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INTRODUCTION

Brainstem gliomas (BSGs) account for approximately 10–20% of brain tumors in children.[33] The 
management of BSGs in the past relied solely on nonoperative interventions and palliation.[33,81] 
Over the past three decades, however, the notion that these lesions are inoperable has shifted. 
With the advent of sophisticated neuronavigation, imaging technology, and neurophysiological 
monitoring, a group of these neoplasms has become amenable to surgery.[80] 5-aminolevulinic 
acid (5-ALA)-guided surgery has been proven to be a safe and effective adjuvant for the removal 
of malignant brain tumors[76] and its spectrum of use has been increasing with reported usage 
in low-grade lesions,[29] metastatic lesions,[41] and extra-axial lesions.[47] There is a growing body 
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of literature supporting the use of 5-ALA in the pediatric 
population,[4,54,72] however, its use is still considered “off 
label”[89] in this setting. As far as, we are aware this is the first 
manuscript to address the use of 5-ALA specifically in the 
resection of pediatric focal BSGs.

In this retrospective study, we report our experience using 
5-ALA in pediatric patients with focal BSGs. The aim of 
the report is to analyze the safety of its use, evaluate the 
intraoperative fluorescence rate and the “usefulness” of 
5-ALA in this specific group of patients.

METHODS

Patient selection

Patients younger than 16 years presenting with a newly 
diagnosed, untreated BSG that was focal in nature were 
considered suitable for treatment with 5-ALA-assisted 
surgery. Exclusion criteria included MRI features suggestive 
of a diffuse intrinsic pontine glioma (DIPG), preexisting 
hepatic or renal disease, abnormal renal or hepatic function, 
any known cutaneous hypersensitivity, or a first degree 
relative with porphyria. Parents or guardians, after being 
informed about the potential benefit and risks derived from 
the existing adult data, were offered the treatment as an off-
label use. Following an explanation regarding the lack of 
safety and efficacy data from clinical trials in the pediatric 
population and the character of an individual treatment 
attempt, written informed consent was obtained on behalf 
of the children from their parents or guardians. The Human 
Research Ethics Committee of the medical faculty of the 
University of the Witwatersrand approved the scientific 
analyses of these cases.

Operative protocol

Patients were treated according to the previously reported 
adult protocol of Stummer et al.[76] All patients received 
intravenous dexamethasone 0.25 mg/kg (body weight)/day 
in four divided doses for 2 days before the surgery. A single 
dose of 5-ALA (Gliolan®) 20 mg/kg suspended in 50 ml of 
tap water was administered orally 4 h before the predicted 
“cutting time” in the presence of medical personnel. All 
operations were performed with a microscope equipped with 
a fluorescent 400 nm UV light and filters (Zeiss, Kinevo 900, 
Carl Zeiss AG, Oberkochen, Germany). A neuronavigation 
system (STEALTH, Medtronic, Minneapolis, USA) was used 
for surgical planning and tumor localization. Intraoperative 
neurophysiological monitoring was employed in all 
cases. Intraoperative fluorescence was recorded as “solid,” 
“vague,” or “none” in accordance with previously described 
criteria.[75,78] The surgical procedures were performed by the 
same surgeon (J.L) who also judged the presence of 5-ALA 
fluorescence as “helpful” or “unhelpful.” The tumor was 

removed with standard microsurgical techniques. At the 
end of resection, the cavity was systematically checked in 
the violet-blue light mode for any residual tumor. Dissection 
was halted when we achieved a lack of tumoral tissue at 
white light together with a lack of fluorescent tissue at final 
blue light control. Anatomical localization of eloquent 
tissue such as brainstem nuclei or a significant change in 
neurophysiological parameters also resulted in aborting 
surgery regardless of the presence of residual tumor.

