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Abstract

Glioblastoma (GBM) develops from adult 

brain white matter and is the most common 

and lethal primary brain tumor, characterized 

by rapid growth and invasion. GBM tumors 

frequently spread into the contralateral hemi-

sphere, including in the beginning of tumor 

development. However, after complete resec-

tion of the tumor mass and chemo-radiotherapy, 

GBM commonly recurs around the tumor 

removal site, suggesting that the microenvi-

ronment at the tumor border provides thera-

peutic resistance to GBM cells. To improve 

patient prognosis, understanding the microen-

vironment at the tumor border is critical. 

Several microRNAs (miRNAs) show higher 

expression at the tumor border, with the top 

three involved in oligodendrocyte differentia-

tion. Oligodendrocyte progenitor cells (OPCs) 

may induce stemness and chemo- 

radioresistance in GBM cells, providing a 

supportive function to promote GBM.  This 

review describes important features of OPCs 

and insights into the “border niche,” a unique 

microenvironment that allows GBM cells to 

survive and recur at the tumor border.
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8.1  Introduction

The major cell types in the brain are neurons, 

glia such as astrocytes, oligodendrocytes 

derived from the neuroepithelium, and microg-

lia derived from erythromyeloid cells in the 

yolk sac during the early developmental stage 

[32, 76]. Glioblastoma (GBM) is the most 

common primary brain tumor and shares char-

acteristics with glial cells. Despite standard 

treatment using safe maximal resection and 

chemo-radiotherapy, GBM generally regrows 

and/or recurs. The mean 5-year survival rate of 

GBM patients is less than 10% [62, 74], which 

has not signi#cantly improved in the past sev-

eral decades.

The resulting tumor mass is easily detected 

using gadolinium-enhanced T1-weighted images 
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(Gd-T1WI) in magnetic resonance imaging 

(MRI). GBM cells invade white matter and 

migrate into the contralateral hemisphere through 

the corpus callosum, even in the early stages of 

tumor progression [86]. Enhanced tumor lesions 

are surrounded by edema, where invading GBM 

cells are detected pathologically. In cases in 

which enhanced tumor lesions are completely 

removed by surgical operation and chemo- 

radiotherapy, GBMs typically recur in the white 

matter around the tumor removal cavity but are 

rare in areas distant from the primary lesion [9, 

26, 66]. This suggests that glioma stem cells 

(GSCs) [71] which are responsible for recurrence 

survive in the tissue just outside of the enhanced 

lesion [26–28]. Biological characterization of 

this border area between the brain and tumor 

mass is essential for inhibiting recurrence and 

removing GSCs, which may improve the progno-

sis of patients with GBM.  Moreover, although 

GBM invades the white matter, it does not grow 

toward the empty cavity after tumor resection. 

These results suggest that the interaction between 

GBM cells and non-GBM cells is crucial for 

tumor invasion and regrowth. Unique microenvi-

ronments for GSC niches inside the tumor mass 

have previously been discussed, but studies 

investigating the outside of the tumor mass are 

rare [19, 26, 27, 34, 47, 64, 67, 68]. GBM cells 

and non-GBM cells, including immune cells, 

neural cells, and brain vascular cells, along with 

the extracellular matrix, form the GSC niche at 

the tumor border [26, 28, 64, 70]. Accumulation 

of oligodendrocyte progenitor cells (OPCs) and 

microglia/macrophage at the tumor border con-

tributes to the unique GBM microenvironment, 

promoting stem like characteristics and chemo- 

radioresistance [26]. The relationship between 

GBM and microglia/macrophages has been 

reported previously [2, 26, 48, 65]. This review 

focuses on the interesting characteristics of OPCs 

and their interactions with GBM [26, 28], as well 

as the novel concept of a “border niche” com-

posed of accumulating oligodendrocyte lineage 

cells (OLCs) named glioma-associated oligoden-

drocytes (GAOs).

