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Abstract: The influence of biological sex differences on human health and disease, while being 

increasingly recognized, has long been underappreciated and underexplored. While humans of 

all sexes are more alike than different, there is evidence for sex differences in the most basic 

aspects of human biology and these differences have consequences for the etiology and 

pathophysiology of many diseases. In a disease like cancer, these consequences manifest in 

the sex biases in incidence and outcome of many cancer types. The ability to deliver precise, 

targeted therapies to complex cancer cases is limited by our current understanding of the 

underlying sex differences. Gaining a better understanding of the implications and interplay of 

sex differences in diseases like cancer will thus be informative for clinical practice and biological 

research. Here we review the evidence for a broad array of biological sex differences in humans 

and discuss how these differences may relate to observed sex differences in various diseases, 

including many cancers and specifically glioblastoma. We focus on areas of human biology that 

play vital roles in healthy and disease states, including metabolism, development, hormones, 

and the immune system, and emphasize that the intersection of sex differences in these areas 

should not go overlooked. We further propose that mathematical approaches can be useful for 

exploring the extent to which sex differences affect disease outcomes and accounting for those 

in the development of therapeutic strategies.  

 

Keywords: sex differences, sex factors, precision medicine, glioma, patient-specific 

computational modeling 

 

Abbreviations: 18F-FDG PET 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography, 

CYP cytochrome p450, GBM glioblastoma, IgE immunoglobulin E, IDH1 isocitrate 

dehydrogenase 1, SRY sex–determining region Y 
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1. INTRODUCTION 

The impacts of biological sex on human health can be observed throughout the lifespan—from 

metabolic differences following conception, to differences in lifespan length and response to 

infectious disease, as well as in cancer incidence rates and outcomes.1,2 Biological sex 

differences are related to human sexual dimorphism, but go beyond external anatomical 

differences and even the more widely understood hormonal differences that we typically 

associate with gender. At the base of biological sex in humans lies the 23rd chromosome pair—

typically XX in genetic females and XY in genetic males, though other combinations such as 

XXY and X0 are both viable and not rare.3,4 The sex determining region Y (SRY) gene on the Y 

chromosome is initially responsible for gonadal differentiation and contributes to regulating 

differences in expression of testosterone, but this is only one of many differences seen at the 

chromosomal level between the sexes.5,6 As such, treatment with cross–sex hormones in 

transgender individuals7 and people with atypical sex chromosome karyotypes does not 

completely change all of the underlying biological factors associated with chromosomal 

sex. Thus, in this review we use “sex” to denote biological sex as determined by chromosomes, 

following NIH guidelines,8 focusing on XX females and XY males. This is distinct from gender, 

which is a social construct. Based on external anatomical sexual dimorphism, children are 

typically assigned a gender at birth and brought up according to distinct gender norms. The 

societal impacts of gender also have implications for human health, including the conditions 

referred to in this review, but that is not the focus of this article. We begin by highlighting known 

biological sex differences in healthy individuals, including the immune system and metabolism. 

We have also highlighted some compelling studies in animals that suggest similar but as yet 

unconfirmed sex differences in humans. Next, we discuss sex differences observed in 

nonneoplastic disease that have been reported in the literature and how these may relate to 

underlying biological sex differences. This is not exhaustive, but highlights the breadth of 

potential interactions between disease mechanisms and normally occurring biological sex 
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differences. Finally, we review sex differences in neoplastic disease broadly, and focus on one 

particular cancer for which understanding sex differences may be impactful: glioblastoma. We 

conclude with recommendations for using computational approaches to facilitate studies 

investigating the complex impacts of sex in human health and medicine.  

 

2. SEX DIFFERENCES IN HEALTHY INDIVIDUALS  

2.1 Sex differences in the normal immune system.  

The human X chromosome contains many genes related to immune function.9 Because the 

human Y chromosome does not contain alleles for these genes, dosage compensation evolved 

so that only one complement is needed, thereby necessitating X-inactivation in females (XX) to 

avoid the consequences of over-expression of these same genes.10 This inactivation is 

achieved through a variety of epigenetic mechanisms;11 however, a number of studies have 

shown that X-inactivation is not complete, with as many as 30% of genes on the inactivated X 

(Xi) escaping inactivation.12,13 Furthermore, recent work has shown that the Xi can be partially 

reactivated in lymphocytes, leading to the overexpression of X-linked immune genes.14 

 

