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Abstract—Brain tumor is one of the most dangerous
cancers in people of all ages, and its grade recognition is a
challenging problem for radiologists in health monitoring and
automated diagnosis. Recently, numerous methods based on
deep learning have been presented in the literature for brain
tumor classification (BTC) in order to assist radiologists for
a better diagnostic analysis. In this overview, we present an
in-depth review of the surveys published so far and recent
deep learning-based methods for BTC. Our survey covers the
main steps of deep learning-based BTC methods, including
preprocessing, features extraction, and classification, along with
their achievements and limitations. We also investigate the state-
of-the-art convolutional neural network models for BTC by
performing extensive experiments using transfer learning with
and without data augmentation. Furthermore, this overview
describes available benchmark data sets used for the evaluation
of BTC. Finally, this survey does not only look into the past
literature on the topic but also steps on it to delve into the future
of this area and enumerates some research directions that should
be followed in the future, especially for personalized and smart
healthcare.
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I. INTRODUCTION

HE past decades of image processing and computer

vision arena [1]-[3] have helped humanity in the iden-
tification of various diseases through automated diagnostic
processes [1], [4]-[6]. These processes in the medical domain
have hitherto-assisted medical staff and specialists by pro-
viding a second option in many diagnostic procedures [7]—
[10]. Among all hazardous diseases, cancer is considered as
a threat to mankind due to its fatal nature. Traditionally,
a specialist analyzes medical images and, manually, esti-
mates the probability of developing a tumor [11]. Manu-
ally identifying a tumor’s sign and relying on this decision
for the prescription of subsequent medical treatments is an
option that most of the medical practitioners would avoid
because of the lethal nature of the brain tumor [12]. The
most sophisticated and safest way of analyzing the medical
images is through computer vision techniques [13], [14].
It includes fleeting images through various software with
built-in algorithms for tumor detection and classification.
These algorithms can also be adjusted for implementing tumor
segmentation, which denotes the process of separating the
infected regions from healthy areas of a medical image under
observation [15], [16].

The early detection and classification of a brain tumor are
of utmost necessity for the effective and timely treatment of a
patient [17], [18]. The human visual cortex is known to be lim-
ited in its capability to decide between different levels of gray,
as present in magnetic resonance imaging (MRI) [19]. This
gives birth to computer-aided diagnosis (CAD) or brain tumor
classification (BTC) methods that are suitable for supporting
radiologists in visualizing and defining tumor types. These
automated processes for brain tumor detection, segmentation,
and classification play a vital role in serving humanity by
reducing the chances of surgery (biopsy) [15], [20]-[22].
Whenever radiologists get confused about the nature of the
tumor, or they want to visually inspect it in depth, these
methods are always there to help them [23], [24]. Image
processing and computer vision scientists are interested in pro-
viding precise and efficient methods for automatic detection,
classification, and segmentation of tumors.

These methods are broadly divided into two categories:
traditional machine learning methods and deep learning
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Fig. 1. Basic workflow of the traditional BTC and analysis methods.

methods [25]. Traditional BTC methods are based on
low-level features and on the application of statistical learning
approaches for the classification of a brain tumor [26]-[29].
Segmentation methods falling within this category focus on
the estimation of the tumor’s boundaries and its localization,
which involves some preprocessing steps, such as contrast
enhancement, image sharpening, and edge detection/refining.
The basic workflow of traditional BTC methods follows image
acquisition, preprocessing, ROI segmentation, feature extrac-
tion and selection, dimensionality reduction, classification, and
performance evaluation, as visually summarized in Fig. 1 [30].
In contrast to traditional approaches, deep learning-based
methods mainly depend on the training data with significantly
fewer preprocessing needs than traditional counterparts. It is
evident from the literature related to deep learning that the
accuracy of a system is highly dependent on the amount of
data, particularly in the domain of BTC [31], [32]. Most
deep learning methods in BTC rely on convolutional neural
networks (CNNs). Indeed, the increased usage of CNNs
for several computer vision problems in various domains
[33]-[36] motivates adopting them for BTC, particularly for
smart health monitoring. Therefore, in what follows, we focus
on this branch of deep learning methods.