8.1.1  Cells Residing in the Brain 
Parenchyma

The central nervous system (CNS) is composed 

of neurons, glia (astrocytes and oligodendro-

cytes), and microglia. Neurons, astrocytes, and 

oligodendrocytes originate from neuroepithelial 

cells; in contrast, microglia are derived from 

erythromyeloid progenitors in the yolk sac and 

migrate into the CNS early during development 

[23, 32, 76] (Fig.  8.1a). Recently, it had been 

reported that the human brain contains a glia to 

neuron ratio of less than 1:1, and the total number 

of glia is less than 100 billion [83]. Roughly, the 

glial subtypes in human brains are 20% astro-

cytes, 3–10% OPCs, 25% oligodendrocytes, and 

5–15% microglia, all of which in$uence nervous 

system development and maturation [1] 

(Fig.  8.1b). The most abundant types of glia in 

the brain are OLCs, including OPCs and mature 

oligodendrocytes.

8.1.2  GBM Development 
and Recurrence in the White 
Matter

Generally, GBM-enhanced mass lesions visual-

ized by Gd-T1WI MRI are located in the white 

matter, through which GBM extensively invades 

[86]. Upon recurrence, enhanced mass lesions 

are identi#ed in the white matter surrounding the 

empty post-resection cavity [9, 26] (Fig.  8.2a). 

Complete tumor resection was reported in 43 

(48.3%) of 89 newly diagnosed patients with 

GBM, which was con#rmed by Gd-T1WI MRI 

performed within 72  h after operation. After 

complete resection and chemo-radiotherapy, 

recurrence was observed in 30 (69.8%) cases in 

monthly MRIs during the observation period of 
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1.5–4.5 years post-resection. Primary recurrence 

was detected in the surrounding white matter in 

26 (87%) cases and in the distant white matter in 

1 (3%) case; dissemination was visualized in 

three (10%) cases, but recurrence in the gray mat-

ter was not observed [26] (Fig.  8.2b). These 

results suggest that white matter, but not gray 

matter, promotes the survival of GBM cells after 

chemo-radiotherapy. Thus, white matter at tumor 

borders provides factors that promote therapeutic 

resistance in GBM cells.

8.2  Change in miRNA Expression 
at the Tumor Border

To identify molecules at the tumor border 

involved in chemo-radioresistance and recur-

rence by promoting stem cell characteristics in 

GBM, miRNAs were evaluated because of 

their wide regulation of multiple targets and 

their secretion into the extracellular space, 

both which may alter the microenvironment 

[42, 44, 49].

Neural stem cells

in neuroepithelium

Progenitor cells

Differentiated cells
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Erythromyeloid cells
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Fig. 8.1 Main cell populations of the brain. (a) Neurons, 

astrocytes, and oligodendrocytes differentiate from NSCs. 

However, microglia originate from erythromyeloid cells 

in the yolk sac and migrate into the CNS early during 

development. (b) OLCs are the most abundant cell type in 

the CNS
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To elucidate the features of this tumor border 

microenvironment, miRNA expression in 

resected tissue samples was compared from 

three sites in individual patients with GBM: the 

tumor mass (tumor), the border between the 

tumor mass and the brain where glioma and non-

glioma cells co-exist (border), and the peripheral 

area distant from the tumor mass containing nor-

mal cells (periphery) (Fig.  8.3a). To obtain 

microarray data, tissue samples from three sites 

were divided in half: one half was used for path-

ological examination and the other half was used 

for puri#cation of small RNAs if the pathologi-

cal #ndings were suitable for downstream analy-

sis [26] (Fig.  8.3b). miRNAs with altered 

expression were identi#ed at the tumor border 

(Table 8.1).