Immune differences between the sexes are also reflected in different relative abundances of 

various immune cells. In one review of sex differences in immunology across a variety of 

species, human females are noted to have higher T-cell numbers and increased antibody 

response.15 On average, females have higher numbers of CD4+ T-cells than males, as well as a 

higher ratio of CD4+ to CD8+ cells, and this difference is maintained across all adult ages, even 

as this ratio increases with age in both males and females.16–19 Other studies have found a 

higher count in total lymphocytes among males, but a higher abundance of granulocytes in 

blood samples from females.20–22 These trends have been observed across different ancestries 

and various geographic regions, suggesting that these differences are maintained in the 

presence of various genetic and environmental influences.  
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In addition to differences attributable to genetics, there are also influences due to sex 

hormones, which are more notable following puberty. Because technology to detect hormones 

and to produce synthetic hormones has existed much longer than genetic sequencing 

technology and other sophisticated microbiological approaches, many studies have focused on 

immune differences attributable to sex steroids.23 Physiologic levels of estradiol have been 

shown to be immunostimulatory,24 affecting corticotropin stimulating hormone production.25 

Furthermore, hormonal fluctuations during the female menstrual cycle are associated with 

alterations in T cell numbers between the follicular and luteal phases.26–28 Studies have also 

shown that estrogens play a dynamic role in wound healing. Estrogens stimulate various growth 

factor pathways to improve re-innervation and re-epithelialization, as well as enhance the 

formation of granulation tissue.29 There is an age-related decline in wound healing in healthy 

females, which is counteracted by hormone replacement therapy with progesterone and either 

conjugated estrogen or estradiol.30 

 

Immune Sex Differences seen in Animal Studies. Studies among murine models suggest the 

existence of additional immunological sex differences between healthy human males and 

females. For example, resident leukocyte populations in murine females are more numerous 

than in males and have a greater density of pathogen/injury-sensing toll-like receptors,31 and 

dendritic cells express estrogen receptor alpha.32 Experiments have also shown a role for the X 

chromosome in autoimmune disease susceptibility in females.33 In the brain, the abundance and 

morphology of microglia in various brain regions differs between the sexes,34,35 as do their 

phenotype and transcriptome.36,37 Due to the role of microglia in modulating synaptic 

connectivity, such neuroimmune sex differences have implications for neurological 

development.38,39 These differences may even have implications for sex differential pain 

perception and morphine response, with microglia required for sensing pain in male rodents, but 
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not in females,40 and sex differences in microglia may drive the observation of reduced 

sensitivity to morphine in females.41 Neurons and astrocytes can produce estrogen, while 

microglia and oligodendrocytes express estrogen receptor (ER), particularly ERb,42 and various 

estrogens in murine experimental autoimmune encephalomyelitis (a model of multiple sclerosis) 

have shown differential inhibitory effects on neuroinflammation.43 Additionally, there has been 

increased recognition of the role that the microbiome plays in immune response, which may 

also interact with sex differences. In one study using the nonobese diabetic mouse model of 

type 1 diabetes, gut microbiota transferred from adult male subjects to immature females 

resulted in elevated testosterone production and reduced islet inflammation, protecting against 

development of diabetes. This suggests that microbiota may participate in signaling loops that 

can influence sex hormone levels and thereby affect immune response and metabolism.44 All of 

these studies highlight the complexity of the interactions involved in biological sex differences in 

immune response which may be found to similarly impact humans.  

 

2.2 Sex differences in metabolism.  

Sex differences in human metabolism have been noted during periods of exercise and fasting, 

as well as in hypoglycemia, with females having increased lipolysis relative to males, and males 

having increased carbohydrate oxidation relative to females.45,46 There are also differences in 

protein use and muscle turnover, with slightly less amino acid metabolism in females 

(particularly reduced leucine oxidation).46 While these differences are small between young 

males and females, they may be more pronounced in response to resistance exercise and 

feeding among older adults.47,48 After adjusting for body composition, there does not appear to 

be a sex difference in overall basal metabolic rate (BMR).49,50 Another study noted that females 

had higher levels of circulating leptin which did not impact residual BMR, although there was an 

association between residual BMR and the thyroid hormone thyroxine that remained significant 

for males but not females when the sex cohorts were analyzed separately.49 A review of 
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metabolic sex differences by Mauvais-Jarvis goes into further depth on these and also includes 

animal studies that may help distinguish the hormonal versus chromosomal impacts of sex on 

metabolism.51 

 