Clinical and radiological assessment

Patients were examined clinically during their postoperative 
course to assess for new neurological deficits or surgical 
complications. Patients were clinically assessed for signs 
of adverse drug reactions. The Lansky Performance Scale 
(LPS)[39] was used to evaluate general physical performance 
preoperatively, on discharge and at 3 months follow-
up. Extent of resection was assessed on postoperative 
gadolinium-enhanced MRI obtained within 48 h of surgery 
and graded as either gross total resection (GTR), near-total 
resection (NTR), or subtotal resection (STR), which we 
defined as no evidence of residual tumor, greater than 90% 
excision, and less than 90% excision, respectively.

Statistical analysis

As the number of patients was small, the data presentation 
is mostly descriptive. Averages were expressed as means. 
Relationships between categorical variables were investigated 
by means of Fisher’s exact test. All statistics were performed 
using SSPS Version 25.0 for Windows (SPSS Inc., Chicago, 
IL, USA). P < 0.05 was considered statistically significant.

RESULTS

Demographics

Among the patients, six were male (75%) and 2 were female 
(25%). The mean age was 6.1 years old (range 1–13 years).
There were four tumors located in the pons, two midbrain 
tumors, and two cervicomedullary tumors. 

Histology and fluorescence patterns 

Histological analysis demonstrated three diffuse 
astrocytomas (WHO Grade II), three pilocytic astrocytomas 
(PCAs) (WHO Grade I), and two anaplastic astrocytomas 
(WHO Grade III). Solid fluorescence was found in three of 
the eight cases, vague fluorescence was found in two cases, 
and no florescence was found in three cases. The sample 
size is too small to make meaningful commentary regarding 
correlation of fluorescence to tumor histology or the WHO 
Grade, but 2 of the 3 (66%) cases of solid fluorescence were 
anaplastic astrocytomas (WHO Grade III). In two of the 
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three cases in which there was solid, and hence potentially 
useful fluorescence, the surgical resection was halted due 
to a significant change in neurophysiological parameters 
occurring with extensive tumor fluorescence still visible 
in the surgical bed. As the presence of fluorescence did not 
alter the surgery in these cases, we, by definition, needed to 
grade them as “nonuseful.” The rate of “useful” fluorescence 
was thus reduced to 3 (37%) cases. Strong fluorescence or 
the determination of “usefulness” by the surgeon did not 
correlate with resection rate. [Table  1] summarizes the 
demographics, tumor classification, and intraoperative 
outcomes. [Figure  1] demonstrates a case with solid 
fluorescence, however due to identification of cranial nerve 
nuclei within the tumor bed, surgery needed to be halted, 
despite residual fluorescent tissue still identifiable within the 
tumor bed. We found no false-positive fluorescent tissue, 
that is, all tissues sent for histology confirmed tumor cells, 
irrespective of intraoperative vague, or solid fluorescence.

Adverse events, neurological sequelae, and outcome

No patients experienced any complications directly 
attributable to the administration of the 5-ALA. We achieved 
GTR in three cases, NTR in three cases, and STR in two 
cases. Five patients experienced postoperative complications, 
including one case of postoperative hydrocephalus 
requiring a permanent ventriculoperitoneal shunt, two 
cases of worsening ataxia, and two cases of diplopia. With 
rehabilitation, there were no permanent neurological deficits 
at 3 months follow-up in any of the patients. There were no 
significant differences between the presurgical and direct 
postsurgical (P = 0.12) or 3 months follow-up (P = 0.55) LPS 
results.

DISCUSSION

BSGs account for 25% of posterior fossa tumors and 10–20% 
of all CNS tumors in children.[33,59] The advent of modern-day 
neuroimaging has brought about a realization that brainstem 
tumors are not a distinct entity, but a heterogeneous collection 

of tumor types and locations.[14,25] Many classification systems 
have been proposed for these lesions, incorporating features 
such as size, location, and imaging characteristics.[2,9,15,43,59,73] 
Epstein and McCleary[14] grouped intrinsic nonexophytic 
tumors as focal, diffuse, or cervicomedullary. In this report, 
we have used the classification system of Choux et al.:[9] 
Type1 I, diffuse BSG; Type II, focal intrinsic tumor; Type II, 
exophytic; and Type IV, cervicomedullary. From a surgical 
perspective, the most important differentiator of BSGs is 
between diffuse lesions and all other tumors.[10,17]

Table 1: Demographics, classification, and intraoperative findings.

