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Abstract 

To follow the revision of the fourth edition of WHO classification and the recent 

progress on the management of diffuse gliomas, the joint guideline committee of 

Chinese Glioma Cooperative G oup (CGCG), Society for Neuro-Oncology of China 

(SNO-China) and Chinese Brain Cancer Association (CBCA) updated the clinical 

practice guideline. It provides recommendations for diagnostic and management 

decisions, and for limiting unnecessary treatments and cost. The recommendations 

focus on molecular and pathological diagnostics, and the main treatment modalities 

of surgery, radiotherapy, and chemotherapy. In this guideline, we also integrated the 

results of some cl nical trials of immune therapies and target therapies, which we 

think are ongoing future directions. The guideline should serve as an application for 

all professionals involved in the management of patients with adult diffuse glioma 

and also a source of knowledge for insurance companies and other institutions 

involved in the cost regulation of cancer care in China and other countries. 

Keywords: molecular diagnostics, surgery, chemoradiation, immune therapy, 

target therapy  
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1. Introduction 

According to the 2016 World Health Organization (WHO) classification of tumors of the 

central nervous system (CNS) and the recent updates from the Consortium to Inform Molecular 

and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) [1], molecular parameters in 

addition to histology are recommended to define many tumor entities, thus formulating an 

integrated pathological diagnostics for CNS tumor in the molecular era. To follow the revision of 

the fourth edition of WHO classification and the recent progress on the management of gliomas, 

the joint guideline committee of Chinese Glioma Cooperative Group (CGCG), Society for Neuro‐

Oncology of China (SNO-China) and Chinese Brain Cancer Association (CBCA) updated the clinical 

practice guidelines for the management of adult diffuse gliomas[2]. The guideline covers adult 

astrocytic and oligodendroglial tumors of WHO grades II–IV, and variants of these tumors, and 

discusses histological and molecular diagnostics, state-of-the-art treatment strategies and novel 

therapies.  

 

2. Epidemiology and survival 

According to the latest global statistics, there were 330,000 incident cases of CNS cancer and 

227,000 deaths globally in 2016[3]. And China was one of the top three countries with the largest 

incident cases and the most deaths of CNS cancer[3, 4]. The most common histological type of 

primary CNS cancer is glioma, which is derived from glial cells of astrocytic, oligodendroglia and 

ependymal origin, with the annual incidence of 5 6 cases per 100,000 individuals worldwide[5, 

6].  

The signs and symptoms associated with diffuse gliomas are dependent on histopathology 

and affected anatomical regions, which include headaches, speech disturbance, cognitive 

impairment, seizures, and paralysis. The overall prognosis of malignant glioma remains poor, due 

to the high rates of mortality and inherently disabling effects it has on patients. Patient age, 

performance status, degree of tumor malignancy, extent of resection are well established 

prognostic factors for diffuse gliomas. The median overall survival (OS) times were 78.1, 37.6 and 

14.4 months for low grade gliomas, anaplastic gliomas and glioblastomas, respectively[7]. 

Moreover, molecular genetic features, such as isocitrate dehydrogenase 1 (IDH1) or IDH2 

mutation, chromosomal 1p/19q codeletion and MGMT promoter methylation, confer a favorable 

prognosis, which will be discussed in more detail below. 

 

3. Diagnosis and pathology 

The diagnosis of gliomas has long been largely based on their microscopic similarities with 

different putative cells of origin and their presumed levels of differentiation. However, as the 

expansion of knowledge on the genetic basis of tumorigenesis, accumulating evidences have 

shown the possibility that the molecular features may contribute to classification of gliomas. The 

detailed information of these molecular markers and their clinical relevance[8-45] are listed in 

Table 1. 

The current recommended glioma diagnostic process, summarized in Figure 1, is the 

integration of histological typing and molecular characteristics. The application of molecular 

features is currently recommended in clinical practice and considered to provide more 

information about the biological behavior of tumors and consequently the patient’s prognosis 

and outcome. Not other-wise specified (NOS) diagnoses refer to the following situations: 1) 
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diagnostic testing necessary for reaching a specific WHO diagnosis cannot or will not be 

performed; 2) necessary diagnostic testing has failed. Not elsewhere classified (NEC) diagnoses 

reflect the situations in which the necessary assays (molecular testing such as IDH1/2 and 1p/19q 

status) are performed, but the results do not allow for a specific entity in the current WHO 

classification [46]. 

For IDH1/2, If immunohistochemistry for mutant R132H IDH1 protein and sequencing for 

IDH1 codon 132 and IDH2 codon 172 gene mutations are both negative, or if sequencing for IDH1 

codon 132 and IDH2 codon 172 gene mutations alone is negative, then the lesion can be 

diagnosed as IDH-wildtype. Particularly, it is near absence of non-R132H IDH1 and IDH2 

mutations in glioblastomas from patients over about 55 years of age[47], thus, sequencing may 

not be needed in the setting of negative R132H IDH1 immunohistochemistry in such patients. 

Oligodendroglioma/Anaplastic oligodendrogliomas are characterized by IDH mutation and 

chromosome 1p/19q codeletion. Other diagnostic biomarkers include TERT promoter mutation, 

CIC and/or FUBP1 mutation. These patients showed the most favorable prognosis of all the 

diffuse gliomas (Figure 2). 

Diffuse/Anaplastic astrocytomas are classified into two categories according to the IDH 

mutational status. The IDH-mutant tumors also harbor frequent ATRX and TP53 mutations, 

accompanied by 17p loss of heterozygosity (LOH), a second TP53 mutation or complete loss of 

TP53 expression, suggesting biallelic TP53 inactivation  These patients had more favorable 

survival in comparison to the latter type(Figure 2). The IDH-wildtype diffuse/anaplastic 

astrocytomas are characterized by the presence of ‘glioblastoma (GBM)-like’ mutations and CNVs, 

such as amplification of EGFR, PDGFRA, CDK4, MDM2 and MDM4, deletion or mutation of PTEN, 

NF1, RB1, CDKN2A/B, 10q, and amplification or mutation of PI3K genes, which were much less 

frequent in other WHO grade II-III gliomas.  

