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Abstract

Glioblastoma is one of the most aggressive human brain tumors. Even following all the
modern protocols of complex treatment, the median patient survival typically does not
exceed 15 months. This review analyzes the main reasons for glioblastoma resistance to
therapy, as well as attempts at categorizing the main approaches to increasing chemo-
therapy efficiency. Special emphasis is placed on the specific group of compounds,
known as marine alkaloids and their synthetic derivatives exerting a general antitumor
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effect on glioblastoma cells. The uniquemechanisms of marine alkaloid influence on the
tumor cells prompt considering them as a promising basis for creating new chemother-
apeutic agents for glioblastoma treatment.

1. Introduction

Glial brain tumors invariably stand out among the most deadly types of

human cancer. Glioblastoma (GBM) holds a special place among other gli-

omas as the most frequent and aggressive type of a primary human brain

tumor (Lukas et al., 2019). GBM is characterized with fast invasive growth,

strong resistance to treatment and unfavorable prognosis. Systemic solution

of this problem was found only in the middle of the XX century, and the

modern treatment standards are based on the protocols developed by

Roger Stupp (Stupp et al., 2005; Stupp, Toms, & Kesari, 2016) and involve

extremely rough treatment of GBM.

The recommended treatment for such patients implements a surgery, as

well as high dosage of radiation and chemotherapy. Temozolomide (TMZ)

is considered to be the main drug for GBM chemotherapy. This recommen-

dation is standard, except for elderly patients with a low Karnofsky perfor-

mance status. Despite the efforts of medical specialists, the median survival of

GBM patients does not exceed 15 months (Lukas et al., 2019; Stupp et al.,

2016), and only 25–27% of patients manage to live longer than 2 years since

being diagnosed.

The reasons for such insufficient treatment results are associated (Da Ros

et al., 2018; Furnari, Cloughesy, Cavenee, & Mischel, 2015; Oberoi et al.,

2016) with extreme heterogeneity of GBM cell population, having many

poorly differentiated cell elements with high plasticity commonly referred

to as cancer stem cells (CSCs). The attempts at increasing the efficiency

of GBM chemotherapy by combining TMZ with targeted antitumor drugs

was proved to be ineffective after large-scale clinical trials (Touat, Idbaih,

Sanson, & Ligon, 2017) which can be due to high polymorphism of prote-

ome maps and transcriptomic landscape of GBM cells (Meyer et al., 2015).

Moreover, so-called quiescent CSCs are inherently resistant to chemother-

apeutic drugs and can sustain in inactive G0 phase for long term, so they

should be activated to make them drug sensitive (Gulaia et al., 2018).

This fact points out the necessity for discovering newmedication agents able

to exert an overall multitargeted effect on GBM cells.
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In the light of the abovementioned, we should consider a group of pro-

mising pyridodiindols derivatives, known as Fascaplysin alkaloids. These

substances exhibit significant cytotoxic and cytostatic effect on GBM cells,

making these alkaloids hopeful candidates for developing new glioma

medication.

2. Existing standards of glioblastoma (GBM) treatment

The modern standard (Stupp et al., 2016) of complex GBM treatment

invariably involves surgical removal of the tumor. This surgery is justified

for the majority of patients with almost any type of tumor location in the

brain. The main aspect of the treatment is radiation therapy. Patients receive

60Gy, distributed in 2Gy daily—30 fractions during 6 weeks, combined

with temozolomide (75mg/m2/day). Patients’ life expectancy correlates

with the radiation dose of 60–70Gy, and further dosage increase does not

improve the survival rates, but results in radiation necrosis of the brain

and severe neurological and psychological disorders.

The attempts at extending patients’ life expectancy are mostly centered

on chemotherapy. The recommended treatment protocol involves 6–12
cycles of chemotherapy with temozolomide (TMZ), inducing the G2/M

phase cell cycle arrest (Lee, 2016). The first chemotherapy cycle prescribes

150mg/m2/d on the days 1–5 of the 28-day cycle, increasing the TMZ

dosage up to 200mg/m2/day in the follow-up cycles. Combining TMZ

with radiation therapy allowed to extend the median survival from 7.7 to

13.5 months (Messaoudi, Clavreul, & Lagarce, 2015; Perry et al., 2017).

However, increasing the number of chemotherapy cycles, as well as the fre-

quency of TMZ administration, does not significantly affect the rates of

patients’ life expectancy. Moreover, TMZ therapy proved to be ineffective

in 50% of GBM patients (Lukas et al., 2019; Stupp et al., 2016).

Cytotoxic nature of TMZ is determined by methylation of guanine in

the DNA at the N7 and O6 positions, as well as of adenine in the O3 posi-

tion. Damage to genome results in a powerful countereffect, involving

direct DNA repair, basic excision DNA repair, homologous recombination

and non-homologous end joining. Methylated nitrogenous bases can be

eliminated with enzymes, cutting out bases, such as alkylpurin-DNA-N-

glycosylase (ADG), or dealkylated due to O6-methylguanine DNAmethyl-

transferase (MGMT). The arsenal of prospective means to suppress the

DNA repair is quite scarce (Erasimus, Gobin, Niclou, & Van Dyck, 2016):
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Lomeguatrib inhibits the directDNA repair,Methoxyamine hinders the basic

excision DNA repair, Olaparib causes double-stranded DNA break, thus,

increasing genome instability and leading to GBM cell death. However,

the overall efficiency of these drugs together with TMZ is still similar to

TMZ monotherapy.

