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Abstract
Background Boron neutron capture therapy (BNCT) is tumor-selective particle radiation therapy that depends on the nuclear 
capture and fission reactions. These reactions occur when a non-radioactive boron isotope (10B) is irradiated with low-energy 
thermal neutrons to yield high linear energy transfer α-particles and lithium-7 nuclei within a limited path length, i.e., an 
almost one-cell diameter. The 10B-containing cells can then be selectively destroyed by these potent particles. BNCT has been 
applied in the field of malignant brain tumors for newly diagnosed and recurrent malignant gliomas (chiefly glioblastomas).
Clinical results These clinical applications of BNCT have been performed with reactor-based neutron sources over the past 
decades. We also applied reactor-based BNCT for 58 newly diagnosed glioblastomas and 68 recurrent malignant gliomas 
including 52 glioblastomas. In this review article, we summarize the clinical results from the literature concerning BNCT 
for these high-grade gliomas (including our research). We also applied reactor-based BNCT for 46 cases of recurrent and 
refractory high-grade meningiomas, and some of the results will be presented herein.
Future prospects In Japan, neutron sources have been shifted from reactors to accelerators. Phase 1 and 2 clinical trials 
have been performed for recurrent malignant gliomas using accelerator-based neutron sources, and now fortunately, a 
cyclotron-based neutron generator has been approved as a medical device by Japanese regulatory authority, as the world’s 
first accelerator-based BNCT system for medical use. We also discuss the future prospects of accelerator-based BNCT in 
hospitals as therapy for malignant brain tumors.

Keywords BNCT · Glioma · Glioblastoma · Meningioma · PET · Review

Introduction

Principle

Boron neutron capture therapy (BNCT) is a cell-targeting 
particle radiotherapy that enables the selective killing of 
malignant cells and the sparing of normal cells. BNCT is 
a binary approach: a boron-10 (10B)-labeled compound 
must deliver higher concentrations of 10B to target tumor 
cells compared to the concentrations delivered to the tumor 
cells’ surrounding normal tissues. This delivery of 10B is 
followed by irradiation with low-energy thermal neutrons. 
When a neutron collides with 10B, high linear energy transfer 

(LET) particles, i.e., α-particles and recoiling 7Li particles, 
are released within one cell’s diameter by the 10B (n, α) 
7Li neutron capture reaction [1]. These high-LET particles 
can destroy sufficient amount of 10B-containing cells with-
out exerting hazardous effects on the adjacent normal cells. 
Therefore, if sufficient quantities of boron compounds can be 
made to accumulate selectively in tumor cells with enough 
contrast to surrounding normal cells, the BNCT becomes an 
ideal radiotherapy.

The principle of BNCT is depicted in Fig. 1. In the fig-
ure, malignant glioma with infiltrative characteristics are 
the presumed target tumor cells. Neither microsurgery nor 
sophisticated ion beam radiation therapy such as that used 
with carbon and proton particles can remove or destroy only 
tumor cells without damaging surrounding normal cells. In 
BNCT, after the selective accumulation of a 10B-containing 
compound in the tumor cells, the tumor cells are irradiated 
with non-hazardous low-energy thermal neutrons. During 
this process, spatially selective irradiation with neutrons for 
tumor cells alone is not required. High-LET particles will 
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destroy only a high amount 10B-containing cells and leave 
the normal surrounding cells intact, as shown in Fig. 1.

History

BNCT has a relatively long history. In 1932, Sir James 
Chadwick discovered the neutron [2] and was awarded the 
Nobel Prize in Physics for this discovery. Only 4 years later, 
Locher published a comprehensive theoretical account of 
the biological effects and therapeutic possibilities of BNCT 
[3]. Kruger [4] and Zahl et al. [5] reported animal experi-
ments using BNCT in 1940. The initial clinical interest in 
and applications of BNCT were focused on high-grade glio-
mas—chiefly glioblastomas (GBMs) [6, 7]. The first clinical 
application of BNCT was conducted in the U.S. in the 1950s, 
at the Brookhaven National Laboratory [8–10], and Sweet 
and his coworkers at Massachusetts General Hospital per-
formed a clinical study of BNCT from 1960 to 1961 using 
the Massachusetts Institute of Technology research reactor. 
They treated 17 cases of malignant gliomas with BNCT, 
but the outcomes were disappointing; the patients’ median 
survival after BNCT was only 87 days. These unsatisfactory 
results might have been due to a poor selective accumulation 

of boron compound in tumor tissues and/or to limited pen-
etration of the thermal neutrons. These problems were even-
tually resolved, as described below.