CNNs-based BTC methods follow a three-step process
toward predicting the presence of a brain tumor or its grade,
as shown in Fig. 2. The first preprocessing step includes noise
removal and segmentation methods to segment the tumor from
the MRI. The second step is training, where labels and learned
features of each image from the data set are provided to the
classifier for training. The classifier learns the patterns of
different grades/classes of tumors from the labeled training
data. The testing phase applies the same feature extraction
strategy applied in the training phase, but it only extracts
features from a single query image. This feature vector is
passed/fed to the trained classifier for the final prediction of
brain tumor class/grade, depending on the trained classifier.
The accuracy of CNN classifiers is significantly higher com-
pared with traditional approaches, making them suitable for
radiologists in real-world clinical practice [37], [38].

This overview capitalizes on the magnificent momentum
featured by deep learning for BTC by comprehensively review-
ing the literature related to CNN and BTC. We critically exam-
ine advances reported so far at this crossroads and provide a
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solid knowledge base to support a prospect of future research
topics that remain insufficiently explored to date. Furthermore,
we complement our survey by providing empirical evidence
of the potential of CNN-based BTC by investigating different
CNN models to gauge the tradeoff between accuracy and time
complexity. The models presented can balance trade among
these conflicting objectives, depending on the situation under
consideration. Due to the lack of annotated data that often
underlies practical experiences with deep learning-based BTC,
we conduct several experiments where this issue is addressed
through data augmentation. Specifically, we discuss several
investigated models over two publicly accessible data sets:
multigrade brain tumor data set [32] and brain tumor public
data set [31]. The original contributions of our survey can be
summarized as follows.

1) In this survey, we cover all existing CNNs-based BTC
methods, discussing their achievements and limitations.
We explore the overall literature of BTC and highlight
its major domains, research trends, and niches, as well
as benchmark data sets available for experimentation.

2) Inspired by recent achievements of deep learning models
in image classification, we investigate and fine-tune
several pretrained CNN models for BTC using two
different data sets with and without data augmentation.
We provide detailed statistics of these models with
various parameters, which can be used by different
researchers and radiologists for further investigation and
diagnostic assistance.

3) With the recent increase in the usage of smart devices
and cloud/fog/edge computing in smart cities, it is
feasible to use these technologies for healthcare systems.
Therefore, in this survey, we highlight the personal-
ized usage of BTC for patients, remote specialists, and
medical centers for smart healthcare services. This can
make its integration into the current smart city ecosystem
easier and its widespread deployment and adoption more
sustainable.

4) This survey identifies the current challenges of the BTC
domain and summarizes the overall deep learning-based
literature in a single perspective overview. Moreover,
we provide recommendations and future directions to
motivate other scientists for further research in this
domain.

The remainder of this article is divided into seven sections.
Existing surveys and their critique are discussed in Section II.
The coverage of our survey with detailed analysis is given
in Section III. The available data sets and transfer learning
techniques in BTC are addressed in Sections IV and V, respec-
tively. A comparative study of different CNN models is given
and discussed in Section VI. BTC challenges and future
research directions are identified in Section VII. Conclusions
and an outlook on the field are given in Section VIII.

II. EXISTING SURVEYS

In this section, we review five different existing BTC
surveys ranging from 2014 to 2019, with their details given
in Table I. The major parts reviewed in this survey are publi-
cation year, literature coverage, number of reviewed articles,
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TABLE I

DETAILED ANALYSIS AND COMPARISON OF OUR STUDY WITH EXISTING SURVEYS

3 | Testing

General flow of deep learning (CNN)-based methods for BTC. The overall flow consists of three steps: 1) preprocessing; 2) training; and 3) testing.