In this respect, there have been many attempts to combine TMZ

with Procarbazine, Lomustine, Carmustine, Nimustine, Fotemustine,

Dacarbazine, Irinotecan, Etoposide, Vincristine, Cisplatin, Carboplatin,

Paclitaxel and other cytotoxic medication (Lee, 2016; Messaoudi et al.,

2015; Stupp et al., 2017). PCV (Procarbazine, Lomustine, Vincristine)

and CAP (Cyclophosphamide, Doxorubicin, Cisplatin) regimens have been

used less frequently, but their application was shown to have no additional

affect over TMZ therapy. Therefore, the scientific community should con-

sider combining TMZ with targeted drugs for increasing GBM chemother-

apy efficiency.

3. GBM genetic signatures

The importance of glioma molecular profiling was emphasized by the

World Health Organization (WHO), which released new glioma classifica-

tion in 2016, based on the presence of mutations in tumor protein 53 (TP53),

isocitrate dehydrogenases type 1 or 2 (IDH1, IDH2) and 1p/19q codeletion.

Thereby gliomas are divided into IDH-mutant (IDHmt) and IDH-wild

type (IDHwt), the former are further divided into 1p/19q codeleted or

TP53 and ATRX (ATP-dependent helicase ATRX, X-linked helicase II)

mutant (Louis et al., 2016).

Gliomas with IDH mutations and 1p/19q codeletion are classified as

oligodendrogliomas, while tumors with mutations in IDH1/2, TP53 and

ATRX genes—as astrocytomas. IDHwt tumors are identified as primary

glioblastomas (Louis et al., 2016). As can be seen, using this classification

based on molecular markers, gliomas can be divided into histological

subtypes with sufficient accuracy.

In contrast to oligodendrogliomas and astrocytomas, primary GBMs are

incredibly heterogeneous in terms of genetics, so it is hardly possible to

define marker mutation characterizing the majority of the cells within the

tumor, this is why primary GBMs are referred to as IDH-wt. Absence of

marker alterations makes it difficult to suggest the cell of origin and to de-

fine initiating or driver mutations for primary IDH-wt GBMs. However,

GBM still has several common genetic hallmarks allowing to separate them

from the rest of gliomas. In this way, mutations in promoter of telomerase
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reverse transcriptase (TERT-p) present in up to 90% of adult GBMs

(Brandner & von Deimling, 2015; Ceccarelli et al., 2016). TERT-p muta-

tions occur due to substitution of cytosine to thymidine at position 228

and 250 (C228T and C250T; chr5, 1,295,228C>T and 1,295,250C>T,

respectively) and lead to generation of binding site for E26 transformation-

specific family transcription factor resulting in increased TERT expression

(Panebianco, Nikitski, Nikiforova, & Nikiforov, 2019). However, hotspot

TERT-pmutations are also present in high frequency in oligodendrogliomas

(95%) making them unspecific for GBM definition, although in both cases

TERT-p mutations are associated with significantly poor survival (Kim

et al., 2018; Lee et al., 2017). TERT-p mutations never coincide with

ATRX mutation, which support alternative lengthening of telomeres (Liu

et al., 2019).

Other most frequently altered genes in IDH-wt GBMs include

CDKN2A (50%); TP53, EGFR, and PTEN (30–40%); as well as CDK4,
NF1 and Rb1 (12–15%) (Ceccarelli et al., 2016). Almost half of GBMs

harbor missense mutations, rearrangement, altered splicing or amplifica-

tion of EGFR (Brennan et al., 2013), approximately 50% EGFR-amplified

tumors acquire the variant III (EGFRvIII) deletion of exons 2–7 that results
in constitutive activation of receptor tyrosine kinase (Appin & Brat,

2015; Verhaak et al., 2010). EGFR variant II (deletion of exons 14–15)
also can be found in GBMs with approximate incidence of 9% of focally

amplified EGFR cases (Brennan et al., 2013; Chrysanthakopoulos &

Chrysanthakopoulos, 2018). Additionally, EGFR can acquire point muta-

tions in the extracellular region, most frequent of which are R108K,

A289V/D/T, and G598D occur in 24% GBM samples (An, Aksoy,

Zheng, Fan, & Weiss, 2018; Brennan et al., 2013).