Studies have also revealed metabolic sex differences in the brain, specifically in cerebral 

glucose metabolism. Although some authors have framed these to discuss potential differences 

in cognitive abilities and emotional processing, we are not validating those claims; rather, we 

include these studies to highlight possible (sub)cellular biological differences that could be 

related to disease pathogenesis and outcome. Most studies in cerebral glucose metabolism 

largely rely on 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) positron emission tomography (PET) 

to study global and regional differences in the brain. Two studies showed increased whole brain 

glucose metabolism in females,52,53 and some regional differences in which either males or 

females have higher resting metabolism than the other have also been demonstrated.53,54  The 

significance of these differences is not well–understood, but they point to potential differences in 

underlying biology at the cellular level. Some investigation has been done into the role of 

hormonal differences on these brain metabolic sex differences by examining them in relation to 

the menstrual cycle. One study showed globally elevated (19% higher) glucose metabolism on 

18F-FDG PET in the whole brain of females in the follicular phase of the menstrual cycle as 

compared to males, with no particular neuroanatomical structures or regions outstanding.52 

Another comparing cerebral glucose metabolism during the follicular and luteal phases in 

menstruating females found no difference in whole brain glucose metabolism between the 

menstrual phases, but did find regional differences.55 Thus, it may be that regional differences in 

glucose metabolism between the sexes are associated with regional differences in hormone 

receptor expression, while the finding of no differences in whole brain glucose metabolism 

during different phases of the menstrual cycle suggests that sex hormones are not the primary 

cause of these sex differences overall. 
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There are also important sex differences in drug metabolism, with some drugs being 

metabolized slower in females than males and other drugs metabolized faster in females than 

males.56 For example, drugs catalyzed by the cytochrome P450 CYP3A have faster rates of 

clearance in females, who demonstrate twice the level of CYP3A4 expression in their livers.57 

Differences in expression of various cytochrome P450s (CYPs) may be related to their role in 

steroid hormone synthesis and metabolism.58 Other drugs have slower clearance in females 

than males, and may thus have higher toxicity.56 This difference has also been observed among 

children treated with 6-mercaptopurine for leukemia, with males requiring higher levels of the 

drug to attain similar efficacy.59,60 Sex differences in growth hormone secretion patterns may be 

just one factor contributing to observed sex differences in CYP expression, through effects on 

expression of STAT5b, which has regulatory effects on a number of CYP genes.61,62 

 

2.3 Sex differences in development.  

Sex differences in metabolism start as early as conception, prior to the development of gonads 

or existence of gonadal hormones, and are linked to developmental differences between the 

sexes. One large retrospective study found that low gestational weight gain results in more male 

fetal losses than female,63 a finding that was also observed in a study of births occurring during 

the 1959-1961 Chinese Great Leap Forward famine.64 Another study demonstrated differences 

in cell count and uptake of resources during the early stages of human embryonic 

development.1 Further, female life expectancy is longer than that for males, a finding that 

persists in survival data across countries throughout the lifespan, including in very early life 

(birth to age 5) and in later life (ages 50+), indicating that these differences are not solely 

attributable to sex-specific societal exposures (e.g., war and violence, or different pressures 

toward risk-taking behaviors).2  
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Beyond the more obvious sexually dimorphic traits, such as physical size and gonads, other 

morphological differences between males and females occur throughout the body. Females 

have stiffer arterial walls (as measured by pulse pressure) in prepubescent childhood and post 

menopause as compared to menstruating females, while males’ arterial stiffness increases 

linearly over the lifespan.65 Further, on the whole, males have larger brain volumes than 

females,66 with a higher percentage of that volume consisting of white matter.67,68 Regional 

differences in gray matter volume between males and females has been shown to be 

independent of overall brain size in studies where male and female subjects were matched on 

the basis of total brain volume.69 Further, there appear to be sex differences in the timing of 

volumetric growth and maturation of various brain regions during development.70,71 Still other 

studies have examined inter- and intra-hemispheric brain connectivity and found sex 

differences.72,73 However, it is worth noting that these studies in humans have been conducted 

on subjects of age 8 years and older, and therefore we cannot rule out the possible 

contributions of socialization and gender roles on these observed brain differences. This is 

particularly important to be aware of, since the results of some studies on sex differences in the 

brain have been extrapolated beyond the evidence to reinforce stereotypes about differential 

cognitive capabilities between the sexes, as discussed comprehensively elsewhere.74,75 

 

