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Abstract 

Background: Glioblastoma (GBM) is the most malignant brain cancer because there are no available 

biopsy-free methods for the diagnosis or the preoperative early detection of GBM. In this regard, the 

development of a non- or minimally invasive method for early detection could increase the survival of 
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GBM patients. Methods: The present study aimed to assess the diagnostic accuracy of extracellular 

vesicles (EVs) derived RNAs, isolated from patients’ CSF or serum for GBM diagnosis. For this purpose, 

we searched all literature databases and performed a backward and forward reference checking procedure 

to retrieve appropriate studies. We conducted a meta-analysis on EVs derived biomarkers as well as 

sensitivity analysis and meta-regression. Results: We identified EVs-derived 24 RNAs, which can 

diagnose GBM. The analyzed pooled data showed 76% sensitivity, 80% specificity, and 0.85 AUC, for 

16 biomarkers. Besides, the pooled PLR, NLR, and DOR were 3.7, 0.30, and 12, respectively. Subgroup 

analysis did not show a significant difference between serum and CSF. Conclusions: According to the 

pooled sensitivity, specificity, and AUC for EVs derived biomarkers, and we suggest that EVs-derived 

biomarkers might serve as a high potential and non-invasive diagnostic tool for GBM detection using 

serum and CSF samples. 

Keywords: Biomarkers, Diagnosis, Exosomes, Extracellular vesicles, Glioblastoma, Meta-analysis, 

Systematic review 

Article highlights: 

1. Extracellular vesicles derived RNA biomarkers could diagnose glioblastoma with 76% sensitivity and 

80% specificity.  

2. The overall AUC for extracellular vesicle-derived biomarkers for the diagnosis of glioblastoma is 0.85. 

3. There are no significant differences in diagnostic accuracy between serum- and CSF derived EVs for 

glioblastoma.  
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1. Introduction 

Glioblastoma, also known as glioblastoma multiforme (GBM), is a grade-IV brain cancer and the 

most malignant type of glioma [1,2]. The traditional treatment of GBM is the tumor resection 

followed by radiotherapy and chemotherapy. This type of treatment has limited effectiveness due 

to high rates of relapse, overall resistance to therapy, and serious neurotoxicity and neurological 

side effects [3,4]. Also, the prognosis of GBM is often very poor due to the lack of early 

detection and personalized treatments [5]. Since diagnosis with a tissue biopsy, especially in 

brain cancers, is a highly invasive, expensive, and time-consuming procedure, it is essential to 

develop a non-invasive, affordable, and efficient method for the detection and grade prediction 

of cancers. In this regard, identification of biomarkers with high diagnostic accuracy in the 

patients’ different body fluids, especially CSF and serum, can enhance the early diagnosis of 

GBM and other neurological cancers and diseases [5].  

In recent decades, many studies have aimed to introduce novel, accurate, and specific biomarkers 

for different types of cancers [6-8]. One new platform for the diagnostic biomarker discovery is 

extracellular vesicles (EVs), such as exosomes and microvesicles. EVs are heterogeneous 

populations of vesicles classified into three groups: exosomes, microvesicles, and apoptotic 

bodies. Exosomes are the seemingly homogeneous fractions of EVs with 30-150 nm in size [9]. 

Regarding the origin, exosomes are distinct from other types of EVs, including microvesicles 

(with heterogeneous size from 50 to 1000 nm in diameter) and apoptotic bodies [10,11]. Used as 

biomarker sources,  microvesicles, and exosomes play important roles in cellular communication  

[12]. In the literature, there are some problems in the terminology of EVs, exosomes, and 

microvesicles. According to ISEV2018 [13], different fractions of EVs have different 

characteristics in terms of their size and surface markers [14]. Obtaining a pure population of 
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exosomes and microvesicles is a very important step in diagnostic studies and requires some 

criteria and characterization protocols. Unfortunately, some studies do not meet these criteria. 

Therefore, in this study, we will use the general term (EVs) for both exosomes and microvesicles 

to avoid further mistakes by the readers.  

EVs carry various extracellular biomolecules, some of which are indistinguishable in the 

corresponding biological fluid as cell-free or naked molecules [15]. This feature can provide 

various sensitive and specific diagnostic biomarkers for different pathophysiological conditions 

[11]. In the beginning, Valadi et al.  stated that small-sized EVs (exosomes), in addition to 

proteins, possess different types of RNAs [16]. Today, it is well known that EVs can transport 

diverse molecular constituents, such as lipids, proteins, and nucleic acids [10]. Important 

findings on the biological nature of EVs and their contents implied that EVs contents could be 

used as a tool for discriminating cancerous cells from healthy cells [17]. Further studies 

demonstrated that the amount of EVs, particularly exosomes in various cancer patients, is higher 

than in healthy persons [18]. According to the recent studies, biomarkers derived from EVs show 

similar or higher specificity and sensitivity compared to other circulating biomarkers. As stated 

earlier, technical improvements for EVs isolation could bring EVs derived biomarkers as a new 

platform for the diagnosis of cancers and other diseases [17,19]. 

To the best of our knowledge, there has not been any systematic review articles on the 

assessment of the EVs derived RNA biomarkers for GBM diagnosis. Thus, the current study 

aimed to review and analyze the primary studies on the diagnostic accuracy of EVs for GBM and 

provide a pooled diagnostic data of these studies to clear the situation for future studies and 

possible clinical application.  
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2. Methods  

We designated a protocol following PRISMA guidelines to report a systematic review and 

protocol for Reviews of Diagnostic Test Accuracy [20]. Before the publication of the study, we  

submitted this systematic review on PROSPERO on 26 Jun 2019 (registered on 17/09/2019 with 

CRD42019132438 ID).  