Approximately 15–18% primary IDH-wt GBMs carry PDGFRA ampli-

fications while MDM2 and CDK4 amplifications are present in 5–15% and

14–18% of the cases, respectively (Aldape, Zadeh, Mansouri, Reifenberger,

& von Deimling, 2015). BRAF V600E mutations are rare in GBMs (Aldape

et al., 2015; Behling et al., 2016; Takahashi et al., 2015), but can be associated

with better prognosis for patient (Vuong et al., 2018). Interestingly, BRAF

V600E never coincides with IDH1/2 mutations but may also define a

subgroup of slowly progressing gliomas with better treatment response

(Chi et al., 2013). It is clear that in analogous with IDH1/2 mutations

BRAF V600E alters cell methylation profiles; however, the reports about

extent and mechanism of this methylation changes are controversial

(Bond et al., 2018; Hinoue et al., 2009; Hou, Liu, Dong, & Xing,

2012) emphasizing the necessity for further investigation.

303Chemotherapeutic agents for the treatment of glioblastoma



It was described that some significant mutations are common for primary

GBMs, such as chromosome 7 gain (it carries EGFR one of the most muta-

ted genes in IDH1/IDH2-wt GBMs), chromosome 9p (it contains tumor

suppressor genes CDKN2B and CDKN2A) and chromosome 10 (contains

PTEN and LGI1, which are responsible for cell growth regulation) loss

(Crespo et al., 2011).

IDH1/IDH2-mut primary GBMs occur rarely and they mostly develop

from undiagnosed astrocytoma (Ohgaki & Kleihues, 2013), as they carry

astrocytoma molecular markers (Liu et al., 2012). Chromosome 10q loss

may cause anaplastic astrocytoma transition to secondary GBM, though

it’s a significance for primary GBM, however its mostly found in secondary

GBM (more than 60%) (Ohgaki & Kleihues, 2013).

Approximately, 3% of adult primary GBMs carry H3F3Amutations with

K27M being the most frequent. H3F3A mutations and BRAF mutations

will be present in tumors that do not have IDH1/2 mutations (Aldape

et al., 2015).

Approximately, 34% of glioblastomas contain various mutations of

TP53 as well (Brennan et al., 2013). About 95% of all TP53 point mutations

are found in theDNA-binding domain (Puca et al., 2011), including themost

common mutations found in astrocytomas and glioblastomas: R273C

(commonly found in IDH-mt astrocytomas), R273H (commonly found

in IDH-wt astrocytomas and glioblastomas) and R175H (Bykov, Eriksson,

Bianchi, & Wiman, 2018; Shajani-Yi, de Abreu, Peterson, & Tsongalis,

2018). These alterations also called “gain-of-function” (GOF) mutations as

their expression leads to p53 acquiring new prooncogenic features associated

with its ability to act as a transcription factor. However, molecular mecha-

nism of carcinogenesis in gliomas with TP53GOFmutations is understudied,

with the exception of the recent publication of Ham et al., which demon-

strated an increase in expression of inflammation and chemotaxis genes in

ectopic expression of TP53 R248L in glioma cells (Ham et al., 2018).

MGMT promoter methylation is found in almost 50% GBM and asso-

ciated with longer patient survival and better response to temozolomide

(Rivera et al., 2010; Wick et al., 2014). Moreover, progression free survival

of GBM patients strongly correlates with the level of MGMT-p methyla-

tion, in this way, highly methylated MGMT (>20%) associated with sig-

nificantly improved patient survival, while in low methylated (10–20%)
and unmethylated (<10%) group patients demonstrated the absence of

outcome improvement if treated with radiotherapy and TMZ (Radke

et al., 2019).
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Data from the National Cancer Institute’s SEER (Surveillance,

Epidemiology, and End Results) program show that for most glioma patients

overall survival has not significantly improved over the past three decades

(Davis, Kupelian, Freels, McCarthy, & Surawicz, 2001). Data from other,

smaller-scale studies showed a moderate improvement at least for oligo-

dendroglial tumors (Asklund, Malmstrom, Bergqvist, Bjor, & Henriksson,

2015; Crocetti et al., 2012; Ruiz & Lesser, 2009; Sant et al., 2012). In this

regard, WHO highlights insufficient development of fundamental aspects

of glioma pathogenesis, the lack of a personalized approach to the diagnosis

and treatment of patients, the use of outdated methods, technologies and

drugs as leading causes for the current problem, which is reflected in resolu-

tions of international consensus (Louis et al., 2014) developed by leading

WHO experts.

4. Mutation-based GBM therapy

There is a lack of information about mutation specific therapy for

glioblastomas, however, certain mutations shared by different cancer types

can underpin the sensitivity to therapeutic agents acting against certain

genetic alterations. Thus, we review the possible treatment approaches

for the most frequent GBM mutations employed for antitumor therapy in

various cancer types.