Developmental Sex Differences seen in Animal Studies. Because of the difficulty in teasing 

apart the contributions of socialization and innate biology on neurocognitive development in 

humans, animal studies can be particularly useful. In a series of murine experiments, alterations 

in prostaglandin-E2 (PGE2) expression during development were shown to affect neurogenesis 

in the rat preoptic area. Specifically, increased PGE2 was associated with increased dendritic 

spine density (and vice versa), as well as masculine sexual behavior.76,77 Studies using the four 

core genotypes (FCG) mouse model allow for the separation of gonadal vs chromosomal 

contributions to biological sex differences by moving the SRY gene to an autosome to create XX 
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and XY individuals with ovaries and XX and XY mice with testes.78 In one study using FCG 

mice, both chromosomes and estrogen were shown to contribute to differences in growth 

hormone (GH) regulation in some brain regions.79 Specifically, estradiol increased GH in the 

hippocampus and cerebellum, while XX mice had more GH in the arcuate nucleus of the 

hypothalamus than XY mice. Various other sex hormones, including androgens and progestins, 

have been shown to affect adult hippocampal neurogenesis as well.80 Early life adverse events 

also have sex- and age-specific impacts on hippocampal neurogenesis in developing rodents.81 

 

3. SEX DIFFERENCES IN PATHOLOGICAL CONDITIONS  

3.1 Sex differences in nonneoplastic disease.  

Given the wide array of sex differences that impact healthy day-to-day functioning, it is not 

surprising that sex differences arise in risk, incidence, etiology, pathophysiology, and outcomes 

across many diseases. Many autoimmune diseases affect females more frequently than 

males,82 and some (such as Hashimoto’s thyroiditis and Grave’s disease) pronouncedly so,82,83 

consistent with the immune sex differences noted earlier. However, sex differences can interact 

in complex ways in disease. For example, male bias in the incidence of type 1 diabetes among 

patients diagnosed following puberty84 may also be connected to sex differences in insulin 

sensitivity,51 suggesting that increased immune activation is not the only factor driving the 

disease. Similarly, sex differences in neuroimmunology, in combination with sex differences in 

dopamine and glutamate signaling, may contribute to observed sex differences in incidence 

and/or clinical outcomes of various neurological and psychiatric illness, including multiple 

sclerosis, Alzheimer’s and Parkinson’s diseases, autism and schizophrenia.85–87 Sex differences 

in both arterial wall stiffness and inflammatory pathways may explain some of the differences 

observed in hypertension and cardiovascular disease symptoms between males and 

females.65,88,89 There also appear to be contributions from sex hormones, but results have been 

contradictory.90 A study of cardiovascular disease in transgender patients found that male to 
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female transgender individuals taking cross hormones in the form of oral estrogen had worse 

cardiovascular outcomes, and thus recommend other routes of administration.91 These also 

interact with immunological differences—in stroke, while studies conflict on sex differences in 

incidence, many are consistent in finding that outcomes are worse in female patients.92,93 

Female bias toward higher immune activation contributes to the sex disparate outcomes in 

wound healing and susceptibility to infectious disease following injury.94 One retrospective study 

of patients treated for injuries demonstrated that males had a greater prevalence of major 

infections following moderate injury than female patients.95 These examples are helpful for 

thinking about the complex interactions of biological sex differences in the context of cancers, 

which are themselves inherently complex and whose hallmarks frequently involve many of these 

systems.  

 

3.2 Sex differences in neoplastic disease overall.  

These sex differences also impact incidence and outcome in neoplastic disease. 

Nonreproductive cancers affect males more frequently than females (Table I), and carry poorer 

prognoses in males.96–99 While this is sometimes attributed to different sociological factors, a 

number of studies that controlled for these suggest that such sociological differences are not 

wholly responsible for the observed differences in incidence and outcome.98 This is further 

supported by studies among childhood cancers, where males make up a greater proportion of 

affected individuals overall and among most cancer types.100 The preponderance of males 

among children affected by cancers also suggests that hormonal differences may not 

necessarily be primarily responsible for the observed sex difference at other ages. In one recent 

study, it was found that sex differences relating to metabolism may enable prognostic 

stratification of females with clear cell renal cell carcinoma.101 Specifically, high relative visceral 

fat area (compared to subcutaneous fat area) on computed tomography was associated with 

poorer survival outcomes in females but not males. Conversely, females with low relative 
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visceral fat area and low tumor glycolysis rates had remarkably good survival outcomes, which 