2.1. Search strategy designing 

To retrieve all possible studies in the area of our study purpose, we aimed to develop a full 

search strategy. We tried to implement a comprehensive systematic search that combined (using 

the Boolean Operator) text-words and subject headings (MeSH or equivalent) of the following 

electronic databases: PubMed (including Medline), Embase, Web of Science, Scopus, and 

ProQuest (as databases for grey literature) through December 2019. The search was performed 

according to the search strategies stated in the protocol Cochrane Handbook for Systematic 

Reviews of Diagnostic Test Accuracy [21]. For the search in electronic databases, we used all 

possible keywords related to the "Extracellular vesicles" and "Glioblastoma" , which were 

extracted from the MeSH database and Emtree. This strategy of search allowed us to conduct a 

comprehensive search by a recently published protocol [22]. The databases were searched 

without any restrictions.  

The literature search was performed independently by two investigators (AT and DJ). Any 

possible discordance was compared to that of an additional investigator (YM). A reference 

checking was conducted for the published reviews adapted to our title in order to retrieve any 

missed related articles through database searching. Similar to the screening of online database 

results, the references of all these articles were screened manually. This step ensured that all 
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studies relevant to the diagnostic accuracy of EVs-RNAs and detection of GBM are included in 

our final library. The full search strategy was shown in Table S1.  

2.2. Data extraction and management 

2.2.1. Inclusion criteria 

We included all original articles on the diagnostic accuracy of EVs in human GBM patients,  

body fluid isolated EVs, and two types of EVs, including exosomes and microvesicles. 

2.2.2. Exclusion criteria 

We excluded duplicate citations, non-peer-reviewed, review papers, and book chapters. 

2.2.3. Selection of studies 

Two reviewers independently (DJ and FJ) evaluated the titles and abstracts of all records to 

determine whether inclusion and exclusion criteria were met. The inclusion assessment of full 

papers was conducted by one author (DJ) and checked by a second investigator (AT). In case of 

disagreement, a consensus was reached by discussion or referral to a third author (YM). We 

conducted a PRISMA diagram to illustrate the study selection process [20]. 2.2.4. Data 

collection process 

The following items were collected from each article by two investigators (DJ and ER): first 

author, publication year, country, number of participants (patients and controls), source of EVs, 

isolation and purification methods, related identified biomarkers, biomarker extraction method, 

biomarker analyzing/profiling method, area under the curve (AUC), confidence interval 95% 

(CI95%), true positive (TP), true negative (TN),  false positive (FP) and false-negative (FN). The 

TP, TN, FP, and FN data were extracted from the 2×2 table of studies or (if this table was not 

provided with studies) calculated using the specificity and sensitivity. The data extracted in a 
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fully paired method from individual studies. We sought further information from the study 

authors when necessary. Any disagreements between data collectors were resolved through 

either discussion or consultation with a third author (AT). 

2.3. Assessment of methodological quality and risk of bias 

We assessed the methodological quality of the studies independently by two reviewers (DJ and 

AT) and via the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool, 

recommended by the Cochrane collaboration for the risk of bias and applicability concerns [23]. 

This tool assesses the risk of bias by scoring questions in the four domains as follows; 1) Patient 

Selection (the method of patient selection and the patients included) 2) Index Test (the test being 

studied and how it was conducted and interpreted) 3) Reference Standard (the reference standard 

test used and how it was conducted and interpreted) 4) Flow and Timing (the flow of patient 

inclusion and exclusion, testing procedure and the interval between tests). The first three 

domains can also assess the applicability concerns regarding the review question. Each of the 

domains was categorized as high, low, or unclear, and disagreements were resolved by 

discussion with a third reviewer (RJ). 

2.4. Statistical Analysis 

We used the metandi and midas modules in the STATA 11.2 (Stata Corporation, College Station, 

TX, USA) statistical software to perform all the analyses [24,25]. TP, FP, FN, and TN data were 

used to calculate sensitivity, specificity, positive and negative likelihood ratio, and diagnostic 

odds ratio. Their pooled estimates and their corresponding CI 95% for exosomes were calculated 

by using the bivariate and hierarchical meta-analysis that included bivariate mixed-effects 

regression model and the hierarchical summary ROC (HSROC) modeling [26,27]. Results were 

displayed graphically on forest-plots and HSROC curve. Heterogeneity between the included 
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studies was assessed using Cochran’s Q test and the inconsistency index (I2) describing the 

percentage of total variation across studies due to heterogeneity rather than chance [28]. A p-

value ≤ 0.05 and an I2 value ≥ 50% would indicate substantial heterogeneity. The threshold 

effect was checked using Spearman’s rho, and potential sources of heterogeneity were explored 

by meta-regression. The sensitivity analysis was performed by omission of outlier studies 

indicated by Cook's distance, and standardized predicted random effects to investigate the 

influence of this study on the pooled estimates [25]. We assessed publication bias using Deek’s 

funnel plot and considered a p-value < 0.1 in the Deek’s asymmetry test to indicate publication 

bias [29]. 

3. Results 

3.1. Literature search and study selection 

1730 articles (279 from PubMed, 438 from Scopus, 400 from Web of Science, and 613 from 

Embase) were retrieved, and after duplicate removing, 830 articles were screened, and 802 items, 

including 259 reviews and 196 conference abstracts, were excluded. Also, the full texts of the 28 

remaining records and 19 articles were excluded according to the inclusion and exclusion 

criteria. Finally, nine eligible studies (from Australia, China, Italy, and the USA) were included 

in the present systematic review from 2013 to 2019 (Table 1). Figure 1 shows the process of 

literature search and study selection as a flow diagram based on the PRISMA. 
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Figure 1 The literature search and study selection process for systematic review according to 

PRISMA 

Table 1 Bibliographic information of included primary studies regarding publication date 

Title Year Country Ref. 
miR-21 in the Extracellular Vesicles (EVs) of Cerebrospinal Fluid 
(CSF): A Platform for Glioblastoma Biomarker Development 