GBMs are divided into (1) glioblastoma, IDH-wildtype, accounting for about 90% of GBM 

cases, have a worst survival (Figure 2), predominately in patients over 55 years. Other genomic 

alterations include TERT promoter mutation, EGFR amplification/mutation and PTEN 

loss/mutation. Epithelioid glioblastoma (a new variant of glioblastoma), giant cell glioblastoma 

and gliosarcoma are under the umbrella of IDH-wildtype GBM. (2) glioblastoma, IDH-mutant 

(about 10% of GBM cases) is often considered as secondary GBMs with a history of prior lower 

grade diffuse glioma and preferentially arises in younger patients. TP53 and ATRX mutations are 

the most common coexisted genomic alterations in IDH-mutant GBMs.  

IDH-wildtype diffuse astrocytic tumors would follow an aggressive clinical course and 

considered as an entity equivalent to glioblastoma if they have the genotype of epidermal growth 

factor receptor (EGFR) amplification and/or combined whole chromosome 7 gain and whole 

chromosome 10 loss (+7/−10) and/or TERT promoter mutation[29, 34]. Although these tumors 

possess “GBM like” genotypes, it is not appropriate to designate the tumor as a glioblastoma in 

the absence of histological features including palisading necrosis and microvascular proliferation. 

Thus, the diagnosis of “diffuse astrocytic glioma, IDH-wildtype, with molecular features of 

glioblastoma, WHO grade IV” is the most appropriate entity. The overall survival of these patients 

was more similar to that of GBMs. 

The overall survival of IDH-mutant diffuse astrocytic tumors were associated with the status 

of CDKN2A/2B homozygous deletion[28]. Patients with CDKN2A/2B homozygous deletion 

without necrosis, graded as WHO grade III anaplastic astrocytoma exhibited similar overall 
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survival to those with WHO grade IV glioblastoma, IDH-mutant with CDKN2A/2B homozygous 

deletion and necrosis[48]. In addition, the glioma cases with necrosis and no CDKN2A/2B 

homozygous deletion survive significantly longer than those with CDKN2A/2B homozygous 

deletion and no necrosis. Therefore, IDH-mutant astrocytomas with microvascular proliferation 

or necrosis or CDKN2A/B homozygous deletion, or any combination of these features are 

clinically and genetically distinct from glioblastoma, IDH-wildtype, and more closely related to 

WHO grade 2 or 3 IDH-mutant astrocytomas. cIMPACT-NOW suggested to diagnose these tumors 

as “Astrocytoma, IDH-mutant, WHO grade 4”(Figure 1)[28].  

Diffuse midline gliomas involve thalamic, spinal, and diffuse brainstem gliomas, which 

usually occur in children (but sometimes in adults too). This entity includes tumors previously 

referred to as diffuse intrinsic pontine glioma (DIPG). One specifically defined group of these 

tumors, termed as diffuse midline glioma, H3 K27M-mutant, is characterized by K27M mutations 

in either H3F3A or HIST1H3B/C. H3 K27M mutations were first described in DIPGs, but soon 

thereafter were found in midline gliomas in adults. The presence of H3 K27M mutation in these 

tumors was recognized to portend an adverse prognosis regard ess of the histology and thus 

WHO grade IV was assigned by the 2016 WHO Classification criterion. H3 K27M mutation also 

exist in other brain tumors, including ependymomas, pilocytic astrocytomas, pediatric diffuse 

astrocytomas, and gangliogliomas. Thus, the term diffuse midline glioma, H3 K27M-mutant 

should be reserved for tumors that are diffuse (i e  infiltrating), midline (e.g., thalamus, brain 

stem, spinal cord, etc.), gliomas and H3 K27M-mutant, and should not be applied to other tumors 

that are H3 K27M-mutant (Figure 1)[18]. 

IDH-wildtype gliomas in pediatric or young adult patients generally have a prolonged disease 

course and good overall survival. These umors are genetically featured with either BRAF V600E 

mutation, FGFR1 alteration, or a MYB or MYBL1 rearrangement, or other MAPK pathway 

alterations[49]. Thus, the diagnosis of “Diffuse glioma, MYB-altered/MYBL1-altered/FGFR1 TKD 

duplicated/FGFR1-mutant/BRAFV600E-mutant (but without CDKN2A/B deletion)/other MAPK 

pathway alteration” should be made in these situations (Figure 1). 

 

4. Disease management 

4.1 General recommendations  

Management of gliomas requires a multidisciplinary approach, including surgical resection, 

irradiation, systemic therapies, and supportive care. A therapeutic treatment algorithm is 

provided in Figure 3. In both the newly diagnosed and recurrent glioma, consideration of factors 

such as patient age, performance status, and tumor molecular features is of critical importance. 

 

4.2 Neurosurgical resection 

MRI, including T2-weighted and FLAIR sequences, and T1-weighted sequences before and 

after contrast enhancement, is the standard method for the detection and follow-up of a glioma. 

Before surgery, neuropsychological assessment and functional imaging study should be applied 

for comprehensive evaluation of neurological status, especially for patients with tumor in 

speech/motor area or with speech/motor symptoms. 

Surgical strategies for diffuse glioma patients are summarized in Figure 4. To meet the goal 

of maximal safe resection (remove as much of the tumor as safely as possible to improve 

neurological function), microsurgical techniques are current standard procedures. Some other 
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techniques, including neuronavigation system, intraoperative MRI, ultrasound, intraoperative 

functional monitoring, and the fluorescent dye 5-aminolevulinic acid, are becoming more popular 

in order to increase the extent of surgical resection, while minimizing the risk of new neurological 

deficits. An early imaging study (MRI or CT if MRI is not feasible) is strongly recommended within 

72 hours for the assessment of the extent of resection (EOR), which is also part of the standard of 

care for diffuse gliomas. 

Blood oxygen level-dependent (BOLD) fMRI is a preoperative method for mapping functional 

regions of the brain that allows assessment of the function of cortical and subcortical regions[50]. 