Selective accumulation of boron compounds 
and positron emission tomography (PET) imaging

The selective tumor destruction in BNCT is achieved by 
the selective accumulation of 10B atoms in tumor cells. 
Since the 1990s, only two boron compounds have been 
used clinically for the BNCT of high-grade gliomas. One 
is the polyhedral boron anion, sodium mercaptoundecahy-
dro-closododecaborate  (Na2B12H11SH), commonly known 
as sodium borocaptate (BSH) [11]; the other is the boron-
containing amino acid (l)-4-dihydroxyborylphenylalanine, 
known as boronophenylalanine (BPA) (Table 1). Each of 
these boron compound reaches and accumulates in glioma 
cells or tissues in differing manners [12]. BSH is not deliv-
ered into normal brain tissue through an intact blood–brain 
barrier (BBB), but when the BBB is disrupted, BSH accu-
mulates passively in the interstitial space of glioma tis-
sue. In contrast, BPA preferentially accumulates well into 
an actively dividing subpopulation of tumor cells via the 

Fig. 1  The principle of boron neutron capture therapy (BNCT). 
BNCT is a binary approach: a boron-10 (10B)-labeled compound is 
administered that delivers high concentrations of 10B to the target 
tumor relative to surrounding normal tissues. This is followed by 
irradiation with thermal neutrons or epithermal neutrons that become 

thermalized at depth in tissues. The short range (5–9  µm) of high-
LET α-particles and 7Li particles released from the 10B (n, alpha) 7Li 
neutron capture reaction realizes tumor-selective killing without dam-
age to adjacent normal brain tissue
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augmented expression of l-type amino acid transporters 
on the cells, and the accumulation does not depend on 
BBB disruption [13]. However, some of the BPA inevita-
bly accumulates in normal cells. In BNCT, large amounts 

of BPA are administered intravenously (Table 1). Empiri-
cally, we have observed that an excess amount of intrave-
nously administered BPA recrystallized in the patients’ 
urine a few hours after neutron irradiation and caused a 

Table 1  Clinical results of BNCT for newly diagnosed and recurrent GBM

2  yr OS 2-year overall survival rate, Bev bevacizumab, GBM glioblastoma, IO-BNCT intraoperative BNCT, mOS median overall survival, n 
newly diagnosed, NA not available, r recurrent, TMZ temozolomide, XRT X-ray treatment
a Treatment in the parentheses is not solely external beam BNCT
b A range of survival is given in some cases to summarize the survival reported for different cohorts
*Manuscript in preparation. ** Unpublished data

Medical institution Treatment dates Tumor type and no. of 
patients

Boron compound and 
 (treatmenta)

Clinical  outcomeb

mOS
Refs

Brookhaven National Labo-
ratory, Upton, NY, USA

1994–1999 nGBM 53 BPA 250–330 mg/kg in 2 h 12.8 mos [62–65]

Beth Israel Deaconess Medi-
cal Center, Harvard Medi-
cal School, Boston, USA

1996–1999
2002–2003

nGBM 20
nGBM 6

BPA 250–350 mg/kg in 
1.5 h

BPA 14 g/m2 in 1.5 h

11.1 mos
NA

[64, 66, 67]
[68]

Universitätsklinikum Essen, 
Essen,

Germany

1997–2002 nGBM 26 BSA 100 mg/kg in 1.7 h 10.4–13.2 mos [69]

Helsinki University Central 
Hospital, Helsinki, Finland

1999–2001
2001–2008

nGBM 30
rGBM 20

BPA 290–500 mg/kg in 2 h
BPA 290–450 mg/kg in 2 h

11.0–21.9 mos
7 mos.(post-BNCT)

[70]
[71]

Faculty Hospital of Charles 
University, Prague, Czech 
Republic

2000–2002 nGBM 5 BSH 100 mg/kg in 1 h NA [18]

Nyköping Hospital, 
Nyköping, Sweden

2001–2003
2001–2005

nGBM 29 rGBM 12 BPA 900 mg/kg in 6 h
BPA 900 mg/kg in 6 h

17.7 mos
8.7 mos
(post-BNCT)