was not seen to be as strong in males. Additionally, an analysis of gene regulatory networks in 

colon cancer identified sex differences in expressed and targeted genes.102 Interestingly, while 

all of the 20 most sex differentially expressed genes in this study were linked to sex 

chromosomes, 19 of the 20 most sex differentially targeted genes were of autosomal origin, and 

many of those more highly targeted among females were genes involved in drug metabolism. Of 

course, sex hormones interact with immune and metabolic functions, and thus likely play some 

further role in sex differences among cancers. Estrogens and androgens can modulate immune 

responses,103,104 as well as gene expression in vitro and in vivo, with effects on tissues being 

further mediated by intracellular sex hormone receptors.105–107 A lower risk of hepatocellular 

carcinoma in females has been attributed to prolactin,108 and estrogen has been associated with 

colorectal cancer risk reduction in premenopausal females.109–111 Further, women were found to 

be more susceptible to oral cancers following menopause.112 While research on sex differences 

in cancer has historically focused more on the contributions of sex hormones, this is only one 

facet of the biological sex differences that may impact disparate incidence and outcome in 

neoplastic disease.  
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Figure 1. Biological sex differences in humans cut across domains.  Biological sex 

differences do not all fit neatly into typical domains of medical study, and frequently occur in the 

intersection of these, as shown in the intersecting regions of the Venn diagram. This highlights 

both the need for collaborative approaches in the study of sex differences, as well as their 

potential for broad implications for human health.  

 

Table I. U.S. cancer incidence rates from 1975–2004  by sex. 

Cancer site  
Incidence per 100,000 M:F 

IRR Total Male Female  

Lung 138.34 93.16 45.18 5.17 

Breast 127.48 1.10 126.38 0.01 
Colorectal 121.49 70.33 51.16 1.37 

Blood 80.60 49.03 31.57 1.55 

Hodgkin's lymphoma 5.91 3.40 2.51 1.35 
Non-Hodgkin's lymphoma 35.75 21.35 14.40 1.48 

Myeloma 11.62 6.98 4.64 1.51 
Lymphocytic leukemia 13.11 8.56 4.55 1.88 
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Myeloid & monocytic 
leukemia 12.05 7.38 4.67 1.58 

Other leukemia 2.16 1.36 0.80 1.69 

Bladder 47.11 37.54 9.57 3.92 
Skin 33.51 19.70 13.81 1.43 

Pancreas 23.85 13.65 10.20 1.34 
Kidney 22.01 14.84 7.17 2.07 

Stomach 20.53 14.10 6.43 2.19 

Brain 12.70 7.55 5.15 1.47 

Thyroid 12.43 3.50 8.93 0.39 
Esophagus 9.93 7.72 2.21 3.49 

Liver 9.06 6.60 2.46 2.69 
SEER data 1975 to 2004, reported in Cook, et al. 2009 [99]; M:F IRR = Male to Female Incidence Rate Ratio. 
 

 

4. SEX DIFFERENCES IN GLIOMA  

Thus far, we have reviewed the significant sex differences observed in healthy bodies, 

pathologic conditions, and non-brain cancers (Figure 1). The presence of consistent sex 

differences throughout the body and in healthy and pathologic conditions have led researchers 

to hypothesize that sex differences play a role in both primary and secondary brain 

cancers.113,114 There are known hormonally–driven sex differences seen particularly in 

meningioma and pituitary adenoma.114,115 In this section, we will focus on the most common 

primary malignant brain cancer, glioblastoma (GBM, grade IV glioma), in which sex differences 

have been relatively understudied. The strongest and most consistent evidence for sex 

differences in GBM is related to incidence, with GBM being more common in males, resulting in 

a M:F ratio of GBM patients of about 1.4-1.6:1.116,117 Additionally, female GBM patients have 

been observed to live longer than their male counterparts when given the same standard-of-

care treatment.118 These two differences allude to the existence of underlying biological sex 

differences that enhance male risk for GBM and extend female life during treatment.  