BOLD fMRI helps neurosurgeons determine surgical strategy before an operation[51, 52]. A 

recent cohort study reported a zoomed imaging technique with parallel transmission 

(ZOOMit)-BOLD (a novel sequence allowing high spatial resolution with a relatively small field of 

view that may solve this problem) may potentially replace conventional-BOLD to identify the 

hand-motor cortex, particularly in cases in which gliomas directly invade the hand-knob[53]. The 

accuracy of fMRI is affected by the tumor to the motor cortex distance[54]. Preoperative fMRI 

data for surgical planning should be used cautiously when the shortest distance from the tumor 

to the hand knob is ≤4 mm, and an awake craniotomy is strong y recommended in this situation. 

Functional outcome of patient is found to be associated with tumor location[55-58]. 

In the era of molecular neuropathology, recent studies have confirmed the interaction effect 

between molecular biomarkers and EOR in diffuse gliomas[59]. As the development of 

pre-operation radiomics based molecular subtyping[60] or intra-operation molecular pathology 

techniques (e.g., rapid immunohistochemistry  high‑resolution melting)[61], it is now possible to 

make a diagnosis before or during operations. For some molecular pathological types, gross total 

resection (GTR) or even supra-total resection was essential, while for the others, GTR had no 

survival benefit but increased the risk for postoperative complications.  

In a retrospective study of WHO grade II glioma patients, stratifying by IDH status 

demonstrates that greater EOR independently prolonged survival for IDH-wildtype patients, but 

not for IDH-mutant patients[62]. For IDH-mutant patients, this might due to the complication of 

oligodendroglioma with IDH mutation and 1p/19q codeletion, as in some studies, increased EOR 

resulted in better survival for diffuse astrocytoma but not for oligodendroglioma[63] nor specially 

(anaplastic) oligodendroglioma with IDH mutation and 1p/19q codeletion[64-66]. The prognostic 

impact of postoperative tumor volume was particularly strong in IDH-mutant astrocytoma 

patients[65] or in anaplastic astrocytoma/oligoastrocytoma[67] patients. Thus, the surgical 

treatment for diffuse gliomas with IDH mutation and 1p/19q codeletion should consider the 

tumor location and comprehensively functional protection. It is commonly inadvisable to achieve 

total resection at the expense of function impairment. To further strengthen the impact of 

surgery, a more significant reduction of the number of residual glioma cells by achieving a 

supra-total  resection (i.e. resection extended beyond the MRI abnormalities) has been 

suggested[68, 69], especially in IDH-wildtype astrocytoma[61]. 

For WHO grade III-IV gliomas, maximum resection of contrast-enhanced (CE) tumor on 

T1-weighted magnetic resonance imaging has been consistently associated with longer 

survival[70, 71]. In a cohort study of patients with newly diagnosed glioblastoma, reduction of CE 

tumor was significant regardless of IDH status and MGMT methylation status. Reduction of 

non-contrast-enhanced (NCE) tumor was significant in younger (<65 years) patients with 

IDH-wildtype tumors, regardless of MGMT status, and in all patients with IDH-mutant tumors. 
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Thus, for newly diagnosed glioblastoma, it is suggested to perform maximal resection of the CE 

tumor for all patients, with the additional maximum resection of the NCE tumor in patients 

younger than 65 years, when safely feasible[72]. 

After surgery, the optimal management for a glioma patient is in a clinical trial, thus 

participation in clinical trials is especially encouraged. Post-operation radio- and chemotherapies 

are parts of the standard of care for most patients with glioma. The therapeutic regimens are 

notably different according to the grading of the tumor with certain molecular features. 

 

4.3 IDH-mutant grade II glioma 

Traditionally, patients with the following features are considered as low risk: age≤40 years, 

Karnofsky Performance Status (KPS) ≥70, minor or no neurological deficit, oligodendroglioma or 

oligoastrocytoma, tumor dimension <6cm, 1p and 19q co-deleted, and IDH1/2 mutation. Regular 

follow-up is essential for low-risk patients receiving observation alone after gross total resection, 

and final decision-making should be done after due discussion wi h the patients and their 

families bearing in mind the need for adjuvant therapy at a later stage if the wait and see policy is 

applied. 

The postoperative treatment strategies for high-risk grade I  gliomas are including utilized for 

high risk low-grade gliomas, i.e., RT along with chemotherapy, either with adjuvant “PCV” 

[procarbazine-CCNU (lomustine)-vincristine] regimen or oncurrent and adjuvant temozolomide 

(TMZ). 

 

4.4 IDH-wildtype grade II glioma 

After exclusion of other entities (such as pediatric-type diffuse gliomas), IDH-wildtype grade 

II gliomas should offer protocols similar to that utilized for high risk low-grade gliomas 

Postoperative radiotherapy, or adjuvant temozolomide (TMZ) or PCV chemotherapy is usually 

recommended, and timing of radiation typically depends on several variables such as age and 

EOR. In the RTOG 9802 trial, grade II glioma patients who were younger than 40 years of age and 

had undergone subtotal tumor resection or who were 40 years of age or older, progression free 

survival and overall survival were longer among those who received combination chemotherapy 

(PCV) in addition to radiation therapy than among those who received radiation therapy 

alone[73]. The NRG Oncology/RTOG 0424 trial demonstrated a 3-year overall survival benefit 

with the addition of TMZ to radiotherapy compared with a historical control[74]. The following 

study also demonstrated that MGMT promoter methylation was an independent prognostic 

biomarker of high-risk low-grade glioma treated with TMZ and radiotherapy[75]. 