[18, 72–76]

University of Tsukuba, 
Tsukuba City, Ibaraki, 
Japan

1999–2002
1998–2007
1998–2007

nGBM 5 nGBM 7 nGBM 8 BSH 100 mg/kg in 1–1.5 h 
(IO-BNCT)

BSH 5 g/body in 1 h (IO-
BNCT)

BSH 5 g/body in 1 h + BPA 
or

250 mg/kg in 1 h 
(BNCT + XRT)

23.2 mos
23.3 mos
27.1 mos

[77]
[78]
[78]

University of Tokushima, 
Tokushima, Japan

1998–2000
2001–2004
2005–2008

nGBM 6 nGBM 11 nGBM 6 BSH 64.9–178.6 mg/kg (IO-
BNCT)

BSH 64.9–178.6 mg/kg (IO-
BNCT)

BSH 100 mg/kg and BPA 
250 mg/kg in 1 h

(BNCT + XRT)

15.5 mos
19.5 mos
26.2 mos

[79–81]
[79–81]
[79–81]

Osaka Medical College, 
Takatsuki, Japan

2002–2003
2003–2006
2002–2007
2010–2013
2013–2018

nGBM 10 nGBM 11 rGBM 
19 nGBM 32 rGBM 10

BSH 5 g/body + BPA 
250 mg/kg in 1 h

BSH 5 g/body in 1 h + BPA 
700 mg/kg in 3 h

(BNCT + XRT)
BSH 5 g/body + BPA 

250 mg/kg in 1 h or
BSH 5 g/body + BPA 

700 mg/kg in 3 h
BSH 5 g/body in 1 h + BPA 

500 mg/kg in 3 h
(BNCT + XRT + TMZ)
BPA 500 mg/kg in 3 h 

(BNCT + Bev)

14.5 mos
23.5 mos
10.8 mos
21.1 mos
(2 yr OS: 45.5%)
12 mos

[17, 24]
[24]
[27]
*
[33]**
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transient high-grade fever. This adverse event can be pre-
vented by appropriate hydration just after neutron irradia-
tion [14].

BPA accumulation can be visualized and semi-quan-
tified by positron emission tomography (PET). BPA can 
be labeled with 18-fluorine, which is the tracer used in 
18F-BPA-PET imaging. With the 18F-BPA-PET technol-
ogy, the BPA concentration is readily calculated with 
the combination of only venous blood sampling, without 
tumor sampling [15]. This unique PET imaging technique 
makes it possible to conduct a dose simulation by BNCT 
prior to neutron irradiation [16, 17]. Representative PET 
imaging in a GBM case is shown in Fig. 2. This imaging 
provided the lesion/normal brain (L/N) ratio of BPA at 7.8 
for the patient, and the imaging demonstrated that BPA 
accumulates well not only in contrast-enhanced tumor 
tissue (indicating the tumor bulk) but also just adjacent 
to and around the enhanced tumor volume, i.e., in infil-
trative tumor tissues. This PET image provides evidence 
of tumor cell-selective destruction by BPA-based BNCT. 
The good accumulation of BPA shown by PET imaging 
ensures the effectiveness of BPA-based BNCT prior to 
neutron irradiation.

Clinical results

Newly diagnosed GBMs

Theoretically, the results of BNCT depend on the boron 
concentration in tumor tissue or tumor cells and the 
amount of neutrons that reach those sites. We noted the 
poor early clinical results obtained in the 1970s in the U.S. 
above; one of the causes of the poor patient outcomes is 
likely to be the low penetration potency of the thermal 
neutron beam from the nuclear reactors that were used. As 
mentioned, the 10B (n, α) 7Li neutron capture reaction is 
caused by low-energy thermal neutrons, whereas epither-
mal neutrons (which have the potency to penetrate deeply) 
can be thermalized at a certain depth within the body. 
Therefore, after the 1990s epithermal beams were used 
for BNCT in many reactors around the world. Another 
reason for the poor results in the early U.S. series is the 
use of an immature boron compound.