 

4.1 Sex differences in glioma metabolism  
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Aerobic glycolysis, or the Warburg effect, refers to the metabolism of glucose to lactate in 

proliferating cancer cells despite the presence of oxygen that would otherwise support the 

complete oxidation of glucose in mitochondria.119 Cancer cells, including glioma cells, use this 

pathway to rapidly produce ATP and other metabolic precursors that are needed to combat 

oxidative stress and enable rapid proliferation.120–122 Considering the observed metabolic sex 

differences in glucose uptake in proliferating embryos, as well as those in healthy adults during 

exercise and conditions of oxidative stress, one might hypothesize that nutrient uptake and 

metabolism in cancer cells may also display sex differences. One study found that the level of 

expression of glycolytic genes significantly stratified survival among males with lower grade 

gliomas, independent of grade, histology, and select mutations, including isocitrate 

dehydrogenase 1 (IDH1) mutation, with the lower glycolytic group surviving longest. Among 

IDH1 wild-type patients, however, glycolytic genes expression level stratified survival only 

among females, with the high glycolytic group surviving longest. Additionally, glycolytic 

metabolite levels (pyruvate and the lactate/pyruvate ratio) stratified male survival, and not 

female, among grade II glioma patients.120 Another study used advanced imaging and found 

differences in perfusion metrics and relative metabolite levels (taurine and myo-inositol) 

between male and female high-grade glioma rat models (C6 cell line). These suggested more 

aggressive features for male tumors and warrants further investigation in human subjects.123 

With the increased utilization of 18F-FDG-PET and other advanced imaging on brain tumor 

patients and the potential for this information to be used to predict tumor grade and patient 

prognosis,124 it will be increasingly important that we understand how sex impacts tumor 

metabolism and patient outcomes.  

 

4.2 Sex differences in glioma and immune system  

Once thought to be immune-privileged with limited intervention against antigens, the immune 

system in the CNS is now known to have both adaptive and innate components, with antigens 
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triggering both T cell and macrophage responses. Ideally, the immune system combats 

cancerous growth by detecting tumor-associated antigens on malignant cells. While GBM is 

usually accompanied by inflammation and an immune response consisting of T cells, 

macrophages, and microglia, this is not necessarily a sign of tumor rejection, since these cancer 

cells are known to secrete immunosuppressive cytokines and manipulate immune activity.125,126 

There is very little information on sex differences in the neuroimmune system based on the 

analysis of human subjects, but microglia are known to play an important role in human brain 

development and rat models have shown sex differences in the abundance of microglia and 

effect of T-cells on the development of rat brains.38 Considering the previously described role of 

X inactivation in immune activity and the observed immune sex differences in the rest of the 

body, one would hypothesize that the interactions between GBM cells and the immune system 

might also be impacted by sex. Two studies using case-control methods found an inverse 

relationship between pre-diagnostic immunoglobulin E (IgE) levels and risk for high-grade 

glioma among females only.127,128 Contrarily, another study found an inverse relationship 

between pre-diagnostic IgE levels and glioma risk among all patients and did not find that this 

relationship was more significant among females.129 At baseline, males were found to have 

higher levels of total IgE compared to females among both glioma cases (tested after diagnosis) 

and healthy controls.125 Contributing to an area of growing research, one study found evidence 

of fetal microchimerism in 80% of their glioma cases from women with a history of male 

pregnancy.130 While the relationship between fetal microchimerism, cancer, and the immune 

system has not been fully elucidated, the results of this study demonstrate the need to further 

study this phenomenon and its immunological implications in the context of glioma.  

 

Myeloid-derived suppressor cells (MDSCs) also contribute to the tumor-immune landscape of 

glioma, wherein they function to inhibit anti-tumor immune response. One recent study found 

that among mouse models of GBM, male tumors were enriched in monocytic MDSCs, while 
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female blood had elevated granulocytic MDSCs, each involving distinct biological pathways and 

therapeutic targets.131 The authors also analyzed patient samples and found that proliferating 

monocytic MDSCs predominated male tumors, whereas a high granulocytic MDSC/IL-1b gene 

signature was associated with poor prognosis in females, affirming the potential for effective 

sex-specific immunotherapeutic intervention in the clinic. While existing literature has described 

sex differences related to the use of immunotherapy agents like check-point inhibitors in non-

glioma cancers132 and one study found sex differences in the outcomes of a bevacizumab trial 

for non-small-cell-lung cancer,133 our search was unable to find any sex-specific analysis of the 

efficacy of immunotherapies on glioma patients. Considering the vast potential impact of sex 

differences on immune-glioblastoma interactions and the necessity of understanding sex’s role 

in these interactions when deploying immune-dependent treatments (e.g., chimeric antigen 

receptor T-cell therapy), there is a startling shortage of research on this subject.  