The most common mutations detected in GBM are TERT-p (85%),

CDKN2A (50%), EGFR (30–50%) and PTEN (30%). Although TERT-

p mutations are shared with oligodendrogliomas and cannot be suggested

as a marker, although their prevalence in GBMs implicates the possible role

in tumor initiation.There is noTERT-p specific therapy for gliomas in clinics,

moreover, we were able to find only one example of TERT-p specific agent

in research level—TG-4260, which is a small chaperon molecule binding

to misfolded 5–12 G-quadruplex and restore its silencing function thus

abrogating TERT overexpression (Bollam et al., 2018). GTC365, a small

molecule-chaperon participating in the G-quadruplex folding and redirect

mutant promoter G-quadruplex misfolding, thus reduce hTERT expression

(Kang et al., 2016). However, there are several options for TERT silencing

explored in lung cancers, for instance, 21-bp hTERT siRNAwhich suppress

telomerase expression on mRNA level. Nevertheless, siRNA approach is

far from clinical application due to lack of safe and target-specific carriers

for tumor site delivery, although the promising cutting-edge utilizing quan-

tum dots-siRNA nanoplexes makes cancer gene therapy more feasible.
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For example, Lin G. et al. have shown that cadmium sulphoselenide/Zinc

sulfide quantum dots loaded with siRNA against TERT mRNA can down-

regulate its expression in glioblastoma cells (Lin et al., 2017). Telomelysin, a

human telomerase reverse transcriptase (hTERT) promoter driven modified

oncolytic adenovirus, is now in phase II clinical trials, however, the results are

not available (Khan et al., 2019), although in phase I trials it showed good tol-

erability (Nemunaitis et al., 2010). Another gene-based approach for TERT

inhibition is the use of an oligonucleotide that blocks the template region of

telomerase—GRN163L (Imetelstat), that was shown to limit the lifespan of

pancreatic cancer cells (Burchett, Yan, &Ouellette, 2014). The other possible

way abrogating TERT expression is to inhibit RAS/MEK signaling pathway

regulating TERT, which was shown to be perspective in melanoma cells as

NRAS silencing led to TERT downregulation (Reyes-Uribe et al., 2018).

In contrast to TERT-based therapy, there is a plethora of available anti-

EGFR strategies for GBMs. There are several therapy approaches, such as

small molecules tyrosine kinase inhibitors, monoclonal antibodies, targeted

toxins. Among the many agents developed to target the EGFR, the so-called

small molecule TKIs interfere with the signal transduction cascade of its

tyrosine kinase activity (Caraglia et al., 2006). Despite the enormous amount

of the developed therapeutics for tyrosine kinase inhibition, there are still no

clinically approved compounds for GBM treatment, which is possibly due to

lack of specificity of these molecules and redundancy in growth and prolif-

eration pathways. Thus, erlotinib, gefitinib, and lapatinib showed very lim-

ited efficacy and side effects as a single agent and in combination with other

anticancer agents in newly diagnosed glioblastoma (Westphal, Maire, &

Lamszus, 2017). Afatinib has shown only limited efficacy in a clinical trial

in patients with recurrent glioblastoma (Reardon et al., 2015) and several

long-term responses when combined with temozolomide and radiation

therapy in newly diagnosed GBM (Saran et al., 2018). Additionally, afatinib

in combination with temozolomide was shown to target EGFRvIII-cMet

signaling in GBM cells (Vengoji et al., 2019). Lapatinib has shown very lim-

ited efficacy as a single agent in recurrent glioblastoma (Iwamoto et al.,

2010), and high rates of adverse effects (lymphopenia) when administered

high pulse-dose for better brain penetration (Yu et al., 2017).

The second approach employing the use of monoclonal antibodies is

described in Section 5.

EGFRvIII is not responsive to clinically approved antibodies as they

mostly targeting the L2 domain deleted in this truncated EGFR. mAb806

(ABT-806), a monoclonal antibody which is able to bind EGFRvIII recog-

nizing its 806-epitope (Orellana et al., 2019), was shown to ignore EGFRon
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normal cells and well tolerated in GBM patients (Cleary et al., 2015).

Another approach to target EGFRvIII was conducted using modified

T cells expressing chimeric antigen receptor in patients with recurrent

GBM. All patients demonstrated modified T cells are capable of traffic to

the tumor site, however, only one patient had residual stable disease for over

18 months (O’Rourke et al., 2017).

Most drugs designed for specific treatment of p53 mutant tumors can

be divided into two subtypes: (1) drugs that increase expression/function

of normal p53, and (2) drugs that reduce mutant p53 expression. First group

includes substances such as: CP-31398 (styrylquinazoline), which stabilizes

DNA binding component and native conformation of non-mutant p53

(Tanner & Barberis, 2004); STIMA-1 (Zache et al., 2017) and PRIMA-1,

which not only increase stability of the non-mutant p53, but also res-

tore the DNA binding activity of the mutant p53R175H, leading to of

MDM2 and p21 expression (Lambert et al., 2009). Additionally, this group

includes substances such as MIRA-1 and its structural analogs (Bykov et al.,

2005), NSC652287/RITA, which restore transcriptional activity of non-

mutant p53 (Burmakin, Shi, Hedstrom, Kogner, & Selivanova, 2013);

NSC319726/ZMC1 (Puca et al., 2011), Stictic Acid (Wassman et al.,

2013), P53R3 (Weinmann et al., 2008) and Chetomin, which acts specif-

ically on cells expressing p53R175H (Hiraki et al., 2015). However, despite

the diversity of these substances, PRIMA-1MET is currently the only sub-

stance undergoing clinical trials, indicating that the development of drugs

reactivating non-mutant p53 requires more thorough screening conditions

during the in vitro testing phase. Another promising compound, arsenic

oxide (III), was shown to activates proteasome degradation of p53 (Yan,

Jung, Zhang, & Chen, 2014).

