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MGMT promoter methylation and hypermutant 
recurrence in IDH mutant lower-grade glioma
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Infiltrative lower-grade gliomas (LGGs) are the most common 
primary brain cancer of younger adults (ages 18–45 y).1,2 These 
diffuse gliomas are histological grades II or III within the revised 
World Health Organization diagnostic classification3 and harbor 
mutations in isocitrate dehydrogenase (IDH) 1 or 2.  They are 
often initially slow growing and responsive to treatment with 
surgery and radiation. In addition, adjuvant alkylating chemo-
therapy has recently been proven effective in lower-grade IDH 
mutant gliomas, with extended survival demonstrated in in-
ternational randomized clinical trials combining radiation with 
the procarbazine/lomustine/vincristine (PCV) regimen4–6 or oral 
chemotherapeutic temozolomide (TMZ).7 Despite this effective-
ness, these chemotherapies unfortunately lack durability—re-
currences emerge in a substantial fraction of patients, with 
many cases transforming to a higher-grade tumor arising from 
malignant subclones that drive lethal disease progression.8,9 
Post-alkylator glioma recurrences can display the mutational 
signature of an on-target selective pressure of chemotherapy, 
as escape from DNA damage surveillance can be mediated by 
mismatch repair‒deficient hypermutant genomic evolution.10–12 
This phenomenon is particularly frequent in IDH mutant glioma 
patients after treatment with TMZ.13–15 This failure pattern after 
chemotherapy has motivated research efforts to identify poten-
tial biomarkers in pretreatment tumors that could serve as pre-
dictors of the eventual development of hypermutation.

In a comprehensive study reported in this issue of Neuro-
Oncology, Mathur and colleagues present convincing evi-
dence that higher levels of upfront O6-methylguanine-DNA 
methyltransferase (MGMT) promoter methylation, and their 
maintenance through recurrence, are associated with the de-
velopment of hypermutation in IDH mutant gliomas.16 They 
detail the clinical characteristics and hypermutation status at 
recurrence in 37 TMZ-treated paired cases that were initially 
diagnosed as LGG. Eighteen of these tumors showed signs of 
hypermutation at recurrence. Interestingly, when comparing 
these 18 cases with the 19 non-hypermutant cases, neither age 
of the patient nor the number of TMZ cycles was related to the 

development of hypermutation. The investigators then carefully 
characterized methylation levels in the MGMT promoter region 
in a quantitative manner using bisulfite amplicon sequencing. 
They observe that the initial tumor specimen from an eventual 
hypermutated recurrence generally showed increased methyl-
ation levels across cytosine-guanine dinucleotide sites within 
the MGMT promoter. Most interestingly, for patients who de-
veloped hypermutation at recurrence, these methylation levels 
did not significantly change between initial tumors and recur-
rences. In contrast, MGMT promoter methylation levels signif-
icantly decreased between initial tumors and recurrences for 
patients who did not develop hypermutation at recurrence. 
These data suggest that competing mechanistic pathways can 
mediate escape from selection under TMZ treatment: (i) via 
unmethylated MGMT promoter and upregulated expression 
for primary resistance versus (ii) another manifesting hyper-
mutation via mismatch gene repair defects.

All told, the implications of these findings are several. First, 
while MGMT promoter methylation has a well-established evi-
dence base as a predictor of TMZ responsiveness in high-grade 
IDH wild-type cohorts,17,18 these results represent a new and nu-
anced clinical consideration for MGMT promoter methylation in 
patients with lower-grade IDH mutant gliomas. These findings 
suggest that, while MGMT promoter methylation may not pre-
dict response to chemotherapy in IDH mutant glioma, it can in-
fluence the preferred route by which recurrences arise—tumors 
with methylated MGMT promoter are more likely to manifest hy-
permutation at recurrence.

Importantly however, these findings do not predict whether 
or not a patient would benefit from treatment. Indeed, the emer-
gence of hypermutation is to some extent an indication that the 
treatment is enforcing a selective pressure on tumor growth, 
and there exist conflicting data regarding the survival impact 
of TMZ-induced hypermutation.14,15 This holds some promise, 
as these findings raise the possibility that MGMT methylation 
could be used to select for patients who may benefit from com-
bination therapy in the upfront setting, to minimize the risk 
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of hypermutant recurrences. To this end, agents such as 
lomustine (CCNU)15,18–20 and poly(ADP-ribose) polymerase 
inhibitors21–23 have been tested in combination with TMZ, 
although with some additional toxicity profiles. MGMT 
methylation profiles may have a role in appropriately allo-
cating patients to such combinations in clinical trials.
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