 

4.3 Sex differences in glioma related to hormones  

The sex differences in glioblastoma incidence have been observed across age groups,134,135 

indicating that sex hormones alone do not cause this disparity. However, it is reasonable to 

hypothesize that sex hormones influence glioma growth and/or treatment response. Literature 

on this subject has been primarily focused on the role of sex hormones in glioma risk and the 

results have been largely inconsistent. A prospective study of over 200,000 women (European 

Prospective Investigation into Cancer and Nutrition, EPIC) found no significant association 

between glioma risk and reproductive factors like age at menarche, parity, age at first birth, 

menopausal status, and age at menopause.136 A meta-analysis of multiple case-control studies 

found that higher age at menarche was associated with increased risk for glioma, but did not 

find any risk associated with other reproductive factors.137 The meta-analysis also found that 

oral contraceptive (OC) use was associated with lower risk for glioma, as was hormone 

replacement therapy (HRT) among post-menopausal women,137 while the EPIC study found no 
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association between glioma risk and OC or HRT use.136 However, neither of these studies 

examined the dosage or particular hormones used. A different prospective study of over one 

million postmenopausal women found that estrogen-only HRT users had an increased risk for 

glioma, while estrogen-progesterone users did not have an increased risk compared to never 

users.138 There is minimal research on the impact of sex hormones on mechanisms of glioma 

growth or treatment response, and any role of sex hormones in the observed sex differences in 

prognosis and outcome has yet to be elucidated. 

 

4.4 Other observed sex differences in glioma  

Genetic differences, either in coding or expression, are thought to play a role in the sex 

differences observed in GBM. A comprehensive study of both the mutation and expression 

profiles of multiple kinds of cancer found that low grade gliomas and GBMs both fit into the 

“weak sex-effect” group, indicating that there were less sex-biased patterns in gene coding and 

expression in glioma compared to cancers like bladder urothelial carcinoma and thyroid 

carcinoma.139 Despite being a “weak sex-effect” cancer, multiple studies have used genetic 

coding and expression data to reveal sex differences in GBM. By applying a framework for 

assessing mutational clonality to the genetic coding data of glioma patients, one study found 

that females had higher overall and subclonal mutation burden than males among both low-

grade glioma and GBM groups. While the X chromosome contributed to the higher overall 

mutation burden in females, other chromosomes were implicated in this finding as well.140 Their 

results suggest that sex-biased mutagenesis may play a role in glioma development and that 

sex chromosomes may play an important role in cancer evolution. While most existing glioma 

GWAS studies have not stratified for sex, two that did found sex-specific associations between 

genes and glioma risk, suggesting that sex may play a role in genetic risk for glioma.141,142 
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Focusing on genetic expression, a murine cell line study found that female GBM astrocytes 

undergo p16- and p21-dependent cell cycle arrest in conditions of serum deprivation and 

induced DNA damage, while the male cells continued to proliferate and accumulate 

mutations.143 These results allude to potential sex differences in cellular response to treatment 

that need further investigation. Using patient-derived samples, a recent study on GBM patients 

used a joint and individual variance explained (JIVE) analysis to identify sex-specific patterns of 

gene expression. After clustering patients into five male and five female groups based on 

patterns of gene expression, they found that the longest-surviving male group had unique 

expression of genes related to cell cycle regulation and the longest-surviving female group had 

unique expression of genes related to regulation of integrin signaling.144 Additionally, IDH1 

mutant female patients mostly clustered into a single group that had improved survival over the 

other female groups, while IDH1 mutant male patients did not cluster in the same way. Similar 

to the previously mentioned study on glycolytic gene expression, these results suggest that 

while males and females may have similar patterns of genetic expression at a population level, 

these expression patterns may have sex-specific implications for outcome. The same study also 

analyzed segmented, serial magnetic resonance imaging (MRI) of GBM and found that females 

had a stronger volumetric response to adjuvant temozolomide therapy compared to males. 

Finally, using a larger cohort of GBM patients with segmented pre-surgical images, this study 

found that patient-specific, estimated parameters of tumor growth kinetics, specifically estimated 

tumor cell diffuse invasion rate, was predictive of overall survival among females and not 

males.144 Two other studies have used segmented MRI to investigate sex differences in tumor 

volume with mixed results,145,146 while a third study found that these volumes have a sex-specific 

impact on overall survival.147 Taken together, these studies emphasize the need to consider sex 

differences in studies of glioma genetics and neuroimaging, particularly in the growing field of 

radiomics, as well as in connection with other observed sex differences in glioma to understand 

the extent to which these may be genetically driven (Figure 2).  
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Figure 2. Summary of known biological sex differenc es in glioma and glioblastoma.  The 

sex differences observed in glioma in various domains of study interconnect and may together 

contribute to sex differences in glioblastoma incidence and overall survival. However, many 

areas remain understudied, particularly in the intersecting areas shown in the Venn diagram. 