8.2.1  Accumulation 
of Oligodendrocyte Lineage 
Cells (OLCs) at the Tumor 
Border

Interestingly, the top three miRNAs (miR-219-5p, 

miR-219-2-3p, and miR-338-3p) with increased 

expression at the tumor border play major roles 

in oligodendrocyte differentiation [3, 16, 17, 60, 

89]. In miRNA in situ hybridization, increased 

miR-219-5p-positive cells were observed at the 

tumor border, but not within tumors. 

Immunohistochemical staining of the oligoden-

drocyte lineage markers Olig2, NG2 (also known 

as chondroitin sulfate proteoglycan 4), O4, and 

myelin basic protein (MBP) revealed increased 

local white ma!er

87%

distant white 

ma!er

3%

dissemina"on

10%

total 

resec"on

48%

par"al 

resec"on

52%

recurrence

70%

no-

recurrence

30%

a

b

Pre-treatment Recurrencepost-treatment

Fig. 8.2 GBM commonly recurs in the white matter. (a) 

Representative case of a patient with GBM post- treatment. 

Even after complete removal of the enhanced mass lesion 

and chemo-radiotherapy, recurrence is commonly 

observed in the white matter around tumor removal cavity 

(yellow arrow). (b) Complete removal of the enhanced 

mass lesion was achieved in 43 (48.3%) of 89 cases of 

newly diagnosed patients with GBM. After standard treat-

ment, recurrence was detected in 30 cases (69.8%). 

Recurrence was seen in the local white matter in 26 cases 

(87%) and in the distant white matter in 1 case (3%), 

while dissemination was seen in 3 cases (10%)
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marker-positive cells at the border [7, 26, 60, 85]. 

Upon pathological examination of 19 cases of 

newly diagnosed GBM samples containing the 

tumor border, abundant Olig2-positive cells 

within the tumor were found in ten (52.6%) cases 

but rarely in 9 (47.4%) cases [26]. In contrast, all 

cases showed accumulation of Olig2-positive 

cells at the tumor border [26]. NG2, O4, and 

Tumor 

Border

Periphery

a

b

Border Tumor Periphery

Pathological

examination

miRNA microarray

OK Pathological

examination

miRNA microarray

OK Pathological
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miRNA microarray

OK

miR-219-5p

miR-219-2-3p

miR-338-3p

Oligodendrocyte differentiation

Fig. 8.3 miRNAs showing characteristically higher 

expression at the tumor border had functions related to 

oligodendrocyte differentiation. (a) The yellow line traces 

the tumor removal site. After tumor resection, three tissue 

samples were obtained from three regions (tumor, border, 

and periphery) and divided into two pieces. (b) Half of 

each piece was used for pathological examination. 

Pathologically, the tumor was de#ned as typical GBM tis-

sue, the border as a mixture of tumor and normal cells, 

and the periphery as nearly normal brain tissue. The other 

half was used to purify small RNAs after pathological 

con#rmation, and miRNA microarray analysis was done. 

The top three miRNAs (miR-219-5p, miR-219-2-3p, and 

miR-338-3p) that had increased expression at the tumor 

border had functions related to oligodendrocyte 

differentiation
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MBP were also detected at the border. These data 

suggest that OLCs, including OPCs, accumulate 

abundantly at the tumor border. However, accu-

mulation of OLCs was only observed at sites 

where individual GBM cells invaded into the 

white matter, but not at the clear interface 

between the tumor and brain [26] (Fig. 8.4a).