Apart from small molecules and drugs, increasing attention is attracted

to the development of gene therapy, specifically transducing of normal

p53 gene. There are already two clinical trials investigating this approach

for cancer treatment. For example, recombinant adenovirus-p53, which

is an E1 substituted replication-disabled recombinant adenovirus encoding

the human p53 gene, was shown to overcome the surgery and chemoradio-

therapy in terms of overall survival rates for hypopharyngeal squamous

cell carcinomas patients (Biaoxue, Hui, Wenlong, & Shuanying, 2016;

Liu et al., 2018) and for patients with nasopharyngeal carcinoma (Yuan,

Xu, & Chen, 2016).

Interest in the development of compounds from second group, inhibi-

tors of mutant p53 function or expression, is based on two facts: (1) mutant

p53 is inherently unstable, potentially accelerating tumor progression
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because of stabilization (Terzian et al., 2008) and (2) using small interference

RNA (siRNAs) or shRNAs to knockdown mutant p53 reduces malignant

properties of cancer cells (Alexandrova et al., 2015). Second group includes

heat shock protein 90 (Hsp90) inhibitors—geldanamycin, 17-AAG, and

ganetespib—which destabilize and degrade a variety of different p53 mutant

forms (p53R175H, p53L194F, p53R273H, p53R280K) (Li, Marchenko,

Schulz, et al., 2011; Ramalingam et al., 2015), and histone deacetylase

inhibitors—vorinostat/SAHA, romidepsin/depsipeptide, which inhibit

mutant p53 transcription by inhibiting histone deacetylases 6 and 8

(HDAC6 and HDAC8) (Li, Marchenko, & Moll, 2011; Yan et al.,

2013). Many of these compounds are currently undergoing clinical trials.

However, it’s already known that a promising Hsp-90 inhibitor ganetespib

failed at the third phase of clinical trials, without demonstrating significant

increase of progression free survival (PFS) (Pillai, Fennell, & Kovcin,

2016). Inhibitor of histone deacetylase—vorinostat, also failed to demon-

strate efficacy in glioblastoma patient trials (Ghiaseddin et al., 2018).

Arsenic (III) oxide showed very promising results. However, its being

studied almost exclusively as an agent for hematological tumor therapy

(Efficace et al., 2014; Jain, Konoplev, Benjamini, Romagura, & Burger,

2018; Yanada et al., 2013). It is also not clear whether these compounds

influence other molecular pathways, whether they affect all types of p53

mutations or how their specificity may be limited.

A separate group consists of natural extracts and substances that have

selective activity against prooncogenic mutant isoforms of p53. Natural sub-

stances have a great advantage over synthetic molecules in terms of lower

total toxicity allowing for their qualitative combination with chemotherapy

without increasing side effects. However, without chemical modification

to extend their half-life and improve their penetrating ability, effectiveness

and selectivity of these substances is usually quite low. Nevertheless, de-

velopment and screening of natural compounds is a promising approach

for isolating new biomolecules with an unknown mechanism of action.

Identification of natural compounds that affect mutant p53 are still poorly

explored. Recently, it has been reported that tryptolide (Carter, Bischof,

Dejean, & Vousden, 2007) reduces the expression level of mutant p53 in

breast cancer cells MDA-MB-231 (Liu et al., 2009). Also, extract from

the terrestrial plant Brachylaena ramiflora, N37063, can inhibit the reduc-

tion of the anti-oncogenic activity of p53 in the mutations R175 and

R273, as well as induce the expression of p53 gene targets (Karimi et al.,

2010). It was found that dietary flavonoid eupatilin induces the G2/M cell
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cycle arrest in Hec1A cells by reducing expression of mutant p53, which

leads to an increase in p21 expression (Cho et al., 2011). However, neither

N37063 nor eupatilin were further investigated in animal models expressing

a specific mutant p53.

Fucoxanthin (Bohlman &Manfredi, 2014), a natural carotenoid, inhibits

cell growth and colony formation, induces cell cycle arrest at G0/G1 and

sensitizes tumor cells to apoptosis (Wang et al., 2014). Fucoxanthin inhibits

p53-mortalin complex and enhances p21 signaling. It was found that

nonpurified turmeric extract (Curcuma longa) and its bioactive component,

curcumin, induce apoptosis and autophagy in epidermoid cancer A431 cells

expressing p53 R273H (Thongrakard et al., 2014). Both turmeric and cur-

cumin induce macroautophagy, which leads to mutant p53 degradation.