 

4.5 IDH-mutant and 1p/19q-codeleted grade III glioma 

Standard treatment for anaplastic (grade III) glioma patients includes maximal safe surgical 

removal or biopsy followed by radiotherapy (60Gy in 1.8~2.0 Gy fractions) and adjuvant 

chemotherapy. The chemotherapy regimens vary according to the patients’ characteristics, such 

as KPS, 1p/19q codeletion or MGMT promoter methylation. For 1p/19q-codeleted anaplastic 

oligodendroglial tumors, two large randomized clinical trials (European Organization for Research 

and Treatment of Cancer (EORTC) 26951 and RTOG 9402) showed that patients treated with PCV 

chemotherapy, either before or after radiotherapy, in first-line treatment had longer overall 

survival compared with patients treated with radiotherapy alone[76, 77]. The modified CODEL 
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trial is ongoing as a two-arm comparison of radiotherapy plus adjuvant PCV vs. radiotherapy plus 

concomitant/adjuvant TMZ.  

 

4.6 IDH-mutant and 1p/19q non-codeleted grade III glioma 

For 1p/19q intact anaplastic gliomas, an interim analysis the EORTC 26053 trial (CATNON) 

suggested that patients treated with 12 cycles of maintenance TMZ to radiotherapy had longer 

overall survival than patients not treated with maintenance TMZ[78]. Maintenance TMZ has since 

been introduced as the standard of care for grade III gliomas, whereas the value of concomitant 

TMZ remains unclear. 

 

4.7 IDH-wildtype GBM 

IDH-wildtype GBM accounts for the vast majority (~90%) of GBMs. Three morphological 

variants of giant cell glioblastoma, gliosarcoma, and epithelioid glioblastoma are also included in 

this diagnosis, although no specific treatment recommendations exist according to glioblastoma 

variants. However, about 50% of the epithelioid glioblastoma  have a targetable BRAF
V600E

 

mutation, the therapeutic role of which needs to be evaluated systematically. 

Maximal safe resection, followed by radiotherapy with concomitant and adjuvant TMZ, has 

been widely considered as the standard of care (Stupp regimen) for newly diagnosed GBM 

patients since the EORTC-NCIC trail- a randomized phase III study on the comparison of 

radiotherapy with concomitant and adjuvant TMZ versus radiotherapy alone on survival in GBM 

[79]. In elderly GBM patients, a randomized clinical trial (patient age: 65~90 years) also 

demonstrated that the addition of TMZ to short-course radiotherapy (40 Gy in 15 fractions) 

resulted in longer survival (9.3 months vs  7.6 months) than short-course radiotherapy alone[80]. 

Up till now, dose-dense TMZ regimens, extending use of adjuvant TMZ beyond 6 cycles, and the 

addition of bevacizumab have all been proved to offer no additional survival benefit[81-83]. 

The standard dose of radiotherapy for GBM patients is 60 Gy in 1.8~2.0 Gy fractions. 

Radiotherapy (50 Gy in 1 8 Gy fractions) also results in a modest improvement in survival (median 

survival: 29.1 weeks vs  16.9 weeks), without reducing the quality of life or cognition, in elderly 

patients with glioblastoma (age ≥70 years and KPS ≥70)[84]. Hypofractionated radiotherapy (40 

Gy in 15 fractions) is the standard radiotherapy regimen for elderly GBM patients, especially 

when MGMT status is unknown or unmethylated[85]. 

Tumor treating fields (TTFs) are low-intensity electric fields alternating at an intermediate 

frequency (200kHz), producing antimitotic effects for dividing tumor cells with limited toxicity. It 

has been evaluated in a randomized phase III trial in newly diagnosed GBM and demonstrated to 

prolong progression-free survival (PFS) and OS when administered during adjuvant TMZ in 

comparison with the standard Stupp regimen [86]. 

 

4.8 IDH-mutant GBM  

IDH-mutant GBM (astrocytoma, IDH-mutant, grade 4) correspond to secondary GBM with a 

longer history or a history of prior lower grade diffuse glioma, and arises in relatively younger 

patients. Although these patients showed more favorable prognosis than IDH-wildtype GBMs, 

they commonly been treated in a similar approach. 

 

4.9 Tumor recurrence/progression 
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Generally, standards of care for tumor recurrence/progression are less well defined. 

Treatment options include further surgical resection, re-irradiation, systemic therapies such as 

lomustine or bevacizumab, or supportive care, which depends on age, neurological status, KPS, 

pattern of recurrence/progression and previous therapies. A second surgery will be considered 

when the patient is in these conditions: 1) a symptomatic but circumscribed lesion; 2) >6 months 

after the first surgery or early recurrence/progression when the first surgery was not adequate. 

After a second surgery (or a second surgery is not available), radiotherapy in previously 

non-irradiated patients, or if new lesion is outside target of prior radiation, is usually an option, 

with a minimum interval of 12 months from the first radiotherapy course. Chemotherapy with 

alkylating drugs (usually TMZ or nitrosoureas) could be considered for chemonaive tumors which 

recur or progress after radiotherapy. TMZ rechallenging with altered dosing regimens is an option 

for patients pre-treated with TMZ, although the activity is probably limited to tumors with MGMT 

promoter methylation. Nitrosoureas, including carmustine (BCNU), lomustine (CCNU) and 

fotemustine have also been reported to be used for the treatment of recurrent gliomas. Of the 

various molecular targeted drugs investigated in clinical trials or recurrent glioma patients, 

bevacizumab (vascular endothelial growth factor inhibitor), is approved for recurrent GBM in 

North America, although the effect of bevacizumab on surv val improvement is limited. However, 

there is no evidence to suggest that TMZ rechallenge, nitrosoureas, bevacizumab, or 

re-irradiation, TTFs could prolong survival of recurrent GBMs in randomized trials. 

 

4.10 Supportive care 

Glioma patients often experience significant and progression neurological disfunctions 

throughout the disease course. As the disease advancing, the patients require greater levels of 

nursing and social support[87]. Supportive and palliative care are also appropriate for patients 

with large or multifocal lesions with a low KPS, especially if patients are unable to consent to 

further therapy after biopsy. 

Seizure is a common symptom before administration or after surgery, and many require 

long-term antiepileptic therapy. The principles of antiepileptic therapy should aim for the lowest 

dose possible for seizure control to avoid side effects and minimize drug-drug interactions[88, 89]. 