(GBM = glioblastoma, IgE = immunoglobulin E, TCGA = the Cancer Genome Atlas) 

 

5. RECOMMENDATIONS FOR FUTURE RESEARCH  

5.1 Complex adaptive systems modeling  

During a meeting on sex differences in the brain and brain tumors sponsored by the James S. 

McDonnell Foundation in March 2018, we concluded that understanding the contributions of sex 

to health and disease is imperative for advancing precision medicine. The myriad differences 

between the sexes and their impact on normal biology and pathology are highly interconnected 

and complex, necessitating mathematical and computational approaches for investigation. 

Mechanistic mathematical models, including differential equation models, can allow us to bridge 
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spatiotemporal scales in testing hypotheses about the impacts of biological sex differences on 

health and disease outcomes. Agent–based models, in particular, can be useful for discovering 

emergent phenomena in complex adaptive systems, since they explicitly allow for the 

integration of known biological processes and importantly can include realistic interactions 

across different biological scales that together drive observed behaviors. Computational 

machine learning models can be useful for identifying patterns in noisy data that provide further 

understanding of the extent to which various biological sex differences affect health outcomes. 

Machine learning models can also be combined with mechanistic models wherein the latter 

constrain the former such that known biological processes can define the inputs, shape the 

temporal dynamics or constrain the outputs, allowing us to deliver better predictions. It is worth 

noting that sex differences have essentially been ignored by the mathematical and 

computational modeling community, further emphasizing the need for a change in how we 

perceive the specific biological systems we model to explicitly consider sex when relevant. 

 

5.2 Considerations for preclinical and clinical stu dy design  

In order to make full use of the aforementioned quantitative methods, it is vital to collect and 

report data related to sex as part of basic science and preclinical research, as well as clinical 

studies.  

Experimental work is a critical component of understanding complex cancer mechanisms, 

facilitating this computational work, and it ought to be carried out in a sex–conscious fashion. In 

particular, the sex of tumor cell lines and model animals should be considered, with both sexes 

used in studies to the fullest extent possible. To more deeply investigate sex–associated 

mechanisms, the use of the four core genotype model may be appropriate, differentiating 

hormonal versus genetic contributions to sex differences in cancer. This model may also be 

especially useful for understanding how hormones versus genetics impact the metabolism of 
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therapies, providing insight for clinical studies and the best use of these treatments among 

transgender patients taking cross sex hormones.  

 

At a minimum, all clinical trial analyses should report response sub-divided by sex. Small 

sample size in studies is a frequent challenge to observing whether there are in fact sex 

differences in response, as it may not be possible to assess the significance of either any 

differences or an apparent lack thereof with the even smaller subcohorts. However, it may be 

possible for subsequent investigators to combine results from multiple studies to power such an 

analysis, and it is a good habit to practice, as in large drug trials reporting response in sex–

specific subcohorts is essential. Additionally, clinical trial coordinators should pre–consider 

which data might be needed to examine sex differences prior to initiating a clinical study (for 

example, data on subjects’ menstrual status and noting any type of hormone therapy a subject 

is taking, or explicitly measuring subjects’ hormone levels, including sex steroids other than 

estrogen/testosterone). Coordinators should also be informed about the social situations 

surrounding sex and gender disparities, including gender identity, and be sensitive to potential 

patient concerns to improve data collection.148 To reduce the impact of gendered social norms 

for self–reported symptoms, emphasis in clinical studies should be placed on quantitative 

assessment of symptoms whenever possible. With these approaches, we can build the 

individualized patient-specific medicine of the future, wherein all aspects of a patient’s biology 

are fully considered—including their sex. 
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ARTICLE HIGHLIGHTS 
 

• Biological sex differences appear in many aspects of normal human biology 
 

• Sex differences may influence the etiology of many diseases—more work is needed 
 

• Immune, metabolic, & genetic sex differences affect glioblastoma treatment outcomes 
 

• Patients may benefit from sex–specific therapeutic strategies 
 

• Computational models can elucidate molecular sex–difference impacts on disease 
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