2013 USA [30] 

A small noncoding RNA signature found in exosomes of GBM patient 2014 China [31] 
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serum as a diagnostic tool 
Exosomal levels of miRNA-21 from cerebrospinal fluids associated 
with poor prognosis and tumor recurrence of glioma patients 

2015 China [32] 

A cerebrospinal fluid microRNA signature as biomarker for 
glioblastoma 

2017 USA 
[33] 

Serum exosomal miR-301a as a potential diagnostic and prognostic 
biomarker for human glioma 

2017 China [34] 

A microRNA signature from serum exosomes of patients with glioma 
as complementary diagnostic biomarker 

2018 Italy [35] 

Deep sequencing of circulating exosomal microRNA allows non-
invasive glioblastoma diagnosis  

2018 Australia [36] 

Serum long noncoding RNA HOTAIR as a novel diagnostic and 
prognostic biomarker in glioblastoma multiforme 

2018 USA [37] 

Serum miR-29b as a novel biomarker for glioblastoma diagnosis and 
prognosis 

2019 China [38] 

3.2. Quality assessment  

According to the results of the QUADAS-2 checklist (Figure S1 and Table S2), in the section of 

risk of bias, the quality of studies is mostly affected by the reference standard description and the 

index test. Some studies did not report the diagnostic values for biomarkers. Also, two studies 

reported the diagnostic accuracy of an exosomal biomarker for GBM from other types of 

diseases or cancers. In the cases of patient selection, flow, and timing section, six  studies are 

unclear. This is due to undefined patients' pathophysiological condition, sex, and age, as well as 

some technical analysis and experimental efforts. In the case of applicability, the index test is 

still suffering from low quality in four studies. However, the rest of the studies have developed 

their index test compliance with our review question and inclusion criteria. 

Only did the study of Manterola et al. [31]  perfectly meet our inclusion criteria in all parts of the 

risk of bias and applicability assessment. Finally, we identified six studies that pass thresholds to 

be included in the meta-analysis.  ACCEPTED M
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3.3. The characteristics of studies included in systematic review  

In total, 487 pathologically diagnosed GBM patients were used for EVs derived biomarker 

discovery in nine included studies. The population of patients ranged from 13-107, and the 

control population consisted of healthy controls, non-brain tumors [34], and other brain tumor 

patients [38]. Six studies used the serum, two studies used the CSF, and one study used both 

serum and CSF as EVs isolation source. Also, one study used CSF from two different anatomical 

locations (cisterna and lumbar) (Table 2).  

As shown in Table 2, EVs isolation was conducted by ultracentrifugation (UC), commercial kits, 

and size exclusion chromatography. Different kits were used for RNA extraction and the 

biomarker expression patterns were analyzed via q-RT-PCR and sequencing methods.  

Table 2 The methods and workflow data from the included studies for GBM diagnosis. 
Patients HC 

 
Exosomes 
Source 

Exosome 
Isolation 

Biomarker 
Extraction 

Biomarker 
Analysis 

Ref. 

13 
15 

14 
16 

CSF UC mirRCURY kit qRT-PCR [30] 

10  12 CSF UC miRCURY™ qRT-PCR [33] 
12 12 S SEC Exosomal RNA 

Purification Kit 
Total RNA 
chip 

[36] 

27 43 S ExoQuick mirVana kit qRT-PCR [34] 
25 25 S Exoquick Trizol qRT-PCR [31] 
69 30 S ExoQuick Trizol qRT-PCR [35] 
95 50 CSF and S UC RNeasy Kit RT-qPCR [32] 
43 
 

40 
 

S Exosome 
Isolation 
reagent 

mirVana kit qRT-PCR [37] 

107 80 S ExoQuick miRNeasy qRT-PCR [38] 
M: Male, F: Female, UC: Ultracentrifuge, SEC: Size Exclusion Chromatography, S: Serum, CSF: 
Cerebrospinal Fluid 

3.4 Qualitative synthesis of diagnostic value of EVs RNAs for GBM 

Table 3 shows (and Table S3)24 single RNA biomarkers, and three miR-panels. To diagnose 

GBM in different studies, miR-21, miR-222, miR-29b, miR-320, miR-574-3p, miR-124-3p, 

RNU6, and HOTAIR biomarkers were individually evaluated. From 24 biomarkers, miR-21 with 
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85% and 100%, 87% and 93%, 84%, and 77% for sensitivity and specificity, respectively, in 

three different GBM patient populations has the highest diagnostic accuracy.   

Biomarker panels also have high diagnostics accuracy. For instance, a biomarker panel consists 

of three RNAs has 87% and 86%, 70%, and 71% sensitivity and specificity, respectively, in two 

groups of GBM patients [31]. Altogether, 24 biomarkers were analyzed for their diagnostic value 

consist of one long non-coding RNA (LncRNA), one small non-coding RNA (SncRNA), and 22 

mi-RNA (Table S4).  