Screening in vitro study of small molecules has shown that hetomin

(Rayburn, Ezell, & Zhang, 2009) can inhibit the mutant p53 R175H by

binding with heat shock protein Hsp40 (Hiraki et al., 2015).

Thus, mutation-based GBM therapy is a rapidly developing and prom-

ising field, although the inherent genetic heterogeneity of GBM cells ham-

pers univocal solution, there is a possibility to find a common denominator

considering the molecular pathways hijacked by the most frequent GBM

mutations. Gene based therapy as well as natural compounds are currently

the forefront as the former can provide etiotropic treatment, and the latter

possess low toxicity enabling simultaneous chemopreventive and chemo-

therapeutic effect.

5. Targeted GBM therapy and ways of increasing
its efficiency

Growth factors that are crucial for GBM pathogenesis were one of

the first molecules in targeted chemotherapy. More than 60% of GBMs have

overexpression of epidermal growth factor receptor (EGFR). Amplificating

EGFR gene is typical for GBM and coincides with a loss of heterozygosity in

chromosome 10q. This mutation is related to the loss of PTEN gene func-

tion suppressing intracellular signal transmission in PI3K/AKT/mTORb.

Tipifarnib, Erlotinib and Lapatinib have been suggested for this growth

pathway inhibition (Li, Zhang, An, & Ma, 2016). Additionally, Imatinib,

Temsirolimus and Everolimus have been used to suppress the tyrosine kinase

activity of thrombocyte growth factor (Cantanhede & de Oliveira, 2017).

Bevacizumab that antagonizes vascular endothelial growth factor is the most

vastly used agent. The latter one has shown the most promising results
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(Diaz et al., 2017) in a series of clinical trials, while in combination with

TMZ, Bevacizumab was proved to be more efficient than the standard

chemotherapy (Stupp et al., 2016).

DNA methylation is a fundamental mechanism of deactivating genes

in eukaryotic cells. GBM is characterized with a generally low level of

DNA methylation (50% lower than in normal brain tissue), moreover hyp-

omethylation of relapse GBMs is significantly higher than in the primary

lesions. Therefore, TMZ was combined with therapeutic agents affect-

ing epigenetic regulation of gene expression, such as Vorinostat (Galanis

et al., 2018), Romidepsin, Azacytidine, and Decitabine, to investigate if this

would result in better performance. In addition, Clofazimine, Regorafenib,

Nigericin, Monensin, Salinomycin, Niclosamide, and Silibinin have been

suggested for suppression of Wnt signaling pathway in GBM cells

(Lyakhova et al., 2018). However, it should be noted (Touat et al., 2017)

that almost all new drugs, suggested for GBM treatment, proved to be rel-

atively ineffective in large clinical trials, and even the new targeted drug—

Rindopepimut (Weller et al., 2017)—has not met the expectations.

The most probable reason causing the failure of the existing therapy

methods is the poor penetrability of the blood-brain barrier (Da Ros

et al., 2018; Drean et al., 2016; Oberoi et al., 2016). Even though its integ-

rity is compromised both due to GBM development, and surgical interven-

tion (Kane, 2019; Vick, Khandekar, & Bigner, 1977; Wen et al., 2017), the

studies conducted with gadolinium contrast agents revealed accumulation of

these substances only in some parts of the tumor (Sarkaria et al., 2018), while

the areas of active tumor cells proliferation outside the primary lesion were

completely protected by the blood-brain barrier and remained almost inac-

cessible for chemotherapeutic agents. Undoubtedly, the modern technolo-

gies of targeted drug delivery through the blood-brain barrier (Sharma,

2011; Sharma, Muresanu, Mossler, & Sharma, 2012) manage to overcome

this issue to some extent.

Nevertheless, heterogenic nature of GBM cell population remains the

main complication (Meyer et al., 2015). Neoplastic cells, isolated from dif-

ferent parts of the tumor, exhibit a wide range of immunohystochemical

markers of the cell surface, different proliferation speed and susceptibility

to hypoxia, radiation, and TMZ (Furnari et al., 2015; Meyer et al., 2015).

Moreover, the cells, obtained from the same tumor biopsy and separated

according to the expression of a certain marker on the cell surface (Flavahan

et al., 2016), show significant differences in transcriptome and proteome

maps. In this respect, the widely discussed idea of using a customized
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targeted therapy to eliminate residual glioma cells bymeans of their molecular

and genetic signatures so far has limited practical value due to GBM high

heterogeneity.

Based on the abovementioned feature of GBM, the significant prolon-

gation of patients’ life expectancy is even theoretically impossible with

selective targeted monotherapy. A combination of drugs can simultaneously

affect the majority of relevant targets, destroying the larger part of the tumor

cells, however dramatically increasing the probability of severe side effects

due to combination toxicity. This warrants significant efforts for seeking

the substances contemporary affecting the key components of several molec-

ular cascades, involved in pathological changes of cancer cells, which may

become a new generation of multitargeted medication.