# Gender Age Location Histology and grade Fluorescence pattern Usefulness Resection status

1 M 1 Pons, focal intrinsic AA (III) Solid No STR
2 M 7 Pons, exophytic PCA (I) Solid No STR
3 M 2 Pons, focal intrinsic DA (II) Vague Yes NTR
4 F 11 CMJ DA (II) None No GTR
5 F 13 Midbrain, focal intrinsic AA (III) Solid Yes GTR
6 M 6 Midbrain, focal intrinsic PCA (I) None No NTR
7 M 3 CMJ PCA (I) Vague Yes GTR
8 M 6 Pons, focal intrinsic DA (II) None No NTR

CMJ: Cervicomedullary junction, AA: Anaplastic astrocytoma, PCA: Pilocytic astrocytoma, DA: Diffuse astrocytoma, STR: Subtotal 
resection, GTR: Gross total resection, NTR: Near-total resection

Figure 1: Exophytic pontine pilocytic astrocytoma. Top left: 
preoperative, postgadolinium-enhanced sagittal MRI. Top right: 
postoperative gadolinium-enhanced MRI revealing subtotal 
resection. Bottom left: intraoperative white light microscopic view. 
Arrow: obvious tumor under white light microscopy. Arrowhead: 
normal appearing tissue under white light microscopy. Bottom 
right: arrow heads: blue light mode reveals solid fluorescence of both 
obvious tumor and normal appearing area under white light mode.



Labuschagne: 5-ALA for brainstem glioma resection

Surgical Neurology International • 2020 • 11(334)  |  4

In our unit, we follow the treatment algorithm outlined by 
Pincus et al.[52] in dealing with BSGs. Based on MRI imaging, 
tumors that are believed to be resectable with acceptable risk 
are tackled surgically, lesions that are found to be consistent 
with diffuse pontine gliomas are treated empirically while 
lesions with an atypical appearance, which are not likely 
to benefit from resection, are candidates for stereotactic 
biopsy sampling and histological examination. Although by 
no means universally accepted,[79] the utility and efficacy of 
obtaining a histological diagnosis in atypical lesions have 
been validated by several centers.[12,13,48,57]

Although there are no sanctioned radiological guidelines for 
the diagnosis of a DIPG,[22] in the current series, we relied 
on the classic features[18,88] ascribed to typical DIPGs: (1) 
an intrinsic, central location involving more than 50% of 
the axial diameter of the pons; (2) diffuse infiltration with 
indistinct tumor margins; (3) hypointensity on T1-weighted 
MR imaging sequences; (4) hyperintensity on T2-weighted 
sequences; (5) no or minimal contrast enhancement after 
the administration of gadolinium; (6) the absence of cystic 
or exophytic components; and (7) encasement of the basilar 
artery, as exclusion criteria for resective surgery.

While there are proponents of surgery for diffuse BSGs,[37,43,80] 
surgical resection of these lesions carries a high morbidity 
and mortality, and radiation therapy is generally considered 
the primary therapy.[30,59,87] Conversely, the therapeutic goal 
of focal BSGs is safe and total surgical removal.[14,30,42,53] In 
most cases, a well-defined interface between the tumor and 
neural tissue indicates a GTR or STR resulting in a favorable 
prognosis.[1,41,63,85] Although not universal, several groups 
have found that the extent of resection is an important 
prognostic factor[35,51,68,69] for survival and some groups 
have advocated relook surgery[30] for recurrent lesions or if 
primary surgery needs to be halted prematurely because of a 
transient intraoperative injury. We elected not to perform any 
relook/second surgeries in the two cases that needed to be 
terminated prematurely due to alterations in intraoperative 
neurophysiology, but instead referred these children for 
radiotherapy.