Table 3 Diagnostic value data of included primary studies in meta-analysis 

Biomarker Type of 
Biomarker 

AUC SEN 
(%) 

SPE 
(%) 

PLR NLR DOR Accuracy (%) Ref. 

miR-21(P1) micro-RNA 0.91 85 100 24.64 0.18 133.4 93 [30] 
miR-21(P2) micro-RNA 87 88 6.93 0.15 45.5 87 
miR-21, miR-
218, miR-193b, 
miR-331, miR-
374a, miR-548c, 
miR-520f, miR-
27b, miR-130b 
(P1) 

micro-RNA 0.75 
 
 
 

80 67 2.4 0.3 8 73 [33] 

miR-21, miR-
218, miR-193b, 
miR-331, miR-
374a, miR-548c, 
miR-520f, miR-
27b, miR-130b 
(P2) 

micro-RNA 0.83 28 95 5.56 0.76 7.31 63 

miR-574-3p micro-RNA 0.73 60 60 1.5 0.67 2.25 60 [31] 
miR-320 micro-RNA 0.72 64 64 1.78 0.56 3.16 64 
RNU6-1 P1 Small non-

coding-RNA 
0.85 72 68 2.25 0.41 5.46 70 

RNU6-1 P2 Small non-
coding-RNA 

0.72 66 67 1.98 0.51 3.88 66 

RNU6, miR-320, 
miR-574-3p (P1) 

Small non-
coding-RNA & 
micro-RNA 

0.92 88 84 5.5 0.14 38.5 86 

RNU6, miR-320, 
miR-574-3p (P2) 

Small non-
coding-RNA & 
micro-RNA 

0.77 70 70 2.33 0.43 5.44 70 

miR-21 micro-RNA 0.84 84 77 3.6 0.21 17.37 81 [35] 
miR-222 micro-RNA 0.80 57 100 35.13 0.44 79.77 74 
miR-124-3p micro-RNA 0.78 89 63 2.42 0.18 13.47 78 
miR-21, miR-
222, miR-124-3p 

micro-RNA 0.87 
 

84 77 3.6 0.21 17.37 81 

HOTAIR Long non- 0.91 86 88 6.88 0.16 43.17 87 [37] 
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coding-RNA 
miR-29b micro-RNA 0.86 83 81 4.44 0.21 21.43 82 [38] 

AUC: Area Under Curve, SEN: Sensitivity, SPE: Specificity, PLR: Positive Likelihood Ratio, NLR: Negative 
Likelihood Ratio, DOR: Diagnostics Odds ratio

 

3.5 Meta-analysis 

3.5.1 Diagnostic accuracy 

We conducted a diagnostic meta-analysis on the data obtained for 16 biomarkers from six 

studies, including 592 participants (325 GBM patients and 267 healthy controls). We excluded 

three articles due to the unreported TP, FP, FN, and TN or using the non-healthy controls 

[32,34,36]. 

The pooled sensitivity and specificity of biomarkers for detecting the GBM from both serum and 

CSF were 76% (95% confidence interval [CI] = 68–82%) and 80% (95% CI = 72–86%), 

respectively. Figure 2  shows a forest plot of the included studies along with sensitivities, 

specificities, and pooled estimates. A significant heterogeneity was observed in the pooled 

sensitivity (I2= 73.44%, P< 0.001) and specificity (I2= 59.24%, P< 0.001). 

The pooled PLR, NLR, and DOR were 3.7 (95% CI: 2.7–5.2), 0.30 (95% CI: 0.23-0.41), and 12 

(95% CI: 7–21), respectively (Figure S2 and Figure S3). These statistical measures showed 

values of I2> 50% (P< 0.05), suggesting substantial heterogeneity except for PLR. 
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Figure 2. Coupled forest plots show pooled estimates of sensitivity and specificity of biomarkers for GBM 
diagnosis with corresponding heterogeneity statistics. CI: confidence interval, I2: inconsistency index. 

Figure 3 shows the hierarchical summary receiver operating characteristic (HSROC) curve for 

diagnostic accuracy of biomarkers. The AUC, as an overall measure for test performance, was 

0.85 (95% CI: 0.81-0.87), indicating the high diagnostic accuracy of these biomarkers. 
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Figure 3. Hierarchical summary receiver operating characteristic (HSROC) curve for EVs derived biomarkers 

performance in the diagnosis of glioblastoma with confidence and prediction regions around the summary operating 

point 

3.5.2 Publication bias 

The potential publication bias was examined by the Deeks’ funnel plot. According to Figure S4, 

a p-value of 0.70 does not show publication bias in the meta-analysis.  

3.5.3 Heterogeneity 

Due to the lack of threshold effect and the presence of between-study heterogeneity, we 

conducted a meta-regression to find the source of heterogeneity. The multiple meta-regression of 

sensitivity and specificity indicated that source and EVs isolation methods, RNA extraction 

methods, sample size, and the quality of study acted as the potential source of heterogeneity in 

the pooled estimates (Figure S5). The meta-regression result is shown in Table 4. 

3.5.4 Sensitivity analysis 

We found two studies, Akers 2017 (p2 [33]) and Santangelo 2018 (miR-222 [35]), as outliers by 

Cook’s distance and standardized predicted random effects (Figure S6). When these outliers 

were omitted, the pooled sensitivity and specificity were 79% (95% CI 73–84%) and 76% (95% 

CI 69–81%). Although the omission of these studies did not substantially influence the pooled 

estimates, it reduced the extent of between-studies heterogeneity in the pooled sensitivity and 

specificity from I2 73.44% to 49.25% and 59.24% to 40.68%, respectively (Figure S7). 

In addition, the subgroup analysis was performed for serum, and CSF derived EVs biomarkers to 

find out the superiority of the source. As shown in Table 4, sensitivity is 77% for serum 

biomarkers and 70% for CSF biomarkers. The difference in sensitivity between these subgroups 
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is not significant, probably due to the small number of studies. However, the specificity of serum 

biomarkers is 77% and CSF biomarkers is 89%, which is significant. 