Levetiracetam is now commonly recommended for glioma patients for its  safety and relatively 

few interactions with other commonly used drugs[90]. The routine prophylactic use of 

antiepileptic drugs in patients with no history of seizures is not recommended, although they 

may be used temporarily in the perioperative period[91]. 

Corticosteroids are often prescribed to patients for control of tumor-associated edema and 

improving clinical symptoms. Steroids are not necessary in patients without increased intracranial 

pressure or in the absence of edema-associated neurological deficits. There is no need for 

prolonged steroid therapy after tumor resection or for prophylaxis during radiotherapy in 

asymptomatic patients. Rapid tapering and discontinuation of corticosteroids is recommended in 

order to avoid toxicity associated with prolonged exposure to steroids, e.g. lymphopenia and risk 

of infection, osteoporosis, and Cushing syndrome. Therefore, the lowest dose for the shortest 

time possible is recommended[92]. 

Patients with gliomas are at increased risk of thromboembolic events (up to 20% of patients 

at 1 year[93]). Multiple factors contribute to this increased risk, including neurological deficits, 

steroid use, radiotherapy, chemotherapy, and release of vasoactive molecules from glioma cells. 
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Prophylactic anticoagulation is not recommended. However, a low threshold for excluding deep 

vein thrombosis and pulmonary emboli is indicated when suspicious symptoms occur. Treatment 

of VTE is generally lifelong with low-molecular-weight heparin unless there are contraindications, 

and there is a lack of evidence for newer oral anticoagulants[94]. 

Integration of palliative care early in the course of the disease is important, and best 

supportive care may be the most appropriate course in some patients[95]. The management of 

symptoms, such as fatigue, mood and behavioral disorders, and impaired cognition, and 

advanced care planning should all be considered in improving quality of life and reducing 

symptom burden[94]. 

 

4.11 Response evaluation and follow-up 

The Response Assessment in Neuro-Oncology (RANO) working group was established to 

improve the assessment of tumor response and selection of end points, specifically in the context 

of clinical trial[96]. MRI should be utilized to evaluate the efficacy of treatment after completion 

of treatment at an interval of 3-6 months. Contrast enhancement and presumed tumor 

progression on imaging 4-8 weeks after the end of radiotherapy may be a reactive process 

following radiotherapy (pseudo-progression)[97]. Accura e determination of response and 

progression remains a challenge. Because of the difficulty in differentiating pseudoprogression 

from progression, the RANO working group has recommended avoiding enrolling patients within 

3 months of completion of radiochemotherapy into clinical trials for recurrent disease, unless the 

recurrence is mainly outside the radiotherapy field or there is tissue confirmation of 

progression[98]. For immunotherapies, because of the delayed responses or therapy-induced 

inflammation, it has unique challenges associated with the assessment of radiological changes. 

The immunotherapy Response Assessment for Neuro-Oncology (iRANO) criteria suggest to have 

confirmation of radiographic progression on follow-up imaging among patients who demonstrate 

imaging findings meeting RANO criteria for progressive disease within 6 months of initiating 

immunotherapy, including the development of new lesions, provided that the patient is not 

significantly worse clinically[99]. 

 

5. Novel therapies 

5.1 Molecular targeted therapies 

The growing knowledge of tumor genomics has led to great advances in medical oncology. 

Receptor tyrosine kinase (RTK)-PI3K, TP53 and RB pathways have long been considered as the 

most mutated oncolytic pathways[100]. Some well-known oncogenes, RTKs for example, have 

been used as therapeutic targets for gliomas in clinical trials, but there are very few positive 

results. 

Targeting EGFR with tyrosine kinase inhibitors (TKIs) have been explored. Depatuxizumab 

mafodotin (Depatux-M) is a tumor-specific antibody-drug conjugate consisting of an antibody 

(ABT-806) directed against activated EGFR and the toxin monomethylauristatin-F. A phase II trial 

showed a promising result in combination with TMZ in recurrent EGFR amplified 

glioblastoma[101]. However, a phase III trial of Depatux-M in combination with standard therapy 

for newly diagnosed, EGFR-amplified glioblastoma was stopped early because of futility, and no 

OS benefit was observed at an interim analysis[102]. Other RTK-PI3K pathway inhibitors also 

showed limited roles in unselected population in phase II/III clinical trials[103-107]. Regorafenib, 
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a VEGF receptor 2 and multikinase inhibitor, was proved to increase survival in patients with 

recurrent GBM compared to CCNU from a randomized phase II trial[105]. 

A fusion gene/protein typically resulted from chromosomal translocations and executed 

novel functions that cannot be reconstituted by the expression of either parental gene/protein. 

Accumulating oncogenic fusions have been reported in gliomas since the first report of 

FGFR3-TACC3 fusion[43, 108]. Some preclinical or early clinical trials have found the therapeutic 

potential of these gene fusions. FGFR-TACC fusions are found in 3.5% IDH-wildtype grade II or III 

gliomas and 2.9% GBMs. They are mutually exclusive with IDH1/2 mutations and EGFR 

amplification, whereas they co-occur with CDK4 amplification[109]. The clinical response 

observed in the two FGFR3-TACC3–positive patients treated with an FGFR inhibitor supports 

clinical studies of FGFR inhibition in FGFR-TACC–positive patients[42]. MET fusions (TFG-MET, 

CLIP2-MET and PTPRZ1-MET) exists in about 10% pediatric GBMs[110] and about 15% adult 

secondary GBMs (PTPRZ1-MET)[45]. MET inhibitors could suppress MET tumor growth in 

xenograft models. A pediatric patient bearing a MET-fusion-expressing GBM was treated with the 

targeted inhibitor crizotinib. This therapy led to substantial tumor shrinkage and associated relief 

of symptoms, but new treatment-resistant lesions appeared, indicating that combination 

therapies are likely necessary to achieve a durable clinical response. EGFR fusions (EGFR-SEPT14, 

3.7%; EGFR-PSPH, 1.9%) are also frequent in GBMs[111]. EGFR-SEPT14 fusions activate STAT3 

signaling and confer mitogen independence and sensi ivity to EGFR inhibition in preclinical 

studies. Other targetable involving NTRK, BRAF and PDGFRA also have been found in gliomas. 

