senior radiologists was based on more abundant clinical and 
imaging information (including medical history, laboratory tests, 
enhanced MR sequences and some functional MR sequences), the ac-
curacy of radiologist was lower than that of the radiomics signature. 
Notably, the diagnostic accuracy of radiologists based on definitive di-
agnoses (score 1 and 4) was 0.544 for radiologist A and 0.526 for 
radiologist B, respectively. The inconsistency between rich information 
and low diagnostic efficacy can be explained with three possible reasons. 
First, similar clinical manifestations and atypical laboratory tests in 
misdiagnosed cases make differential diagnosis difficult. As reported in 
the literature, despite of advanced molecular and serological diagnostic 
techniques, the causative pathogen of encephalitis cannot be detected in 
up to 60 % cases [37]. Second, unlike previous studies [11–14], which 
focus on high-grade gliomas, enhancement pattern plays an important 
role in differential diagnosis. However, all of our subjects were no 
contrast enhancement on post-contrast T1WI. Furthermore, the func-
tional MR (as shown in Figs. 5 and 6) features overlap between 

Fig. 6. A 64-year-old male presented with intermittent limb twitching with loss of consciousness for 4 months. MRI showed left frontal lobe lesion hypointense on 
T1WI (a), hyperintense on T2WI (b, d), and no enhancement on T1CE (e, h). No restricted diffusion was observed on DWI (c). The value of Cho/Naa on proton 
magnetic resonance spectroscopy (f, g) was 0.60. Postoperative histopathology confirmed diffuse astrocytoma (World Health Organization grade II). (i), hematoxylin 
and eosin (H&E) staining (×100). (j), glial fibrillary acidic protein (GFAP) immunohistochemistry (×200). (k), alpha thalassemia retardation syndrome X-linked 
(ATRX) immunohistochemistry (×200). The case was misdiagnosed as inflammation by two radiologists (both rated as scale 1). Correct diagnosis was predicted by 
T2WI and combination model, not T1WI model. 
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inflammation and glioma, making differential diagnosis difficult. 
Finally, interpretation of image feature is subjective, leading to potential 
bias. Moreover, even for senior radiologists, the subtle image feature 
differences are difficult to be recognized by visualization, and radiomics 
signature based on quantitative parameters can better characterize the 
lesion and further improve the discrimination of these two conditions. 

Although our study showed the potential usefulness of the radiomics 
signature in differentiating inflammation from glioma, there are several 
limitations. First, the sample size of retrospective study was relatively 
small, mainly because of the low clinical incidence of atypical cases, 
especially in the inflammation group. Second, the primary and valida-
tion cohorts were performed on the same MRI scanner. The robustness of 
our results remains to be validated with different scanners from multiple 
centers in the future. Third, the diagnosis of inflammation was based on 
postoperative histopathology, but its etiology was unknown. 

In conclusion, our results demonstrate the potential use of radiomics 
signature based on conventional MR sequences in differentiating 
inflammation from grade II gliomas in non-contrast enhanced pop-
ulations. Compared to the experience-dependent visual-based conven-
tional reading strategy, radiomics signature exhibited better diagnostic 
performances, which indicates its potential application in assisting the 
clinical decision making. 
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