Table 4. Results of meta-regression analysis for assessing the source of diagnostic accuracy 

heterogeneity 

Variable Category 
Number of 
biomarkers 

Sensitivity 
% 

(CI 95%) 

P-value 

Specificity 

% 

(CI 95%) 

P-value 

Source of exosomes 

Serum 12 
0.77 

(0.70 - 0.84) 
0.59 

0.77 

(0.69 - 0.84) 
0.01 

CSF 4 
0.70 

(0.52 - 0.88) 

0.89 

(0.80 - 0.99) 

Isolation method of 
exosomes 

EQ 11 
0.76 

(0.68 - 0.84) 
0.18 

0.75 

(0.68 - 0.82) 
0.001 

Other 5 
0.76 

(0.61 - 0.90) 

0.89 

(0.81 - 0.97) 

RNA extraction methods 

Trizol 10 
0.75 

(0.66 - 0.84) 
0.06 

0.74 

(0.66 - 0.82) 
0.001 

Other 6 
0.77 

(0.66 - 0.89) 

0.87 

(0.80 - 0.94) 

Sample size 

>60 8 
0.79 

(0.71 - 0.87) 
0.29 

0.80 

(0.71 - 0.89) 
0.07 

<60 8 
0.71 

(0.59 - 0.82) 

0.79 

(0.69 - 0.89) 

Quality of study 

High 8 
0.73 

(0.62 - 0.84) 
0.02 

0.74 

(0.64 - 0.84) 
0.001 

Low 8 
0.78 

(0.69 - 0.87) 

0.84 

(0.76 - 0.91) 

EQ: Exoquick, CSF: Cerebrospinal Fluid. 

4 Discussion 
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Cancer often starts in a single cell with a perturbation in checkpoint molecules by some 

mutations or other genetic changes [39]. Subsequently, this molecular transformation will appear 

in whole tumor cells [40]. Identifying and tracking the molecular event of transformation could 

help  develop new therapies and diagnostics [41]. GBM cancer often grows locally and rarely 

metastasizes to the outside of the CNS. If it is resected in the early stages, it can be completely 

treated [42], but unfortunately, there are no preoperative routine diagnostic methods for GBM.  

In the recent years, circulating molecules (proteins [43], cell-free DNAs [44], and RNAs [45]) 

and EVs, especially exosomes, were used as diagnostic tools. Recent studies showed that the 

content of EVs, particularly  RNAs (miRNAs, LncRNAs, and mRNAs), could be used for the 

detection of cancers and the prediction of their stages [46].  For instance, exosomal miR-21 has 

been widely studied [47-51].  

This is the first systematic review and meta-analysis to evaluate EVs diagnostic accuracy for 

GBM. It aimed to assess how EVs could be used as a non-invasive method for early detection of 

GBM. We conducted a comprehensive search strategy for searching the databases for all possible 

EVs-biomarker for GBM. All of the included articles were identified as RNA biomarkers, so we 

did not find any protein, DNA, lipid, or carbohydrates biomarkers that have met our inclusion 

and exclusion criteria. It is significant to note that we found some putative protein and DNA 

biomarkers for GBM diagnosis, whjch were not suitable for this study and needed further 

experimental assessment.  

Different methods of EVs isolation, RNA profiling, and analyzing could affect the results of the 

test [52-56], we carefully assessed the workflow of studies from the isolation of EVs to the 

biomarker analysis. Ultracentrifugation (the gold standard for exosome isolation [57]), affinity 

chromatography method [58], and the exosome isolation kits are used for EVs isolation [59]. As 
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discussed earlier, EV contents are heterogeneous and may  slightly change with different 

methods of isolation and purification [60]. Methods of downstream analysis of EVs are also the 

determining factors in the results of diagnostic studies [55,61]. Different RNA isolation kits and 

two main methods were used for the extraction and profiling of EVs RNAs (q-RT-PCR and 

Sequencing). According to the results of the extracted data and quality assessment using the 

QUADAS-2 checklist, we excluded 3 studies and conducted a meta-analysis with six primary 

research for 16 RNA biomarkers. We calculated pooled estimates of AUC, sensitivity, 

specificity, DOR, PLR, and NLR for the overall diagnostic value of 16 RNA biomarkers for 

GBM diagnosis. Our results suggested that the pooled sensitivity and specificity were 76% and 

80%, respectively. In addition, the pooled PLR, NLR, and DOR were 3.7, 0.30, and 12, 

respectively. The PLR suggests that the GBM patients have an about 3.7-fold higher chance for a 

positive result than a healthy population. Furthermore, 0.30 NLR suggests that from the negative 

outcome of the index test results, 30% could be GBM positive. Similarly, DOR is an index that 

correlates with the diagnostic performance of our index test. The higher DOR, the better 

diagnostic performance [62]. Also, AUC is the most important index to show the overall 

diagnostic power of an index test. The AUC>0.75 is considered as an acceptable diagnostic 

performance [63]. According to our results, the value of DOR and AUC were 12 and 0.85, 

respectively, suggesting that these 16 biomarkers of EVs might serve as a high potential 

diagnostic tool for GBM. However, significant heterogeneity was observed in the pooled 

sensitivity, specificity, DOR, and NLR. In the case of publication bias, no evidence for 

publication bias was found.  

Altogether, the multivariate meta-regression of sensitivity and specificity indicated that the 

source and isolation method, RNA extraction methods, sample size, and quality of study acted as 
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the potential source of heterogeneity in the pooled estimates. We omitted two studies as outliers 

and performed a sensitivity analysis. The result of the sensitivity analysis showed that the pooled 

sensitivity and specificity were 79% and %76.  

Since the EVs based diagnosis is a newly-emerged field in biomedical sciences, there are not 

many studies on every single cancer. Thus the systematic review and meta-analyses studies will 

be associated with some inherent limitations. The results of the present study and a recent meta-

analysis on the assessment of the diagnostic value of exosomes for lung cancer are absolutely 

consistent. Their results showed that the pooled sensitivity, specificity, PLR, NLR, DOR, and 

AUC were 82%, 84%, 5.27, 0.21, 25.14, and 0.90, respectively [64]. In addition, a systematic 

review and meta-analysis of exosomal miR-21 for overall cancer detection showed that the 

sensitivity and specificity of pooled studies were 75% and 85%, and AUC was 0.93.  