MGMT fusions (NFYC-MGMT, BTRC-MGMT and SAR1A-MGMT) were reported in recurrent 

GBMs[112], which might contribute to the tumor clonal evolution and therapeutic target. 

Although the current targeted therapies have not demonstrated a significant impact on 

survival, a multimodality approach by combinations of current standard of care and novel 

therapies might improve survival outcomes and quality of life for glioma patients. 

 

5.2 Immunotherapy 

A series of different immunotherapies, including vaccination, oncolytic viruses, 

immune-checkpoint inhibitors, etc. are currently being actively investigated in GBM patients.  

To induce an active immune microenvironment and strengthen the anti-glioma activity of 

adaptive immune system in glioma patients, vaccination has been considered as pursued a 

promising path forward. Vaccination relies on dendritic cell (DC)-mediated antigen (GBM- 

associated peptides, antigens, or epitopes derived from tumor lysates) presentation to T cells of 

the adaptive immune system. Several peptide mimics, such as EGFRvIII, IDH1-R132H and TERT, or 

a combination of peptides, have completed or are being studied in phase II or III clinical trials. A 

large phase III clinical trial of EGFRvIII vaccine[113] (n=745, ACT IV, NCT01480479) showed 

negative outcome, but some phase II clinical trials (ACTIVATe, NCT00643097[114]; HeatShock, 

NCT00905060) showed superior outcomes comparing to controls. A randomized phase II trial in 

recurrent, EGFRvIII positive GBM patients of rindopepimut plus bevacizumab, compared with 

bevacizumab plus control, showed a potential PFS benefit, indicating that the timing of therapy 

or combination approaches may be important[37]. 

Oncolytic viruses can activate the immune system through pathogen-associated molecular 

patterns and pattern recognition receptors, and activate macrophages through receptors. A 

completed phase II clinical trials (BrTK02, NCT00589875[115] of oncolytic viral therapies showed 
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favorable prognosis. To date, there is no large phase III trials focusing on viral therapies. A 

recently published study of recurrent GBMs treated with recombinant poliovirus showed that 

intratumoral infusion of the recombinant nonpathogenic polio-rhinovirus chimera (PVSRIPO) 

confirmed the absence of neurovirulent potential. The survival rate among patients who received 

PVSRIPO immunotherapy was higher at 24 and 36 months than the rate among historical 

controls[116]. 

Immune checkpoint inhibitors are antibodies that reduce the activity of endogenous, 

negative regulatory pathways limiting T cell activation. The immune checkpoint inhibitors have 

achieved a major improvement of immune therapies in some vital cancers in the past years. In 

gliomas, higher PD-1/PD-L1 expression in glioblastoma has been correlated with poorer patient 

prognosis in some studies[117], which might be the result of increased suppression of anti-tumor 

immunity. Trials of immune checkpoint inhibitors, predominantly targeting PD-1/PD-L1 and/or 

CTLA-4, have been ongoing in newly diagnosed and recurrent GBM, although initial results have 

been disappointing. Due to the cold immunological microenvironmen  of GBM tumors, phase III 

studies of PD-1 inhibitor nivolumab were both negative in patients with recurrent 

(CheckMate-143) and MGMT unmethylated, newly diagnosed (CheckMate-498) GBM. A recent 

phase III trial of nivolumab versus bevacizumab in recurrent GBM demonstrated no improvement 

in patient OS[118]. Another interesting attempt is neoadjuvant anti-PD-1 treatment prior to 

surgery, and two recent studies indicated favorable local immune response and improved survival 

in recurrent GBM patients[119, 120]. 

Chimeric antigen receptor (CAR) T cell therapy used engineered T cells expressing chimeric 

antigen receptors, which lined antigen recognition domains of antibodies to T cell activation 

domains. A recent case study reported that a patient with recurrent multifocal glioblastoma 

received CAR T cells targeting the tumor-associated antigen interleukin-13 receptor alpha 2 

(IL13Rα2)[121]. No toxic effects of grade 3 or higher were observed, while, the regression of all 

intracranial and spinal tumors was observed. This clinical response continued for 7.5 months 

after the initiation of CAR T cell therapy. At present, a number of CAR-T cell therapy targets have 

been used in glioma treatment, such as EGFRvIII, HER2, EphA2, CD70, GD2, and B7H3[122]. 

Clinical trials have shown that CAR T cells could infiltrate into tumor tissues and become 

activated. But further studies  are required to identify critical targets for gliomas and understand 

its potential efficacy in CAR-T cell therapy[123].  

Although several negative results of immune therapy are disappointing for malignant 

gliomas, using combination approaches, and reversing local immunosuppression in the 

microenvironment, might be a promising strategy in the future. 

 

5.3 IDH-targeted therapy 

Mutations in the IDH1/2 gene are commonly found in human glioma, with the majority of 

low-grade gliomas harboring recurrent point mutations (IDH1 R132 and IDH2 R172 sites)[8, 

124-127]. The discovery of IDH1 R132H in gliomas remains an important finding in biomedical 

research. The mutated IDH1 leads to the synthesis of 2-hydroxyglutarate, and that this metabolite 

elicits a significant impact on tumors by regulation of cell death, the epigenome, and metabolism. 