The role of 5-ALA assistance in high-grade glioma surgery 
is well established with increased GTR resection rates 
and 6-month progression-free survival rates benefitting 
HGG patients receiving 5-ALA.[76] Reliable fluorescence 
rates approach 100% in both the adult and pediatric 
population.[54,75] More recently, the role of 5-ALA in 
low-grade glioma (LGG) surgery,[29] extra-axial,[47] and 
metastatic disease[41] has been advocated. The use of 5-ALA 
in the pediatric group is gaining popularity, although still 
considered as off label.[89] The literature regarding the use 
of 5-ALA in the pediatric population is largely restricted 
to supratentorial tumors and the frequently occurring 
posterior fossa tumors, namely, medulloblastomas and 

ependymomas.[3,54,72] Very little data are available regarding 
its use for brainstem lesions.[41,55]

The histopathology of DIPG represents a spectrum with 
grade not predictive of survival.[6] Focal BSGs, however, are 
commonly low grade (WHO I or II), with PCAs and diffuse 
astrocytoma/LGG[4,30,33,38] being the most commonly reported 
pathologies. It is important, therefore, to explore the value 
of 5-ALA-assisted surgery for these pathologies in locations 
outside of the brainstem. The value of 5-ALA in surgery for 
PCAs is generally accepted to be quite low.[72,89] Only 3 of 
the 21 PCAs in children reported in the literature displayed 
unequivocal and useful fluorescence.[7,54,77] Stummer et al.[77] 
hypothesized that the benign nature of PCAs prevents PpIX 
accumulation in these tumors and they are hence invisible 
to fluorescence. We found a global fluorescence rate (solid 
and vague florescence, across the entire cohort) of 62.5%, 
while two out of the three PCAs (66%) demonstrated 
fluorescence. As previously described[3] for posterior fossa 
lesions, contrast enhancement on MRI is not consistently 
predictive of malignant histopathology with two of the 
three PCAs in our group demonstrating vivid preoperative 
contrast enhancement on MRI. Likewise, for HGG, contrast 
enhancement appears to have a linear, but not identical 
correlation with 5-ALA fluorescence, whereas in PCAs and 
LGGs, there appears to be a very poor correlation.[16,46,66,86] 
The value of 5-ALA in LGG surgery appears to be variable. 
In the five largest studies to date of 5-ALA-assisted surgery 
in LGG, the fluorescence rates have been reported as 
extremely variable, ranging between 8 and 52%.[16,19,29,83,86] In 
the study by Goryaynov et al.,[19] in which they found 52% 
positive fluorescence rate they noted a significant difference 
in visible fluorescence, depending on the preoperative 
use of antiepileptic drugs (AEDs). Of the 15 patients with 
preoperative AED intake, 4 patients (27%) displayed visible 
fluorescence, whereas in the 12 patients without prior AED 
usage, 10 (83%) displayed visible fluorescence. Our relatively 
high percentage, of 62.5% of fluorescence across the cohort, 
may in part be due to the fact that none of our patients had 
received AEDs preoperatively. In vitro studies[24,40] have 
demonstrated a reduction of PpIX of up to 45% in glioma 
cells by phenytoin and valproates, which may account 
for the clinically observed phenomenon of diminished 
intraoperative fluorescence in these patients.