“Revi r ) .
“Computer-Aided | ., . CVIeW 0 “MRI Based “A Review on a Deep Le‘arnmg
. . Comparative Brain Lesion . - for Multigrade
Surveys Diagnosis of . . Medical Image Deep Learning .
. Study for Brain|  Detection and ! . Brain Tumor
Human Brain . . Analysis: Survey Perspective in . L.
Tumor Classification . . Classification in
Tumor through . . . on Brain Tumor Brain
Classification using Smart Healthcare
MRI: A Survey . . Grade Cancer
on MR/CT Neuroimaging . C . . Systems: A
Features and a New - b Classification Classification .
Algorithm” [58] Images” [59] Analysis [30] [61] Prospective
g Techniques” [60] Survey (Ours)
Year 2014 2014 2015 2018 2019 2019
Literature 2003~2012 2009~2013 2004~2013 2003~2013 2008~2016 2016~2019
coverage range
Number of 18 18 14 61 6 30
reviewed papers
. Brain tumor . Brain tumor Brain tumor Brain tumor Deep Learning
Main . Brain tumor . . . .
segmentation and . . segmentation and | segmentation and | segmentation and | based brain tumor
theme . . classification . . . . . . . .
classification classification classification classification classification
Coverage
(Number of 9 4 9 10 8 4
years)
Existing
surveys are No No No No No Yes
reviewed
R Type of
< .
% learning Traditional Traditional Traditional Traditional Traditional Deep Learning
o methods
covered
Analyzed
research No No No No No Yes
trend
Datasets No No No Yes Yes Yes
coverage
Detailed
recommend-
ation for No No No Yes Yes Yes
future
research

and several remarks to highlight the overall impact of each

survey and its weaknesses.

There are several limitations of existing surveys, which are
addressed in our survey. Among them, the most limiting issue

is their lack of detailed reviews to highlight the limitations

of other studies and motivations for a new survey. Second,

the majority of BTC surveys do not provide detailed future
research directions, which is a compulsory section for any
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Fig. 4.  Significance of the surveyed learned representation-based BTC

methods in terms of aggregated citations per year. These statistics are collected
from Google Scholar on February 24, 2020.

survey, encouraging researchers to depart from the state of the
art in valuable directions. More specifically, existing surveys
focus on brain tumor segmentation and/or classification using
handcrafted representation-based methods. Thus, this area
lacks a comprehensive study of learned representations-based
methods for BTC.

With these motivations in mind, we conduct this survey for
CNNs-based multigrade tumor classification methods. We first
detach our overview from existing surveys by providing a
comprehensive comparison and detailed analysis with their
pros and cons. The second issue stated earlier is solved by
introducing a separate section (see Section VII) with current
challenges of BTC and detailed future directions for further
research. An overview of BTC methods with an empha-
sis on CNN-assisted approaches is depicted in Fig. 3. The
temporal distribution of the CNN-based BTC literature is
given in Fig. 4.

III. REVIEWED BTC METHODS

In this section, we briefly discuss the architectures and over-
all methodologies of the existing literature, as given in Table II.
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As illustrated in Fig. 2, segmentation of the tumor region is the
primary step in the general pipeline of BTC, which is mostly
targeted by existing segmentation techniques [32], [39]-[42].
On the other hand, some methods used end-to-end models
for both segmentation and classification [43]-[47]. Since the
focus of this study is on BTC, we will cover only BTC
approaches or those methods using segmentation followed by
classification.

In the reviewed literature, several tumor segmentation meth-
ods [48]-[52] are used as the primary step prior to classi-
fication. For instance, Akkus et al. [39] classified the brain
tumor using three steps: 1) registration of images with a
cubic b-spline interpolation technique; 2) tumor segmentation
with a semiautomatic LGG software; and 3) classification
into 1p/19q status using a CNN model. This method is
evaluated with MRI data of 159 patients, with proven 1p/19q
status. Different data augmentation techniques are used to
balance the data distribution. Likewise, Paul et al. [53] pre-
sented two types of neural networks for the classification
of brain tumors with data augmentation to improve the per-
formance of their method. Another approach presented by
Ahmed et al. [54] utilized pretrained AlexNet model for the
detection of Glioblastoma Multiforme and the estimation of
the survival time of patients with this disease. Balasooriya
and Nawarathna [55] developed their own custom CNN for
BTC. They evaluated their method using TCIA [56] data
set that is divided into five different classes: Astrocytoma,
Gliobastoma Multiforme, Oligodendroglioma, healthy tissue,
and unidentified tumor. Wong et al. [40] proposed a medical
image classifier for 3-D brain images. They extracted features
from the segmentation network (M-Net) and fed them into
a pretrained VGG-16 model for three-class brain tumor types
classification. Mohsen et al. [41] segmented the tumor regions
from 2-D brain MRI images using Fuzzy C-mean clustering
and then extracted discrete wavelet transform (DWT) features,
followed by principal component analysis (PCA) for feature
compression. They passed the compressed features on to a
deep neural network (DNN), having seven hidden layers for
classification.