8.2.2  Soluble Factors Secreted 
by OPCs Induce Stemness 
and Chemo-Radioresistance 
in GBM Cells

To investigate how OPCs interact with GBM 

cells, conditioned medium (CM) was prepared 

from the human A172 and T98G GBM cell lines 

(CM-A172 and CM-T98G), macrophages 

(CM-Mac), OPCs (CM-OPC), and OPCs plus 

macrophages (CM-OM). Interestingly, cell via-

bility of OPCs was increased in medium con-

taining CM-A172, CM-T98G, and CM-Mac 

[26]. This suggests that factors secreted from 

GBM cells directly affect the proliferation 

potential of normal OPCs (Fig.  8.4b). Further, 

addition of CM-OPC in the culture medium 

induced signi#cantly higher expression of stem-

ness genes Nanog, Sox2, aldehyde dehydroge-

nase isoform 1 (ALDH1), Oct3/4, and Bmi1 and 

increased the sphere formation and cell viability 

of A172 cells [26]. Expression of ATP-binding 

cassette subfamily G member 2 (ABCG2), which 

plays a role in drug ef$ux, was signi#cantly ele-

vated in A172 cells cultured with 

CM-OPC. Addition of CM-OPC into the culture 

medium also increased the cell viability of A172 

cells after treatment with temozolomide, the 

standard chemotherapy for GBM.  Moreover, 

phosphorylated signal transducer and activator 

of transcription 3 (pSTAT3), which is important 

for radioresistance and stemness [36, 39, 43], 

was increased in A172 cells cultured with 

CM-OPC [26]. Thus, OPCs play an important 

role in GBM stemness and chemo-radioresis-

tance [26] (Fig. 8.4b).

Moreover, DNA microarray analysis of OPCs 

and macrophages revealed increased expression 

of FGF1 and EGF in OPCs compared to in mac-

rophages, and addition of FGF1 and EGF in the 

culture medium increased sphere formation and 

cell viability of GBM cells [26] (Fig.  8.4b). 

Recently, Kawashima et  al. reported that 

CM-oligodendrocytes, established from human 

glioma tissue (WHO Grade II), increase the 

migration and invasion of GBM cells, in contrast 

to CM-#broblasts established from GBM [41]. 

The authors concluded that these functions are 

regulated by angiopoietin-2 signaling [41] 

(Fig. 8.4b).

8.3  “Border Niche”: A Novel 
Concept in GBM 
Characterized 
by Accumulation of OLCs

The perinecrotic niche (hypoxic niche) and peri-

vascular niche within the tumor mass have been 

well studied to understand the mechanisms of 

stemness and chemo-radioresistance [11, 14, 31, 

67, 68]. Despite complete removal of the 

enhanced mass lesion in Gd-T1WI, which 

removes these niches along with the tumor mass, 

recurrence commonly occurs in the white matter 

around the tumor removal cavity. At this site, 

OLCs including OPCs tend to accumulate, which 

promotes stemness and chemo-radioresistance in 

GBM cells. We de#ned this unique microenvi-

ronment outside of the tumor mass containing 

abundant OPCs as the “border niche,” which pro-

motes the survival and recurrence of GBM cells. 

This novel border niche is a new target of research 

and treatment [26, 28] (Fig. 8.4a).

Table 8.1 miRNAs showing characteristically higher 

expression at the tumor border

miRNA Periphery Border Tumor

Hsa-miR-219-5p 5.187 8.062 1

Hsa-miR-219-2-3p 5.845 8.037 1

Hsa-miR-338-3p 4.562 6.492 1

Hsa-miR-27b 1.491 2.176 1

Hsa-miR-23b 1.545 2.041 1
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Fig. 8.4 OLCs, including OPCs, accumulate in the 

invading area. (a) Pathologically, the border between the 

tumor and brain was divided into two types: invading and 

clear interface areas. OLCs, including OPCs, accumulate 

in the invading area and form border niche with GBM 

cells. However, OLCs were not increased in the area 

showing clear interface. (b) GBM cells induce prolifera-

tion of OPCs. On the other hand, OPCs induce GBM cells 

with stem cell-like characteristics
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8.3.1  OPCs Are Key Players 
in the Development 
and Invasion of GBM

OPCs are an important cell type in GBM and 

have been reported as the cells of origin for this 

tumor [21, 30, 51, 75]. Previously, we estab-

lished arti#cial glioma-forming cells by over-

expressing an active form of HRas in neural 

stem cells (NSCs), OPCs, and astrocytes iso-

lated from the p53 knockout mouse. 