We summarize the BNCT clinical results for GBMs 
(chiefly newly diagnosed and partly recurrent cases) listed 
in Table 1. This table is modified from previous reviews 
[18, 19]. In the 1990s, epithermal beams became avail-
able for BNCT for brain tumors in the U.S., Germany, 
Finland, Sweden, the Czech Republic, Taiwan and Japan. 
Among the subsequent clinical studies, there were several 
modifications of the BNCT and the case numbers were 
quite limited, making a systematic review (meta-analy-
sis) of this field difficult. However, some trends and facts 
can be learned from this table. As the boron carrier, only 
BPA and BSH were used in all of the studies. The clinical 
results of the U.S. studies performed in the 1990s were 
markedly improved compared to the previous results using 
thermal beams in the same country. The studies conducted 
in Europe indicated that the BNCT performed therein pro-
vided almost the same level of the results achieved by the 
Stupp’s regimen [20].

In a Japanese series, some investigators (including 
our group) used BSH and BPA simultaneously. As dis-
cussed above, these compounds accumulate in different 
manners in different subpopulations of glioma cells and 
tissues. The two compounds used together might compen-
sate for each compound’s weak points. Additional X-ray 
therapy (XRT) was also applied; this seemed to improve 
the clinical results of BNCT for patients with newly diag-
nosed GBMs, with the median survival of each study at 
23.5–27.1 months. These results are enough good com-
pared to those of a large-scale clinical trial for newly diag-
nosed GBM [20–22]. The additional XRT might improve 
the shortage of the prescribed dose in BNCT (especially 
for deep-seated tumors) and increase the bottom dose due 
to an uneven distribution of 10B atoms in tumor tissue. 

Fig. 2  Contrast-enhanced T1-weighted MRI 18F-labeled BPA-PET 
image of a representative glioblastoma (GBM) patient. The patient 
received 18F-BPA-PET to assess the distribution of boronophenyla-
lanine (BPA) and to estimate the boron concentration in the tumor 
before BNCT without a direct determination of the boron concen-
tration in the tumor. The lesion-to-normal brain (L/N) ratio of the 
enhanced tumor was 7.8 in this case. Note that even the periphery of 
the main mass (i.e., the infiltrative portion of the tumor) showed BPA 
uptake. The L/N ratio of the BPA uptake was estimated from this 
study and then used for the dose planning. 18F-BPA-PET provided an 
accurate estimate of the accumulation and distribution of BPA
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We have completed a prospective multicenter clinical trial 
of BNCT with additional XRT that used the combination 
of temozolomide for newly diagnosed GBM (Osaka-TRI-
BRAIN 0902, NCT00974987) (manuscript in preparation) 
[23]. In that prospective study, the median survival was 
21.1 months and the 2-year survival rate was 45.5%. Our 
clinical regimen of BNCT for newly diagnosed GBM is 
published elsewhere [17, 24].

Recurrent GBMs

Initially, we applied BNCT mainly for recurrent malignant 
gliomas. Marked tumor shrinkage was observed in neuro-
images of our initial patient series [16, 17]. More than 50% 
of the contrast-enhanced lesions disappeared in eight of 
12 cases during the follow-up duration [14, 17]. The sur-
vival data from some clinical studies of BNCT for recur-
rent malignant gliomas are also summarized in Table 1. 
The median survival times after BNCT alone for recurrent 
GBM in Table 1 are 7–10.8 months. Large-scale clinical 
trials of newly diagnosed GBM cases treated with chemo-
radiotherapy have been reported [20–22], whereas only a 
few reports about recurrent GBM have been published. It 
is thus difficult to estimate whether the above-mentioned 
median survival time achieved by BNCT for recurrent GBM 
is optimal or not. In 2007, Carson et al. [25] published an 
excellent article regarding a recursive portioning analysis 
(RPA) for recurrent gliomas. We then analyzed our BNCT 
results for recurrent gliomas based on the gliomas’ RPA 
classification, and the results demonstrated that BNCT pro-
longed the survival of the patients with recurrent malignant 
glioma in every RPA class; moreover, it greatly prolonged 
the survival of the patients in poor RPA classes [26]. Our 
clinical regimen of BNCT for recurrent malignant gliomas 
is published elsewhere [27].