Compared with the aforementioned studies, certain meth-
ods focused only on BTC. For example, Afshar et al. [57]
attempted to address the major two problems of CNNs for
the BTC problem, i.e., the need for large volumes of training
data and the lack of significant capability to handle transfor-
mations. They explored Capsule Networks (CapsNets) with
four main objectives, i.e., achieving maximum accuracy for
BTC, investigation of the overfitting problem, the suitability
of CapsNets for only segmented tumor regions or whole MRI
images, and visualization of MRI learned features for better
understanding. CapsNets work well for BTC. However, they
are highly sensitive to the miscellaneous image background.
In follow-up work, Afshar er al. [62] elaborated on this
problem by proposing a modified CapsNets model, which
considers the tumor’s boundaries during its main pipeline
for BTC.

Ge et al. [45] proposed a 3-D multiscale CNN model for the
classification of glioma tumors into high- and low-level grades.
They introduced a feature fusion scheme, which further refined
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DETAILED DESCRIPTION OF THE DEEP LEARNING BASED METHODS WITH THEIR RESPECTIVE SEGMENTATION, FEATURES, CLASSIFIERS, AND TOTAL

TABLE II

NUMBER OF CLASSIFIED CLASSES

Method Year Segmentation Features Classifier Dataset Total classification classes
. 159 local MRI
LGG software Multi- . .
[39] 2016 48] scale CNN Softmax images + 2 (Low-grade Gliomas)
augmentation
Proposed 3 (Meningioma, Glioma, and
[53] 2017 - CNN Softmax BRATS Pituitary)
[54] 2017 - AlexNet Softmax ILSVRC 2 (Glioblastoma Multiforme)
5 (Astrocytoma, Glioblastoma
Custom Multiforme, Oligodendroglioma,
[55] 2017 ) CNN Softmax TCIA Healthy Tissue, and Unidentified
Tumor)
[40] 2018 M-Net[49] | VGG-16 |  Softmax TCGA dataset 3 (Meningioma, Glioma, and
Pituitary)
. 4 (Normal, Glioblastoma,
[41] 2018 Fuzzy C-mean DWT and DNN Harvard Medical Sarcoma, and Metastatic
[50] PCA School . )
Bronchogenic Carcinoma)
CapsNets 3 (Meningioma, Pituitary, and
[57] 2018 - [69] Softmax BRATS Glioma)
3D multi- .
[45] 2018 - scale CNN Softmax BRATS 2 (Low-grade Gliomas)
Multi- 3 (enhance%f Al ilf\{/I)RL T2-MRI,
[46] 2018 - stream 2D Softmax BRATS .
2 (Low-grade Gliomas)
CNN
[63] 2018 Manual VGG [70] I;i‘;g;’tm BRATS 2 (Low-grade Gliomas)
3D U-Net
[42] 2018 3D U-Net [51] with zero Softmax BRATS 2 (Low-grade Gliomas)
padding
Modified- 3 (Meningioma, Pituitary, and
[62] 2019 - CapsNets Softmax BRATS Glioma)
2D CNN
evolved 4 (Glioma grades)
[65] 2019 - using Softmax BRATS 3 (Glioma, Meningioma, and
genetic Pituitary)
algorithm
[32] 2019 InputCascadeC VGG-19 Softmax Radiopaedia and 4(Glioma grades)
NN [42] [70] brain tumor public
dataset +
augmentation
(71] 2019 ) Capsule Capsule Brain tumor public 3 (Glioma, Meningioma, and
networks networks dataset Pituitary)
ResNet34 Harvard Medical
[72] 2019 - (73] Softmax School Data 2 (Normal and Abnormal)
[47] 2019 Custom CNN Softmax Brain tumor public 3 (Ghoma,. Memngloma, and
dataset Pituitary)
VGG-19 Brain tumor public 3 (Glioma, Meningioma, and
(741 2019 - [70] Softmax dataset Pituitary)
Watershed Custom
[75] 2019 Algorithm CNN Softmax Local dataset 2 (Normal and Tumor)
Custom 3 (Glioblastoma, Sarcoma, and
[76] 2019 - CNN Softmax Harvard Metastatic Bronchogenic
Carcinoma