Despite our protocols of systematic review and meta-analysis compliance with the latest 

guidelines for diagnostic studies, our study faced some limitations. The most important limitation 

was the heterogeneity of biomarkers because we estimated the pooled diagnostic accuracy for 16 

different RNA biomarkers. As discussed earlier, this issue is related to the small number of 

studies on each biomarker. Further studies on these 16 biomarkers could lead to a powerful meta-

analysis. The second limitation was the number of included studies and participants, which was 

likely to be small. More studies with larger numbers of patients and controls could further 

validate the diagnostic performance of EVs for GBM. The third limitation was that most of the 

included studies were conducted in China and the USA. Heterogeneity must be taken into 

account. In this regard, we carried out a meta-regression and sensitivity analysis to detect the 

potential heterogeneity sources. The workflow, including EVs isolation method, EVs source, 

RNA profiling method, and sample size, is the source of heterogeneity. In addition, further 
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studies need to clarify the EVs-derived biomarkers kinetic in the biofluids such as serum and 

CSF, and the clinical course of GBM for better interpretation of biomarkers expression pattern to 

a clinical outcome, including response to treatment, relapse, complete treatment, etc. 

Ultimately,  

Despite the described limitations, our study strongly suggests that the 16 EVs derived RNA 

biomarkers have high prediction power for GBM. Our study and a few others with meta-analysis 

showed that EVs derived biomarkers might attract much attention in the near future for the 

diagnosis of cancers.  

5. Conclusions 

In this study, we found 24 EVs derived RNA biomarkers for GBM diagnosis. In the next step, 16 

eligible biomarkers were considered for meta-analysis. Our results suggested that the pooled 

sensitivity and specificity of these biomarkers were 76% and 80%, respectively. Besides, the 

pooled PLR, NLR, and DOR were 3.7, 0.30, and 12, respectively. Our data showed the 

promising potential of these 16 biomarkers for GBM diagnosis.  

6. Expert opinion 

Unfortunately, most of the discovered biomarkers for GBM have low diagnostic accuracy. New 

platforms of biomarkers for early diagnosis of this life-threatening cancer is the main goal in the 

field of biomarker discovery. Despite hundreds of biomarkers identified for brain tumors,  the 

diagnosis and screening of GBM with a biopsy-free and preoperative method remain a big 

challenge. Regarding the late diagnosis, the survival rate of GBM patients is very low. The very 

poor prognosis of patients with GBM demands a very rapid development of new platforms of 
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biomarkers for early diagnosis, screening, response to the treatments, and recurrence through 

high-quality diagnostic studies. 

Here, 24 EVs derived biomarkers were identified for GBM diagnosis by serum or CSF samples, 

among which RNU6, RNA, miR-21, miR-301 show potential predictive value for GBM. 

However, these biomarkers still require more studies with large patient populations for a 

definitive decision. Pooled sensitivity and specificity of 16 biomarkers are 76% and 80%, 

respectively. Sensitivity is the ability of EVs to identify GBM patients correctly with a 76% 

probability of positive results. In contrast, the specificity is the ability of EVs to identify healthy 

persons with an 80% probability that the test will be negative. In addition, PLR, NLR, and DOR 

for these 16 biomarkers are 3.7, 0.30, and 12, respectively. PLR shows 3.7 times more positive 

test for GBM patients than healthy persons. In contrast, NLR or the probability of a negative test 

in GBM is 0.3 times or about one-third of those without the GBM. DOR is the ratio of the odds 

of a positive test in cases with GBM to the odds of a positive test in the cases without GBM. EVs 

biomarkers offer odds of a positive test in cases with GBM by 12 times higher than in the cases 

without GBM. We do not claim that these results offer EVs biomarkers as a definitive 

diagnostics tool for GBM diagnosis. Since EVs biomarkers have some advantages, we hope that 

this study will provide a clue for researchers to study more about these potential biomarkers 

regarding to the criteria described in the next subsection. 

6.1 Several recommendations for EVs derived biomarker discovery for GBM 

Some criteria and technical aspects should be taken into account by researchers, journals, and 

relevant regulating agencies for further studies and guidelines for EVs diagnostic research. Given 

that the EVs research field is one of the newest and active fields, no guidelines have yet been 
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developed for handling the workflow of EVs for a diagnostic study. The authors of this article 

have reviewed more than 500 articles regarding the EVs and their development derived 

biomarkers for the diagnosis of various cancers. Many of these diagnostic studies critically suffer 

from technical aspects and workflow. Therefore, the authors provide several hints for future 

studies in EVs biomarker development and analysis. By meeting these suggestions, researchers 

can improve their study in terms of diagnostic study design and a workflow of research.  

Diagnostic accuracy study design. Any research in the field of EVs biomarkers for the diagnosis 

of GBM or other cancers should meet the protocols and items of STARD for running a 

diagnostic accuracy study to appropriate sample sizes and other items [65]. Unfortunately, most 

of the diagnostic accuracy studies, especially in EVs, are missed some of the STARD items, so it 

is hard to interpret based on their workflow and obtained data.  

Technical aspects for EVs-biomarker discovery. Researchers must pay attention to some 

technical aspects to validate a biomarker. A diagnostic study design following this suggested 

workflow will make the results of the study easy to interpret for meta-analysis. a) The source of 

the EVs must be exactly identified. b) The isolated EVs must be well-characterized. Due to the 

very heterogeneous nature of EVs, there is an argument over the definition of exosome or 

microvesicle. Therefore, we continuously read some studies that use exosome, EVs, and 

microvesicles without considering their very similar but different characteristics. In an EVs 

diagnostic accuracy study, it is highly recommended to use the MISEV2018 guideline [66] for 

the characterization of EVs populations. c) The isolation method, purity, and concentration of the 

isolated EVs need to analyze for patients and healthy controls. If applicable, the absence of free 
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serum or CSF contamination, including proteins and RNAs, should be confirmed. RNA or 

protein contamination from serum or CSF during the isolation of EVs may affect the results.  