Potentially of greater significance than histological diagnosis, 
tumor grade, or markers of proliferation[45,47,56] in predicting 
fluorescence may be the distinct genetic expression profile 
of the tumor.[5] In both glioma[1] and nonglioma CNS 
neoplasms,[61,70,71] differing molecular metabolism has been 
shown to be predictive of fluorescence rate. Saito et al.[65] 
demonstrated that with multivariate analysis, isocitrate 
dehydrogenase 1 status of diffuse gliomas was the only 
independent, statistically significant factor related to 5-ALA 
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fluorescence. Of particular, interest would be to determine if 
the histone H3 mutation (H3K27M) that is found in greater 
than 80% of diffuse midline gliomas[26] would or would not be 
correlated with 5-ALA fluorescence. Although in this series, 
only focal tumors were included, it is a limitation of the study 
that we could not perform molecular subtyping as in up to 
35% of tumors not considered to be typical DIPGs on MRI 
imaging, the H3K27M mutation has been found.[8] Since the 
presence of the H3K27M mutation carries a uniformly fatal 
prognosis independent of tumor grade,[6] location or extent 
of tumor resection[34] stereotactic biopsy of both focal and 
diffuse lesions may be warranted to direct clinical decision-
making.[20,21,27]

One of the limitations of 5-ALA-assisted surgery of lesions 
located in the brainstem is the impaired reliability of 
fluorescence in this area. Reliable fluorescence requires a 
sufficient exposure to fluorescent light at a perpendicular 
perspective to the operating microscope.[55,58] Given the 
depth, small operating field, and possible “blind spots” 
inherent to brainstem surgery, fluorescence may be impaired. 
In our experience, this was not a problem. The cases of poor 
fluorescence we felt were due to the inherent biology of the 
tumor cells and 5-ALA metabolism, rather than technical 
shortcomings. Having said that however, it is interesting to 
note that protoporphyrin IX fluorescence can be measured ex 
vivo in LGG tissue[28] and intraoperative confocal microscopy 
has been found to reliably identify tumor fluorescence in both 
Grade I and Grade II gliomas, in which standard microscopic 
tumor fluorescence had failed to identify histopathological 
proven tumorous tissue.[67] The addition of intraoperative 
confocal microscopy,[28] wavelength-specific lighted suction 
units,[46] or neuroendoscopes equipped with fluorescence 
capabilities[58,60] may in due course increase the 5-ALA 
florescence rate of tumors with inherently low fluorescence 
or those in poorly “visible” locations.

In HGG surgery, the 5-ALA fluorescence pattern is not 
homogenous throughout the tumor tissue. A three-tier 
grading system described by Stummer et al.[75] defines three 
different fluorescence entities: deep red fluorescence of the 
vital core of glioma tissue – labeled as “solid” – is distinguished 
from a more “vague” fluorescence zone, which was defined 
as a “transition zone with clearly discernible, but lighter 
pink fluorescence” and a nonfluorescing zone, described as 
a blue color after violet-blue light excitation. This spectrum 
of fluorescence is seen less commonly in non-HGG lesions[32] 
with most non-HGG tumors displaying partial fluorescence.
[3,31,47,67,72] We chose to report our intraoperative findings using 
this three-tier system, we did not, however, find an infiltrative 
zone of “vague” fluorescence around the “solidly” fluorescing 
lesions. We also determined if the visible florescence was 
“useful,” which was defined by Stummer et al.[77] as “leading 
to changes in surgical strategy or identification of residual 

tumor.” In five of our eight cases, the addition of 5-ALA to 
the surgical procedure was not considered to be useful, in 
three cases, this was due to no florescence being visible, and in 
two cases, despite “solid” fluorescence, the surgery was halted 
with visible fluorescence in the tumor bed due to changes in 
neurophysiological parameters. In the three cases, in which 
fluorescence was deemed “useful,” it allowed for visualization 
of tumor that appeared normal under white light microscopy, 
however under blue light mode, fluorescence was still visible. 
This allowed for a greater extent of resection in all three of 
these cases, obtaining a GTR in two of the cases and a NTR in 
one. In two of the three cases, the fluorescence was considered 
“useful” despite the fluorescence being only “vague” in nature 
as it still allowed for visualization of residual tumor not 
identifiable under white light alone. [Figure 2] demonstrates a 
case of vague but still useful fluorescence in which additional 
tumor tissue was identified, not visualized by white light 
microscopy alone.