Blocking the activity by several IDH1/IDH2 inhibitors has proven to be promising in preclinical 

models. In a phase I study, ivosidenib (AG-120) 500 mg once per day was associated with a 

favorable safety profile, prolonged disease control, and reduced growth of nonenhancing tumors 
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in patients with IDH-mutant advanced glioma[12]. Thus, the evaluation of efficacy of these 

molecules (e.g. AG-120, AG-221, AG-881, BAY1436032, and DS-1001b) is still in early clinical 

development and the results of ongoing and subsequent clinical trials will provide pivotal insight 

about the efficacy and toxicity of these compounds in patients[128]. 
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Figure captions 

Figure1. The current integrated diagnostic algorithm for diffuse gliomas according to 2016 

WHO classification and cIMPACT-NOW updates. (Abbreviations: NOS, not other-wise specified; 

NEC, not elsewhere classified; WHO, World Health Organization; cIMPACT-NOW, the Consortium 

to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy) 

 

Figure 2. The overall survival curve for adult diffuse gliomas from CGGA (A) and TCGA (B) 

database according to 2016 WHO Classification. (Abbreviations: LGG, lower grade glioma; 

GBM, glioblastoma; NA, not arrived) 

 

Figure 3. The therapeutic treatment algorithm for diffuse gliomas. (Abbreviations: RT, 

radiotherapy; PCV, procarbazine, lomustine and vincristine regimen; TMZ  temozolomide;; BSC, 

best supportive care; HFRT, hypofractionated radiotherapy; KPS, Karnofsky performance status; 

TTF, tumor-treating fields) 

 

Figure 4. The surgical strategies and extent of resection for diffuse gliomas. (Abbreviations: 

ZOOMit, zoomed imaging technique with parallel transmission; BOLD, blood oxygen 

level-dependent; WHO, World Health Organization; CE, contrast-enhanced; NCE, 

non-contrast-enhanced) 
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Table 1. Molecular markers and their clinical relevance in gliomas. 

Markers Genetic alterations Detection methods Clinical importance 

IDH1[8-13] Mutations 

(R132H/C/L/S/G) 

IHC, Sanger sequencing, 

pyrosequencing, NGS 

Diagnostic value 

 Molecular parameters for glioma classification; Differential diagnosis between diffuse 

and non-diffuse gliomas (WHO grade 1) or gliosis. 

Prognostic value  

Relatively favorable prognosis; Important in stratification for clinical trials; Associated 

with MGMT promoter methylation; Benefit from radiation or alkylating chemotherapy; 

Potential parameters for target therapy (e.g., Ivosidenib). 

IDH2[8-11, 13] Mutations 

(R172K/M/G/W) 

Sanger sequencing, 

pyrosequencing, NGS 

Chromosome 

1p/19q[14-17] 

codeletion FISH, PCR, array- or 

NGS-based methods 

Diagnostic value 

 Essential for diagnosis of oligodendroglioma. 

Prognostic value  

Relatively favorable prognosis; Predictive of response to alkylating chemotherapy and 

combination of radiation and alkylating chemotherapy. 

H3 K27[13, 18-21] Mutation 

(K27M) 

IHC, Sanger sequencing, 

NGS 

Diagnostic value 

  Diagnostic parameters for Diffuse midline glioma, H3 K27M‑mutant. 

Prognostic value 

Relatively worse prognosis than that of wildtype diffuse midline gliomas; Potential 

parameter for target therapy (e.g., EZH2 inhibitors). 

H3 G34[13, 22-24] Mutations 

(G34R/V) 

IHC, Sanger sequencing, 

NGS 

Diagnostic value 

  Diagnostic parameters for Diffuse glioma, H3.3 G34-mutant. 

Prognostic value 

  Slightly longer survival time than IDH-wildtype glioblastoma, but shorter than 

IDH-mutant astrocytoma, WHO grade 4.  

ATRX[13, 25, 26] Loss of function 

mutations 

IHC, Sanger sequencing, 

NGS 

Diagnostic value 

 IDH-mutant astrocytomas, with loss of ATRX nuclear expression and/or strong, diffuse 
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p53 immunopositivity, could be diagnosed without 1p/19q testing. 

Prognostic value  

Relatively favorable prognosis in IDH-wildtype glioblastoma. 

TP53[13, 27] Mutations IHC, Sanger sequencing, 

NGS 

Diagnostic value 

 IDH-mutant astrocytomas, with loss of ATRX nuclear expression and/or strong, diffuse 

p53 immunopositivity, could be diagnosed without 1p/19q testing. Differential diagnosis 

between diffuse and no diffuse gliomas (WHO grade 1) or gliosis. 

CDKN2A/B[13, 

28-31] 

Homozygous 

deletion 

FISH, qPCR, MLPA, array- 

or NGS-based methods 

Diagnostic value 

Diagnostic parameters for IDH-mutant astrocytoma, grade 4, in the absence of 

necrosis and/or microvascular proliferation; Frequent in high-grade astrocytoma with 

piloid features. 

Prognostic value 

  Relatively poor prognosis in patients with IDH-mutant diffuse astrocytic gliomas 

TERT[25, 29, 32-35] Promoter 

mutations 

(C228T/C250T) 

Sanger sequencing, 

pyrosequencing, NGS 

Diagnostic value 

  Frequent in oligodendroglioma and glioblastoma; diagnostic parameters for diffuse 

astrocytic glioma, IDH‑wildtype, with molecular features of glioblastoma, WHO grade 4. 

Prognostic value  

 Relatively worse prognosis in IDH-wildtype glioma; Relatively favorable prognosis in 

IDH-mutant gliomas. 

Chromosome 7/10 

[29, 30, 35, 36] 

7 gain/10 loss FISH, array- or NGS-based 

methods 

Diagnostic value  

Diagnostic parameters for diffuse astrocytic glioma, IDH‑wildtype, with molecular 

features of glioblastoma, WHO grade 4 

Prognostic value 

Relatively worse prognosis in IDH-wildtype glioma. 

EGFR[13, 29, 36] Amplification FISH, digital PCR, array- or 

NGS-based methods 

Diagnostic value 

Diagnostic parameters for IDH-wildtype astrocytoma, with molecular features of 
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glioblastoma, grade 4; High copy number amplification frequent in IDH-wildtype 

glioblastomas.  

 EGFRvIII[37] RT-PCR, digital PCR, IHC, 

MLPA, NGS 

Prognostic value  

EGFRvIII present in about half of EGFR-amplified glioblastomas. Potential parameter 

for target therapy. 