Using these recommended workflows, we hope to expedite EVs derived biomarker discovery for 

GBM.  
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Table S1. Search Strategy of four databases 

Database Record 
Number 

Search Strategy 

PubMed  
 

279 ("Glioblastoma"[Mesh] OR Glioblastoma[tiab] OR Glioblastomas[tiab] OR ("Grade IV"[tiab] AND 
Astrocytoma[tiab]) OR ("Grade IV"[tiab] AND Astrocytomas[tiab]) OR GBM[tiab] OR 
Glyoblastoma[tiab] OR Glyoblastomas[tiab] OR "Malignant Glioma"[tiab] OR "Malignant 
Gliomas"[tiab] OR Spongioblastoma[tiab] OR Spongioblastomas[tiab] OR "Gliobastoma 
Multiforme"[tiab]) AND ("Exosomes"[Mesh] OR "Extracellular Vesicles"[Mesh] OR "Cell-Derived 
Microparticles"[Mesh] OR "Exosomes"[tiab] OR "Exosome"[tiab] OR "Extracellular Vesicles"[tiab] OR 
"Extracellular Vesicle"[tiab] OR Exosomic[tiab] OR Exosomal[tiab] OR Microvesicles[tiab] OR 
Microvesicle[tiab] OR "Cell-Derived Microparticles"[tiab] OR "Cell-Derived Microparticle"[tiab] OR 
Ectosomes[tiab] OR Ectosome[tiab] OR Exovesicles[tiab] OR Exovesicle[tiab] OR (Membrane[tiab] AND 
Microparticle[tiab]) OR (Membrane[tiab] AND Microparticles[tiab])) 
 

Scopus  
 

438 (TITLE-ABS-KEY(Glioblastoma OR Glioblastomas OR ("Grade IV" AND Astrocytoma) OR ("Grade IV" 
AND Astrocytomas) OR GBM OR Glyoblastoma OR Glyoblastomas OR "Malignant Glioma" OR 
"Malignant Gliomas" OR Spongioblastoma OR Spongioblastomas OR "Gliobastoma Multiforme")) AND 
(TITLE-ABS-KEY("Exosomes" OR "Exosome" OR "Extracellular Vesicles" OR "Extracellular Vesicle" OR 
Exosomic OR Exosomal OR Microvesicles OR Microvesicle OR "Cell-Derived Microparticles" OR "Cell-
Derived Microparticle" OR Ectosomes OR Ectosome OR Exovesicles OR Exovesicle OR (Membrane AND 
Microparticle) OR (Membrane AND Microparticles))) 
 

Web of 
Science  
 

400 (TS=(Glioblastoma OR Glioblastomas OR ("Grade IV" AND Astrocytoma) OR ("Grade IV" AND 
Astrocytomas) OR GBM OR Glyoblastoma OR Glyoblastomas OR "Malignant Glioma" OR "Malignant 
Gliomas" OR Spongioblastoma OR Spongioblastomas OR "Gliobastoma Multiforme")) AND 
(TS=("Exosomes" OR "Exosome" OR "Extracellular Vesicles" OR "Extracellular Vesicle" OR Exosomic OR 
Exosomal OR Microvesicles OR Microvesicle OR "Cell-Derived Microparticles" OR "Cell-Derived 
Microparticle" OR Ectosomes OR Ectosome OR Exovesicles OR Exovesicle OR (Membrane AND 
Microparticle) OR (Membrane AND Microparticles))) 
 

Embase  
 

613 ('Glioblastoma'/exp  OR Glioblastomas:ab,ti OR ('Grade IV':ab,ti AND Astrocytoma:ab,ti) OR ('Grade 
IV':ab,ti AND Astrocytomas:ab,ti) OR GBM:ab,ti OR Glyoblastoma:ab,ti OR Glyoblastomas:ab,ti OR 
'Malignant Glioma':ab,ti OR 'Malignant Gliomas':ab,ti OR Spongioblastoma:ab,ti OR 
Spongioblastomas:ab,ti OR 'Gliobastoma Multiforme':ab,ti) AND ('Exosome'/exp OR 'Membrane 
Microparticle'/exp OR Exosomes:ab,ti OR 'Extracellular Vesicles':ab,ti OR 'Extracellular Vesicle':ab,ti 
OR Exosomic:ab,ti OR Exosomal:ab,ti OR Microvesicles:ab,ti OR Microvesicle:ab,ti OR 'Cell-Derived 
Microparticles':ab,ti OR 'Cell-Derived Microparticle':ab,ti OR Ectosomes:ab,ti OR Ectosome:ab,ti OR 
Exovesicles:ab,ti OR Exovesicle:ab,ti OR (Membrane:ab,ti AND Microparticle:ab,ti) OR 
(Membrane:ab,ti AND Microparticles:ab,ti)) 
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Figure S1. Quality assessment of the included studies using the QUADAS-2 checklist. 

 

 

Table S2. Tabular presentation for results of quality assessment of included studies with QUADAS-2  

STUDY ID 
RISK OF BIAS APPLICABILITY CONCERNS 

PATIENT 
SELECTION 

INDEX 
TEST 

REFERENCE 
STANDARD 

FLOW AND 
TIMING 

PATIENT 
SELECTION 

INDEX 
TEST 

REFERENCE 
STANDARD 

Akers 2013    ?    

Akers 2017   ?  ?  ? 

Ebrahimkhani 2018  ?      

Lan 2017 ?    ?   

Manterola 2014        

Santangelo 2018 ?    ?  ? 

Shi 2015    ?  ?  

Tan 2018 ? ?    ? ? 

Zhong 2019 ?      ? 