The phenomenon of ventricle wall 5-ALA-induced 
fluorescence has been well described[44] and this may serve 
as a confounder when operating in the brainstem/fourth 
ventricle.[56] In four of the six cases, in which we did enter 
the fourth ventricle as part of our surgical approach to the 
brainstem lesion, we did observe very vague fluorescence 

Figure 2: Cervicomedullary pilocytic astrocytoma. Top left: 
preoperative, postgadolinium-enhanced sagittal MRI. Top right: 
postoperative gadolinium-enhanced MRI revealing GTR. Bottom 
left: intraoperative white light microscopic view. Arrow: obvious 
tumor under white light microscopy. Arrowhead: normal appearing 
tissue under white light microscopy. Bottom right: arrow heads: 
blue light mode reveals vague fluorescence of both obvious tumor 
and normal appearing area under white light mode.
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of the ventricular floor/ependyma beyond the area of solid 
tumor. This did not seem to correlate with the degree of tumor 
florescence. We did not find this to be problematic during the 
microsurgical resection. Given the eloquence of this area, 
we could not perform biopsies in this region to determine 
if these areas of enhancement did indeed harbor tumor cells 
or other reactive changes as found in the 5-ALA-induced 
fluorescing ependyma of the lateral ventricles.[44,50,62,82]

Unlike supratentorial malignant tumors, for which the 
extent of tumor resection (EOR) has a predictive value for 
outcome,[11,49,75,76] the goal for BSG will always be maximal safe 
resection, seeking a balance between GTR and postoperative 
neurological function.[87] We attained a GTR in 3 (37%) cases, 
NTR in 3 cases (37%), and STR in 2 cases (25%). In two of 
our cases, despite solid fluorescent tissue still visible in the 
surgical field, we needed to abort surgery due to abnormalities 
on neurophysiological monitoring. We only found the 5-ALA 
to be useful in 3 cases (37%) and conclude that 5-ALA is not 
routinely beneficial in BSG surgery. We concur with Roth and 
Constantini’s[62] summary that there is probably a “limited 
and selective role” for the use of 5-ALA in the resection of 
pediatric brain tumors and in particular the BSG group.

We experienced no complications due to the administration 
of 5-ALA. All our postoperative deficits had resolved by the 
3 months follow-up, and there were no significant changes in 
our postoperative LPS scores. It appears that the complication 
rate of 5-ALA in children is very low, with isolated reports of 
increased transaminases being the only complication directly 
attributable to 5-ALA administration.[3]

Limitations

The most significant limitation to our study was the 
unavailability of molecular testing as molecular subtyping 
is more likely to be predictive of fluorescence than any 
other single variable.[65] In particular not being able to test 
for the H3K27M mutation is a significant limitation of the 
study given the clinical significance of a positive H3K27M 
mutation.

An additional limitation inherent in our methodology is 
the considerable interobserver variability, discrepancies, 
and inconsistencies demonstrated by both radiologists and 
pediatric neurosurgeons in diagnosing DIPGs based on MRI 
imaging alone.[22,23]

At present, most studies quantify intraoperative fluorescence 
levels subjectively and suffer from intraobserver and 
interobserver variability.[64] Multiple classification 
systems of 5-ALA fluorescence exist[32] and there is no 
standard of reporting on diagnostic accuracy and clinical 
utility.[74] A consensus on reporting is needed and the 
addition of quantitative spectrometric analysis or high-
resolution microscopy should be considered.[36,84]

CONCLUSION

The extent of resection is an important prognostic 
factor[35,51,68,69] in focal BSG surgery, however, a balance 
between GTR and postoperative neurological function[87] 
must be maintained. With a combined fluorescence rate of 
62.5% but a subjectively assessed “usefulness” rate of only 
37.5%, the role of 5-ALA in BSG surgery is limited. Given the 
very low complication rate/toxicological safety of the agent, 
however, caution is perhaps needed before dismissing the use 
of 5-ALA entirely.[89] Well-designed pediatric clinical trials 
utilizing 5-ALA for not only BSGs but also all pediatric brain 
tumors are needed.
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