The most important shortcoming of BNCT for recurrent 
malignant gliomas is brain radiation necrosis (BRN). Prior 
to their second radiation treatment at a recurrence, almost 
all patients with recurrent malignant gliomas have already 
received nearly 60 Gy XRT as an initial radiotherapy. Even 
with tumor-selective particle radiation BNCT, BRN often 
occurs after BNCT in recurrent glioma cases, and the BRN 
may cause severe brain edema leading to severe neurologi-
cal deficits and may sometimes be life-threatening. Bevaci-
zumab, an anti-vascular endothelial growth factor antibody, 
is powerful weapon used to treat BRN [28, 29] and is use-
ful for BRN therapy even after BNCT [30–32]. Figure 3 
presents a representative case of recurrent GBM treated 
by BNCT, followed by a successful treatment of BRN with 
bevacizumab.

In Japan, bevacizumab is an authorized chemotherapeutic 
agent under national health insurance coverage, and it can be 
used in daily practice for both newly diagnosed and recurrent 

malignant gliomas. Using these advantages, we conducted 
a pilot clinical study of early bevacizumab administration 
(immediately after BNCT) for recurrent malignant gliomas 
[33], and the results demonstrated the prevention of BRN 
and potential clinical benefits.

High‑grade meningiomas

High-grade meningiomas [i.e., World Health Organization 
(WHO) grades 2 and 3] are very difficult to control. The 
reported 5-year recurrence rates are 78–84% [34]. In particu-
lar, high-grade meningiomas that recur after the initial radio-
therapy tend to have poor prognoses. The reported median 
progression-free survival and median overall survival post-
recurrence are 5.2 and 24.6 months, respectively [35]. No 
standard treatments are established for recurrent high-grade 
meningioma [36].

We have applied reactor-based BNCT for 46 patients with 
recurrent high-grade meningiomas since 2005 [37–39]. A 
representative case is shown in Fig. 4. Like this case, all 
46 cases showed good shrinkage of the mass as an initial 
response by BNCT, but we lost many of the patients due to 
systemic metastasis and intracranial distant recurrence out-
side of the neutron irradiation field [37]. Our clinical regi-
men of reactor-based BNCT for high-grade meningiomas is 
published elsewhere [37]. We are now performing a rand-
omized control trial of accelerator-based BNCT for recurrent 
high-grade meningiomas between a BNCT-treatment group 
and a best-supportive-care group, estimating the progres-
sion-free survival as the primary endpoint.

From reactors to accelerators

Until 2012, all clinical BNCT treatments were performed 
using neutrons generated from a nuclear reactor. BNCT has 
shown potency for treating gliomas and high-grade menin-
giomas, and it has also shown promising effects for recur-
rent and refractory head and neck cancers [40–45]. Despite 
this potential, BNCT is yet to become a standard treatment 
modality for many types of cancers. One of the reasons for 
this is the difficulties surrounding the operation and main-
tenance of nuclear reactors for clinical BNCT purposes. In 
the past, more than 10 reactors were constructed and used 
for clinical BNCT activities in the U.S., Europe, Argentina, 
and Asia, but there are currently only two reactors (in Tai-
wan and Japan) that remain in routine operation for clinical 
BNCT. After the horrific nuclear reactor meltdown caused 
by the earthquake and tsunami in Fukushima, Japan in 2011, 
the use of nuclear reactors has become increasingly difficult.

For this reason, the emerging trend is to consider an 
accelerator-based neutron system for clinical BNCT, 
as such systems have several proven advantages over a 
nuclear reactor. An accelerator-based neutron system to 
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be installed and operated in a hospital environment should 
be compact, economical, safe, secure, and stable. For 
BNCT, an epithermal neutron flux (neutron energy range 
of 0.5 eV–10 keV) at > 1 × 109 n/cm2/s is required to treat 
a patient within 1 h [46]. Several types of accelerators 
have been developed to produce such neutrons, ranging 
from low-energy electrostatic accelerators (2–2.8 MeV) 
[47] and midrange energy linacs (2.5–10 MeV) [48] to 
high energy cyclotrons (30 MeV) [49]. These systems have 
been studied vigorously since the 1980s, and their applica-
tions for clinical BNCT have only recently succeeded. The 
two main obstacles that had to be overcome were the tar-
get’s cooling and the insufficient beam intensity stability.

In March 2020, Sumitomo Heavy Industries constructed 
a cyclotron-based accelerator neutron source which has 
been approved by the Japanese Ministry of Health, Labor 
and Welfare (MHLW). This system accelerates a proton 
with an energy of 30 MeV and a maximum beam current 
of 1 mA when striking a beryllium target, generating neu-
trons. Using this accelerator, phase 1 and 2 clinical trials 

for recurrent malignant gliomas have been performed since 
2012. These were followed by a clinical trial for head and 
neck cancers.