 Low Risk  High Risk ? Unclear Risk  
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Table S3. Diagnostic value data of included primary studies in meta-analysis
Author 
(Year) 

Biomarker AUC 95% CI Tp Fp Fn Tn SEN SPE PLR NLR DOR Accuracy Cut-off

Akers (2013) miR-21(P1) 0.91 0.797-1 11 0 2 14 0.85 1 24.64 0.18 133.4 0.93 0.25 
(Copy/EV) miR-21(P2) 13 2 2 14 0.87 0.88 6.93 0.15 45.5 0.87 

Akers (2017) miR-21, miR-
218, miR-
193b, miR-
331, miR-
374a, miR-
548c, miR-
520f, miR-
27b, miR-
130b (P1) 

0.75 
 
 
 

0.53-0.97 
 
 
 

8 4 2 8 0.8 0.67 2.4 0.3 8 0.73 0.4 (FC) 

miR-21, miR-
218, miR-
193b, miR-
331, miR-
374a, miR-
548c, miR-
520f, miR-
27b, miR-
130b (P2) 

0.83 0.63-0.96 5 1 13 19 0.28 0.95 5.56 0.76 7.31 0.63 0.4 (FC) 

Manterola 
(2014) 

miR-574-3p 0.73 0.58–0.89 15 10 10 15 0.6 0.6 1.5 0.67 2.25 0.60 0.454 (FC) 
miR-320 0.72 0.56–0.87 16 9 9 16 0.64 0.64 1.78 0.56 3.16 0.64 0.477 (FC) 
RNU6-1 P1 0.85 0.74–0.96 18 8 7 17 0.72 0.68 2.25 0.41 5.46 0.70 0.454 (FC) 
RNU6-1 P2 0.72 0.60–0.84 33 10 17 20 0.66 0.67 1.98 0.51 3.88 0.66 0.372 (FC) 
RNU6, miR-
320, miR-
574-3p (P1) 

0.92 0.84–1 22 4 3 21 0.88 0.84 5.5 0.14 38.5 0.86 0.349 (FC) 

RNU6, miR-
320, miR-
574-3p (P2) 

0.77 0.65-0.90 35 9 15 21 0.7 0.7 2.33 0.43 5.44 0.70 0.347 (FC) 

Santangelo 
(2018) 

miR-21 0.84 0.75–0.93 37 7 7 23 0.84 0.77 3.6 0.21 17.37 0.81 1.78 (FC) 
miR-222 0.80 0.69–0.89 25 0 19 30 0.57 1 35.13 0.44 79.77 0.74 129.41 (FC) 
miR-124-3p 0.78 0.67–0.89 39 11 5 19 0.89 0.63 2.42 0.18 13.47 0.78 2.95 (FC) 
miR-21, 
miR-222, 
miR-124-3p 

0.87 
 

0.78–0.95 37 7 7 23 0.84 0.77 3.6 0.21 17.37 0.81 0.90 (FC) 

Tan (2018) HOTAIR 0.91 NR 37 5 6 35 0.86 0.88 6.88 0.16 43.17 0.87 10.8 (FC) 
Zhong (2019) miR-29b 0.86 NR 89 15 18 65 0.83 0.81 4.44 0.21 21.43 0.82 NR 

FC: Fold Change, AUC: Area Under Curve, SEN: Sensitivity, SPE: Specificity, TN: True Positive, TN: True Negative, FP: False Positive, 
FN: False Negative, PLR: Positive Likelihood Ratio, NLR: Negative Liklihood Ratio, DOR: Diagnostics Odds ratio, NR: Not Reported 
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Table S4. The exosomal biomarkers for GBM diagnosis in the included nine studies 

No Biomarker Type First Author

1 miR-21 micro-RNA 
Akers (2013), Akers (2017), Santangelo, 
Shi. 

2 miR-486-5p micro-RNA 

Ebrahimkhani 
 

3 miR-182-5p micro-RNA 

4 miR-328-3p micro-RNA 

5 miR-339-5p micro-RNA 

6 miR-340-5p micro-RNA 

7 miR-543 micro-RNA 

8 miR-485-3p micro-RNA 

9 miR-301a micro-RNA Lan  
10 RNU6-1 Small non-coding-RNA 

Manterola  11 miR-320 micro-RNA 
12 miR-574-3p micro-RNA 
13 miR- 222  micro-RNA 

Santangelo 
14 miR-124-3p micro-RNA 
15 lncRNA  HOTAIR Long non-coding-RNA Tan  
16 miR-193b micro-RNA 

Akeres  

17 miR-218 micro-RNA 
18 miR-331 micro-RNA 
19 miR-374a micro-RNA 
20 miR-27b micro-RNA 
21 miR-130b micro-RNA 
22 miR-520f micro-RNA 
23 miR-548c micro-RNA 
24 miR-29b micro-RNA Zhong 
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Figure S2. Coupled forest plots show pooled estimates of positive and negative likelihood ratios (PRL & NLR) of exosomal 
biomarkers for glioblastoma diagnosis with corresponding heterogeneity statistics. CI: confidence interval, I2: inconsistency 
index. 
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Figure S3. Forest plot shows pooled estimate of diagnostic odds ratio (DOR) of exosomal biomarkers for glioblastoma diagnosis 
with corresponding heterogeneity statistics. CI: confidence interval, I2: inconsistency index. 

 

Figure S4. Deek’s funnel plot and asymmetry test for evaluating potential publication bias. ESS: the effective sample size.
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Figure S5. Coupled forest plots show result of multiple meta-regression and subgroup analysis on pooled sensitivity and 
specificity.  
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Figure S6. Graphical depiction for outlier detection analysis using Cook’s distance and standardized predicted random effects. 

 

 
Figure S7. Coupled forest plots show pooled estimates of sensitivity and specificity and corresponding heterogeneity statistics 
after outlier omission in sensitivity analysis. CI: confidence interval, I2: inconsistency index. 
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