6. Fascaplysin alkaloids and their antitumor properties

In the light of the abovementioned, our attention was brought to the

group of small molecules, based on pentacyclic system of pyrido[1,2-a:3,

4-b0]diindol. The most well-known part of this group is Fascaplysin, a

red pigment (Fig. 1), first extracted from the sponge Fascaplysinopsis sp. in

1988. Fascaplysin has a wide range of biological properties. Its antitumor

effect is based on the ability to inhibit the important kinases, participating

in the main phases of GBM cell life cycle (Hamilton & Infante, 2016), to

affect the PI3K/AKT/mTOR signaling pathway, suppress angiogenesis

(Oh et al., 2017), trigger apoptosis and autophagy (Kumar et al., 2015).

The majority of Fascaplysin molecular targets are directly involved in pro-

liferation, migration and invasive activities of GBM cells ( Jin et al., 2019).

Cyclin-dependent kinase 4 (CDK4) is an enzyme of serine/threonine

protein kinases class that together with cyclin-D1 deactivates the retino-

blastoma protein (pRB), hence activating E2F genes that code the synthesis

of transcriptional factors, necessary for DNA replication and cell cycle

Fig. 1 The structure of fascaplysin. Rings A, B, C, D, E represent unified conjugate
system.
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progression. The malfunctions of this molecular pathway were discovered in

the majority of oncologic diseases (Hamilton & Infante, 2016; McNamara,

Sahebjam, & Mason, 2013), and frequently GBM cells exhibit hyper-

expression of cyclin D1 and lower level of 16INK4A and RB oncoprotein

activity. That is why researching selective CDK4 inhibitors is a priority

objective.

The Fascaplysin ability to inhibit CDK4 could be considered a proven

fact. In 2017, Chinese researchers demonstrated this effect with Western

blotting, along with its other abilities, like apoptosis triggering, lower pro-

liferation and migration activity and cell cycle arrest (Chen et al., 2017) for

cancer cells in G0/G1 phase when CDH4 was inhibited with Fascaplysin.

The effect of Fascaplysin on other CDKs is uncertain (Bharate, Manda,

Mupparapu, Battini, & Vishwakarma, 2012), since it has exhibited more

compatibility with CDK4/cyclin D1 complex, than with CDK6/cyclin

D1. At the same time, Fascaplysin inhibits CDK6/cyclin D2, but does

not affect CDK4/cyclin D2 and CDK4/cyclin D3 complexes. This fact

might be due to cyclins joining CDKs with different regioselectivity, thus,

creating several geometric modifications of the active complex site, that has

been proven by the results of molecular docking (Shafiq, Steinbrecher, &

Schmid, 2012).

The chemical composition of Fascaplysin has quaternary nitrogen in

two aromatic rings C and D that is in close proximity to E144-CDK4 area

and significantly contributes to Coulomb interaction between carbonyl

and NH-groups, creating a donor-acceptor bond with the area, connecting

N- and С-end domains of this enzyme. Such special interactions are typical

for many CDK inhibitors (Shafiq et al., 2012), and probably are one of the

most important mechanisms of their biological activity.

Selective effect on CDK4 activates another molecular cascade, involved

in GBM pathogenesis. GBM cells express c-Met or hepatocyte growth fac-

tor receptor, having a high level of tyrosine kinase activity in relation toward

nuclear transcription factor-κB (NF-κB) that regularly is inhibited by the

phosphorylated RB protein. In case of using CDK4/6 inhibitors RB pro-

teins do not suppress NF-κB activity that stimulates synthesis of hepatocytes

growth factor (HGF), nerve growth factor (NGF), brain-derived neuro-

trophic factor (BDNF) and other cytokines, hyperactivating c-Met receptor

and eliminating chemotherapy effects (Olmez et al., 2018).

Our team demonstrated the Fascaplysin ability to cause apoptosis in

GBM cells (Bryukhovetskiy et al., 2017). 2μmol of Fascaplysin showed

cytotoxic effect in GBM cells that exceeds the similar results of TMZ.
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When lowered to 0.5μmol of Fascaplysin, its cytotoxic effect decreased,

while the created cytostatic effect intensified after longer exposure.

Apoptosis, related to activating caspase-3 and -9, is one of the main

mechanisms of Fascaplysin cytotoxic effect. The research of 2015 (Kumar

et al., 2015) showed the Fascaplysin ability to induce cell apoptosis, by acti-

vating caspase-3, and, consequently, cleavage of Poly [ADP-ribose] poly-

merase (PARP-1), as well as to trigger autophagy signals, suppress three

main components of PI3K/AKT/mTOR signaling pathway (Meng et al.,

2019), increase p8 protein and reactive oxygen species (ROS) content in

cancer cells, decreasing mitochondrial membrane potential.

Fascaplysin deserves special attention due to its ability to inhibit such cru-

cial molecular targets as VEGFR (Chen et al., 2017; Lin, Yan, & Chen,

2007; Oh et al., 2017; Zheng et al., 2010). For instance, hepatocellular car-

cinoma BeL-7402 cell line was used to prove that Fascaplysin suppressed the

expression of two crucial angiogenesis factors: vascular endothelial growth

factor (VEGF) and basic fibroblast growth factor (bFGF) (Lin et al., 2007).