The new cyclotron-based system was recently approved 
in Japan for clinical use for head and neck cancers [50]. 
A Japanese pharmaceutical company that makes good 
manufacturing practices (GMP)-grade BPA medicine, 
Stella Pharma Corporation, was approved simultaneously 
[51]. An investigator-initiated clinical trial for recurrent 
and refractory high-grade meningioma in a randomized 
controlled trial using this system is underway, as described 
above.

With the foundation of decades of dedicated research 
and development, the future for BNCT is very bright with 
numerous companies worldwide developing an accelera-
tor-based neutron source. This would expand the clinical 
BNCT services and ultimately provide a steppingstone in 
making BNCT a standard treatment modality for various 
types of cancer.

Fig. 3  A representative recurrent GBM case treated by BNCT with 
successive bevacizumab. The right parietal GBM recurred after 
standard chemo-radiotherapy. The F-BPA-PET image showed marked 
tracer uptake in the right parietal region with a 3.8 L/N ratio of the 
tracer, indicating that the lesion was a recurrent GBM. The patient 
was treated with BNCT. Periodic MRI showed gradual enlargement 
of both the enhanced lesion and perifocal edema, whereas F-BPA-
PET showed a gradual decrease of the tracer uptake. The final L/N 

ratio, 13 months post-BNCT, was 2.3. This L/N ratio suggested that 
the lesion was brain radiation necrosis. The patient was treated with 
intravenous bevacizumab treatment biweekly (5  mg/kg). After four 
treatments, MRI showed marked improvement in the perifocal edema 
and left hemiparesis. The patient is doing well 84  months after the 
BNCT, without tumor progression or recurrence of the radiation 
necrosis
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Discussion and future prospects

BNCT has been improved for malignant gliomas, especially 
in Japan. The major cause of this progress in Japan might be 
ascribed to the development of F-BPA-PET in Japan. This 
unique PET technology had been applied for the simulation 
of BNCT prior to the initial neutron irradiation. The average 
tumor-to-normal brain ratio of BPA was estimated as 3.5 
based on tumor sampling, and this ratio was applied in non-
craniotomy BNCT [1]. This method for the estimation of 
the precise boron concentration in individual tumor tissues 
is rather uncertain. As noted above, F-BPA-PET provides a 
more accurate BPA L/N ratio in BPA-BNCT compared to 
the estimated value of 3.5. In addition, we have routinely 
used F-BPA-PET after BNCT to assess the lesion activity 
and to differentially diagnose BRN or pseudoprogression 
from tumor progression, as shown in Fig. 3 [26]. If wors-
ening of the lesion is recognized on MRI but F-BPA-PET 
shows decreased tumor activity (as in Fig. 3), radiation treat-
ment should not be administered as an alternative treatment. 

This correct understanding of lesion activity might lead to 
the appropriate introduction of bevacizumab for BRN and 
good clinical results in the use of BNCT for malignant glio-
mas in Japan.

The development of accelerator-based neutron sources 
for BNCT occurred only in recent decades. To date, only 
BSH and BPA have been used in the clinical studies and 
clinical trials of BNCT for many types of cancers. However, 
many boron carriers have been constructed and tested in pre-
clinical studies. For example, boron-containing liposomes 
[52, 53], boronated DNA intercalators [54], boronated por-
phyrins [55, 56], boronated growth factors and boronated 
antibodies for their receptors [57–59], a BSH-fused cell-
penetrating peptide [60], and polyvinyl alcohol and BPA 
conjugate [61] have been investigated. Unfortunately, no 
boron carriers have as yet surpassed the utility of BSH and 
BPA. If more ideal boron carriers than BSH and BPA are 
identified, BNCT may well open the next door for ideal can-
cer treatment. We hope that the next decade becomes a new 
era of BNCT for many types of cancer.

Fig. 4  A representative case of 
recurrent high-grade meningi-
oma treated with reactor-based 
BNCT. The patient had recur-
rent anaplastic meningioma. 
She underwent three surgeries, 
plus stereotactic radiosurgery 
and X-ray treatment. Unfortu-
nately, the lesion recurred and 
the patient was referred for us 
for BNCT. At 2 years post-
BNCT, the size of the lesion 
is greatly reduced, with no 
neurological deterioration
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