Interestingly, GBMs formed in the brains of 

nude mice after orthotopic injection of as few 

as ten cells from the NSC or OPC lines. 

However, cells originating from astrocytes 

required injections of 10,000 cells to form ana-

plastic astrocytoma, but never formed 

GBM.  These results demonstrated that NSCs 

and OPCs have a similar potential to be the 

GBM cell of origin [29, 30].

Generally, rapid extension of GBM into the 

white matter, which is abundant in neurons and 

OLCs, is detected in Gd-T1WI MRI. One of the 

characteristic growth patterns associated with 

GBM is a butter$y shape due to invasion of 

GBM into the contralateral hemisphere through 

commissure #bers in the corpus callosum. 

Other patterns of extension are along the radia-

tion of the corpus callosum, association #bers, 

or arcuate fasciculus in the bilateral hemi-

spheres, and these patterns do not coincide with 

the vascular network. Because the axons are 

myelinated with oligodendrocytes, this location 

contains abundant proliferating OPCs [28]. 

Thus, GBM cells preferentially use myelinated 

axon #bers as a scaffold to migrate to and colo-

nize additional tissue and construct the border 

niche to acquire stemness and therapeutic resis-

tance [26, 28]. However, differentiated neurons 

cannot proliferate; therefore, GBM cells manip-

ulate OPCs to form a tumor- supportive niche 

via the dynamic functions of OPCs in migration 

and proliferation. OPCs can promote the devel-

opment, progression, invasion, resistance, and 

recurrence of GBM.

8.3.2  OPCs Dynamically Proliferate 
and Di"erentiate in Healthy 
Brains

Myelin, produced by differentiated oligodendro-

cytes, is a critical component of the vertebrate 

CNS. This myelination of axons regulates neuro-

nal activities, mediates neural plasticity, and pro-

vides metabolic support [5, 20, 38]. Generally, 

the rate of myelin turnover is high, whereas the 

oligodendrocyte population itself is remarkably 

stable in the white matter [87]. Myelination and 

remyelination continue to occur throughout life 

[46]. OPCs constitute the majority of proliferat-

ing cells in the adult brain and exhibit speci#c 

characteristics, individual OPCs occupy their 

own territory, and OPC density is maintained 

through local proliferation. OPCs migrate rapidly 

to sites of injury [33] and are known to occupy 

regions of traumatic brain injury within one day 

post-injury [15]. Furthermore, they migrate and 

proliferate faster than astrocytes [18]. Neuronal 

activity also rapidly remodels white matter; for 

example, exercise stimulates OPC proliferation 

and oligodendrocyte differentiation within a few 

days [56].

Optogenetic, electrical, and pharmacogenetic 

stimulation of neurons induces oligodendrogen-

esis and myelination [22, 50, 58]. The selection 

of axons for myelination is strongly in$uenced 

by the relative activity of individual axons within 

a population [58]. In line with this observation, 

Bergles et al. reported that OPCs receive synaptic 

inputs from neurons [6], and neuron- 

oligodendroglial communication is mediated by 

glutamate and GABA in the CNS [25, 45].

However, not all axons are myelinated within 

the white matter tracts. For example, the propor-

tion of unmyelinated #bers within the corpus cal-

losum was relatively constant across species, 

with approximately 30% of #bers lacking 

myelination within the corpus callosum [61]. A 

study of the myelin distribution along single 

axons of pyramidal neurons revealed the distinct 

longitudinal distribution of myelin of individual 
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neurons [77]. Myelination does not peak in the 

human brain until the #fth decade, which then 

decreases rapidly starting at 60 years of age [52, 

53]. Interestingly, decline in the ability of OPCs 

to myelinate axons coincides with the age most 

liable to develop GBM.