Based on the abovementioned facts, it is not surprising that Fascaplysin

exhibited stronger antitumor effect than Abemaciclib and Palbociclib on sev-

eral cancer cells of different types. Anti- tyrosine kinase activity of Fascaplysin

has also been proven (Oh et al., 2017).

There is another aspect of Fascaplysin physiological activity, and it

is the aromatic system of pyrido[1,2-a:3,4-b0]diindol that makes it a pow-

erful DNA intercalator. In other words, flat structures are created among

nitrogenous bases and stop transcription and translation processes, as

shown by the research (Hormann, Chaudhuri, & Fretz, 2001) with calo-

rimetric titration, adsorption spectroscopy and circular dichroism with

DNA sample from calf thymus.

Therefore, Fascaplysin is a unique prototype of a revolutionary multi-

targeted drug for heterogeneous glial brain tumors treatment. One disadvan-

tage of this substance, not unlike the majority of chemical compounds with

genotoxic activity, is its relatively high toxicity. The current work in progress

is the development of compounds with structural properties of Fascaplysin

that determine its enzyme-inhibiting abilities, and having stronger antitumor

effect with lower toxicity level.

7. New prospective derivatives of Fascaplysin alkaloids

It is currently known that there are compounds among Fascaplysin

derivatives which are not inferior in their antitumor effect, and even having

313Chemotherapeutic agents for the treatment of glioblastoma



superior properties. In 2004 12 Fascaplysin alkaloids were tested (Segraves

et al., 2004) on different lines of mice and human cancer cells to demon-

strate their activity and selective effect. The results showed that even

with the same activity level as Fascaplysin, 10-bromofascaplysin is more

selective in some human tumors, e.g. breast cancer cells. Cytotoxic effects

of Fascaplysin, 3-bromofascaplysin and Homofascaplysin A were compared

(Zhidkov et al., 2007), showing that Homofascaplysin A was more active

than the original compound in the majority of cancer cell lines, used in the

experiment.

In 2007 the Far Eastern Federal University research team synthesized line

of Bromofascaplysins (Zhidkov et al., 2007). Different cancer cell lines were

used to show that these compounds were indirectly involved in initiating

apoptosis, related to activation of caspase-3, -8 and -9 (Kuzmich et al.,

2010). Flow cytometry, soft agar method and Western blotting were used

to study those mechanisms. Theoretically, these compounds could be used

as prospective antitumor drugs.

Our research team synthesized and compared the antitumor effect of

some Fascaplysin derivatives (Lyakhova et al., 2018; Zhidkov et al., 2007),

namely 7-phenylfascaplysin, 3-chlorofascaplysin, 3-bromofascaplysin and

10-bromofascaplysin, with the effect of the original compound (Fig. 2). As

the study indicates, all Fascaplysin derivatives proved their ability to modify

the life cycle phases of GBM cells, and the amount of viable cancer cells

in G0 phase was at its lowest by the end of the experiment due to

3-bromofascaplysin and 7-phenylfascaplysin. The same derivatives demon-

strated the highest level of cytotoxic activity (Lyakhova et al., 2018).

Fig. 2 Derivatives of fascaplysin (A) 7-phenylfascaplysin (B) 3-chlorofascaplysin
(C) 3-bromofascaplysin (D) 10-bromofascaplysin.
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The research of 2019 tested 3-bromofascaplysin and 3,10-

dibromofascaplysin on human melanoma, intestinal and prostate cancer cell

cultures. The research showed that 3,10-dibromofascaplysin was highly

selective about affecting cancer cells in comparison with normal ones

(Zhidkov et al., 2019). Another 2019 example of significant results in this

area is the research, conducted by Chinese scientists who studied the

approaches to Alzheimer’s disease (Pan et al., 2019). Fascaplysin and some

of its methyl- and carboxy derivatives showed their cholinesterase-

inhibiting powers and neuroprotective properties. More importantly, the

ability of 9-methylfascaplysin to penetrate the blood-brain barrier and

accumulate in the brain (Hu et al., 2019) shows very high potential for

future applications.

8. Conclusion

Prognosis for GBM patients remains unfavorable. This paper aimed at

giving a critical analysis of the existing methods of GBM treatment, modern

algorithms of antitumor therapy and their obvious downsides. The special

emphasis is placed on heterogenic nature of GBM cell population as the

main reason of inefficient GBM treatment. Monotargeted chemotherapy

has been presented as unable to hinder GBM progression, and a new

approach to discovering medical agents with integral multitargeted activity

has been argued.

The data on stronger antitumor effect of Fascaplysin derivatives in

comparison with the natural substance show the potential of researching

various compounds of this group. The ability to penetrate the blood-brain

barrier and the effect they have on key enzymes, involved in the majority of

oncobiological processes, allow considering Fascaplysin alkaloids as pro-

spective compounds to be used in GBM therapy.
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