BRAF[19, 38, 39] Activating mutation 

(BRAF
 
V600E) 

IHC, Sanger sequencing, 

pyrosequencing, NGS 

Diagnostic value 

  Presented in a variety of gliomas, including epithelioid glioblastoma. 

Prognostic value  

  Potential parameter for target therapy (e.g., vemurafenib). 

MGMT[40, 41] Promoter 

methylation 

pyrosequencing, MSP, 

array-based methods 

Prognostic value  

Relatively favorable prognosis in glioblastoma; Benefit from temozolomide treatment 

for high-grade gliomas; associated with IDH mutation and G-CIMP phenotype 

FGFR[42, 43] Fusion 

(FGFR-TACC) 

Sanger sequencing, qPCR, 

NGS 

Diagnostic value 

  Occurred in glioblastoma and IDH-wildtype astrocytoma. 

Prognostic value 

Potential parameter for target therapy (e.g., FGFR inhibitors). 

MET[44, 45] Fusion 

(PTPRZ1-MET) 

Mutation 

(METex14) 

Sanger sequencing, qPCR, 

NGS 

Diagnostic value 

  Occurred in glioblastoma and IDH-mutant astrocytoma. 

Prognostic value 

Relatively worse prognosis in secondary glioblastoma; Potential parameter for target 

therapy (e.g., MET inhibitors). 

Abbreviations: IHC, immunohistochemistry; NGS, next-generation sequencing; FISH, fluorescence in-situ hybridization; PCR, polymerase chain reaction; MSP, 

methylation-specific PCR; RT-PCR, real-time PCR; qPCR, quantitative PCR; MLPA, multiplex litigation-dependent probe amplification. 

 

Jo
urn

al 
Pre-

pro
of



Table 2. Conclusion and recommendations. 

 Level of 

evidence 

Grade of 

recommendation 

General recommendations   

Gliomas are diagnosed using morphological and molecular criteria according to 

2016 WHO classification. 

1a A 

Karnofsky performance score, neurological function, and age need to be 

considered in clinical decision making in neuro-oncology. 

1b A 

Magnetic resonance imaging can be used to detect the presence of tumor and 

guide managements such as biopsy, surgery and radiation. 

2b B 

Maximal safe resection is the first option for all gliomas, while minimizing the 

postoperative morbidity. 

2a B 

Molecular biomarkers can inform the design of surgical strategies for diffuse 

gliomas. 

3b B 

When surgery is not feasible, a biopsy should be performed to ob ain a 

histological diagnosis. 

4 C 

Immunohistochemistry for mutant IDH1 R132H protein and nuclear expression 

of ATRX should be performed routinely in the diagnosis of diffuse gliomas. 

1b A 

IDH mutation status should be assessed by immunohistochemistry for IDH1 

R132H. If negative, immunohistochemistry should be followed by sequencing of 

IDH1 codon 132 and IDH2 codon 172 in all WHO grade II and III diffuse gliomas 

and in all glioblastomas of patients younger than 55 years to allow for integrated 

diagnoses according to the 2016 WHO cla sification and to guide treatment 

decisions. 

1b A 

Chromosome 1p/19q codeletion status should be determined in all IDH-mutant 

gliomas with retained nuclear expression of ATRX. 

1b A 

MGMT promoter me hylation status should be determined in elderly patients 

with glioblastoma and in IDH-wildtype WHO grade II and III diffuse gliomas to 

guide decision for the use of temozolomide instead of or in addition to 

radiotherapy. 

1b A 

Grade II diffuse gliomas   

Younger patients (≤40 years of age) with gross total resection can be observed 

after surgery, but close follow-up is needed. 

1b B 

For patients with high risk (age >40 years or none receiving gross total 

resection), an adjuvant treatment is indicated at any time. 

1b B 

Radiotherapy may be selected for high risk patients (age >40 years or gross total 

resection not received). 

1b A 

Chemotherapy is an option as initial treatment for patients with large residual 

tumors after surgery or unresectable tumors. 

1b B 

Standard of care for WHO grade II astrocytomas (IDH-mutant and 1p/19q 

non-codeleted) and oligodendrogliomas (IDH-mutant and 1p/19q-codeleted) 

that require further treatment includes resection or biopsy followed by involved 

field radiotherapy and maintenance procarbazine, lomustine, and vincristine 

1b B 
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chemotherapy 

Grade III diffuse gliomas   

Patients with 1p/19q-codeleted anaplastic oligodendroglial tumours should be 

treated with radiotherapy plus procarbazine, lomustine, and vincristine 

chemotherapy. 

1b B 

Standard of care for 1p/19q non-codeleted anaplastic astrocytoma includes 

resection or biopsy followed by involved field radiotherapy and maintenance 

temozolomide. 

1b B 

MGMT promoter methylation could be a predictive marker for response to 

alkylating chemotherapy in IDH-wildtype anaplastic gliomas. 

2b B 

Temozolomide chemotherapy is standard treatment at progression after surgery 

and radiotherapy. 

1b A 

Glioblastoma (Grade IV)   

Standard of care for newly diagnosed glioblastoma includes resection or biopsy 

followed by involved-field radiotherapy and concurrent and adjuvent 

temozolomide with or without alternating electric field therapy. 

1b A 

Temozolomide is particularly active in patients with MGMT promoter 

methylation whereas its activity in patients with MGMT promoter-unmethylated 

tumours is marginal. 

1b B 

In elderly patients with IDH-wildtype and MGMT promoter methylation, 

temozolomide chemotherapy may be considered, while radiotherapy is the 

treatment of choice for patients with an unmethylated gene promoter. 

1b B 

Standards of care are not well defined at recurrence. Temozolomide 

rechallenge, bevacizumab are pharmacological options, but an effect on overall 

survival remains unproven. When available, recruitment into appropriate clinical 

trials should be considered. 

2b B 
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Highlights 

 

The guideline provides diagnostic and management recommendations for diffuse gliomas. 

The guideline focuses on molecular diagnostics, and the main treatment modalities. 

The guideline includes clinical trials of immune therapies and target therapies. 

The guideline should serve as an application for all medical professionals. 
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