8.3.3  Heterogeneity of OPCs

OPCs exist in the various sites of the brain; how-

ever, their functional differences in these regions 

have not been well studied. OPCs in forebrain 

white matter (corpus callosum) have a shorter 

cell cycle (completed in ~10 days) than those in 

gray matter (motor cortex: ~36  days) of the 

mouse brain 60 days after birth [88]. Moreover, 

transplantation experiments revealed that OPCs 

from white matter differentiate into mature, 

myelinated oligodendrocytes preferentially in 

white matter compared to in gray matter, whereas 

gray matter-derived OPCs do so less ef#ciently 

[82]. Interestingly, OLCs have been classi#ed 

into 13 populations with region- and age-speci#c 

distributions according to single-cell RNA 

sequencing data from 5072 cells [55], and Spitzer 

et  al. reported that OPCs become regionally 

diverse and heterogeneous with age [73].

8.4  Other Supportive Cells

Several non-tumor cells, including microglia, 

macrophages, astrocytes, pericytes, and T cells, 

have been reported to play a pivotal role in pro-

moting the proliferation, migration, and recur-

rence of GBM [11, 14, 67, 68]. Recently, it was 

reported that reciprocal signaling between GSCs 

and differentiated glioma cells promotes malig-

nant progression [84].

8.4.1  Di"erentiated Glioma Cells

Differentiated glioblastoma cells (DGCs) express 

brain-derived neurotrophic factor (BDNF), 

whereas GSCs express the BDNF receptor 

NTRK2. DGCs communicate with GSCs through 

BDNF-NTRK2-VGF paracrine signaling to pro-

mote growth [84]. However, the microenviron-

ments that foster this communication are within 

the tumor, not at the border, suggesting that 

DGCs have an important supportive function for 

GBM cells inside the tumor mass, but not at the 

border niche. Because DGCs do not seem to pro-

liferate and migrate rapidly, they cannot quickly 

modulate the microenvironment at the border 

niche.

8.4.2  Microglia

From the perspective of oligodendrogenesis and 

myelination, microglia-derived factors can in$u-

ence OLC chemoattraction, proliferation, differ-

entiation, and myelination/remyelination. 

Moreover, microglia enhance the differentiation 

of neural stem/progenitor cells into OLCs [10, 

57, 69]. In GBM tissue, bone marrow-derived 

macrophages are prominent in the perivascular 

areas, whereas resident microglia are present in 

high numbers in the peritumoral region [12, 13]. 

Because the border niche exists in the peritu-

moral region where abnormal vessels have not 

yet developed suf#ciently, microglia constitute 

the majority of glioma-associated 

microglia/macrophages at the border. Further 

investigation into the interaction between OPCs 

and microglia is needed to reveal the mechanisms 

of the border niche in GBM progression and 

recurrence [28].

8.4.3  Astrocytes

The identity of astrocyte lineage cells remains 

unclear. Interestingly, subpopulations of healthy 

astrocytes in the adult brain and their glioma 

counterparts are endowed with diverse cellular, 

molecular, and functional properties. Further, 

some populations contribute to synaptogenesis 

and tumor pathophysiology [37]. Astrocytes in 

the tumor microenvironment promote the prolif-

eration, migration, and therapeutic resistance of 

GBM cells [8, 24]. Interestingly, glioma- 

associated astrocytes (tumor-associated astro-
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cytes) show a different miRNA expression pro#le 

from normal astrocytes [40]. Based on the sup-

portive function of oligodendrogenesis, astro-

cytes affect the proliferation and remyelination of 

OPCs [54, 59] and therefore play indirect roles in 

forming the border niche. Astrocytes have a low 

proliferation rate and low migration potential to 

sites of wound injury [4], whereas OPCs and 

microglia play an immediate role in CNS injury 

[18]. These data suggest that OPCs and microglia 

play a more critical role in border niche forma-

tion than astrocytes [26, 28].

8.4.4  Neurons

Neuronal activity not only affects the migration 

and proliferation of OPCs [20, 22, 50, 58] but 

also promotes the survival of GBM cells directly. 

Neuronal regulation of glioma is dependent on 

the cleavage and secretion of the synaptic adhe-

sion molecule neuroligin-3, which promotes gli-

oma proliferation through the PI3K-mTOR 

pathway [79, 81] (Fig. 8.5a).

Seizure is one of the accompanying symptoms 

in patients with glioma. α-Amino-3-hydroxy-5- 

methyl-4-isoxazolepropionate (AMPA)-type glu-

tamate receptors (AMPARs) mediate 

neurotransmission in excitatory synapses and are 

expressed not only in neuron and glia cells but 

also in GBM cells [35]. Inactivation of AMPARs 

suppresses migration and induces apoptosis in 

glioma cells [35] (Fig. 8.5b).

Moreover, some GBM cells form synapses 

with neurons, and then synaptic and electrical 

integration into neural circuits promotes glioma 

progression [80]. Recently, perampanel (AMPAR 

inhibitor) was used as an anticonvulsant. In 

in  vivo experiments, an approximately 50% 

decrease in glioma proliferation was observed in 

perampanel-treated mice compared to in vehicle- 

treated control mice [80]. Additionally, glutama-

tergic synaptic input to glioma cells drives the 

progression of glioma, and blockade of neuro-

gliomal synapses-driven synaptic communica-

tion between neurons and GBM cells via genetic 

and pharmacological blockade of AMPAR sig-

naling reduced GBM cell malignancy, leading to 

attenuated glioma progression [78]. Thus, these 

results showing direct interactions between neu-

rons and GBM cells provide insight into progres-

sion and niche formation in GBM (Fig. 8.5a, b).

8.5  Further Perspective

Neuronal activity promotes the progression of 

GBM and proliferation of OPCs [22, 50, 58, 78, 

80]. However, various aspects of this process 

remain unresolved. The soma of the neuron is 

located in the gray matter and the axon in the 

white matter. Generally, synapses exist in the 

gray matter. OPCs in the white matter show a 

higher potential for proliferation than those in the 

gray matter [55, 73, 82, 88]. However, GBM 

develops and recurs in the white matter. In the 

white matter, neurons, GBM cells, and OPCs 

may interact directly in a synaptic and non- 

synaptic manner, or intervention of OPCs 

between neuron and GBM cells occurs to pro-

mote the progression of GBM.  Further studies 

are needed to reveal the mechanisms of invasion, 

proliferation, chemo-radioresistance, and recur-

rence of GBM (Fig. 8.6).

8.6  Conclusion

The ultimate goal of GBM treatment is to com-

pletely abolish GBM cells. Standard treatment 

for patients with GBM is maximal safe resection 

and chemo-radiotherapy to inhibit recurrence and 

dissemination. GBM cells rapidly accumulate 

mutations, making the tumor highly heteroge-

neous [63, 72]. The application of therapies tar-

geting not only GBM cells but also non-glioma 

cells, OPCs, neurons, microglia, and other cells 

that form the border niche will contribute to bet-

ter prognosis [26, 28] (Fig. 8.6).

Further studies of the border niche may pro-

vide insight into fundamental processes such as 

the development, progression, migration, and 

recurrence of GBM and may be useful for pre-

venting recurrence in patients.
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GBM cell
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Fig. 8.5 Neurons interact with glial cells and GBM cells. 

(a) Neurons interact closely and dynamically with OLCs, 

including OPCs. The direct interaction between neurons 

and GBM cells has recently been discussed. Understanding 

the mechanisms of interaction among neurons, OPCs, and 

GBM cells is crucial for improving the prognosis of GBM 

patients. (b) Glutamate receptors are expressed on neu-

rons, astrocytes, oligodendrocyte, and GBM cells. Signals 

from neurons promote proliferation and migration of 

GBM cells
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