the multiscale features to enhance tumor regions. In another
work, Ge et al. [46] used 2-D-CNN with feature aggregation to
enhance the performance of classification. Decuyper et al. [63]
used pretrained VGG model and extracted features from the
first fully connected layer for the classification of glioma into
high- and low-level grades. Banerjee et al. [64] presented

a deep CNN-based CAD system for gliomas classification.
Pereira er al. [42] first extracted the tumor regions using a
3-D-U-Net model and then fed them into their proposed
Glioma grading CNN after resizing the images. In their
proposed CNN model, global average pooling is used to
summarize each feature map, followed by a cascade of
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TABLE III
STATISTICS OF MULTIGRADE BRAIN TUMOR DATA SET [32] GRADES WITH AND WITHOUT AUGMENTATION
Number of images
Tumor Tumor type Sub-types
grades P Before After p
augmentation | augmentation
Grade I Menigiomas 36 1080 Craniopharnygioma, Pilocytic Astrocytoma, and Pleomorphic
xanthoastrocytoma
Grade 11 Gliomas 32 960 Ependymoma, Low-grade Astrocytoma, and Oligodendroglioma
Grade IIT Gliomas 25 750 Anaplastic Astrocytoma and Anaplastic Oligoastrocytoma
Grade IV | Glioblastmoas 28 840 Glioblastoma
TABLE IV

BRAIN TUMOR PUBLIC DATA SET [31] STATISTICS FOR
EACH CLASS, WITH AND WITHOUT AUGMENTATION

Tumor types Number of images
Before augmentation After augmentation
Meningioma 708 21240
Glioma 1426 42780
Pituitary tumor 930 27900

1 x 1 x 1 convolutional layer, which acts as a fully connected
layer.

Still, on the usage of CNNs, Anaraki er al. [65] recently
proposed a CNN model, which was evolved using a genetic
algorithm for classification of Glioma into three grades. Simi-
larly, Sajjad et al. [32] first segmented the tumor regions using
deep features and then fine-tuned a VGG-19 pretrained model
to classify the tumor into four grades. They used eight different
data augmentation techniques with a total of 30 parameters to
extend the existing data sets for training. More recently, six
new methods have been reported in the area of BTC using
MRI. The detailed information about these new studies and all
previous methods in terms of segmentation, employed features,
classifier, data set, and target classes are shown in Table II.

IV. DATA SETS

In the literature related to BTC, several data sets have
been furnished within the community, targeting both binary
and multiclass classification problems. Among all the publicly
available data sets, representative data sets are covered in
this section. The majority of BTC data sets are from local
hospitals or laboratories that are not publicly available for
the research community. The publicly available data sets are
multigrade brain tumor data set [32], Brain tumor public data
set [31], The Cancer Imaging Archive (TCIA) [56], BRATS
2015 [66], Harvard (AANLIB) [67], and the Internet brain
segmentation repository (IBSR) [68], whose details are given
in Sections IV-A-IV-F, respectively.

A. Multigrade Brain Tumor Data Set [32]

There are two variants of this data set: the original one
that consists of 121 MRI instances and the augmented data
set, containing 3630 MRI instances created from the original
images. The overall data set is divided into four different
grades according to the standard classification of WHO tumors

of the Central Nervous System [77]. The overall distribution
and statistics of this data set are given in Table III, and sample
images are visualized in Fig. 5(a).The information about data
augmentation and other necessary details are given in [32].

B. Brain Tumor Public Data Set [31]

This data set was captured from two different hospitals
in China in the duration of 2005-2010. It consists of 3064
T1-weighed CE-MRI slices, collected from 233 different
patients. The size of each slice in this data set is 512 x 512,
with 6 and 1 mm, slice thickness and gap, respectively. The
tumor region inside each slice is segmented manually by three
experienced radiologists. This data set is divided into three
classes, i.e., Meningiomas, Gliomas, and Pituitary tumors. The
complete statistics of this data set are given in Table IV, while
representative slices from each class are shown in Fig. 5(b).

C. Cancer Imaging Archive (TCIA) [56]

This repository contains several collections of cancer
imagery, but only a few of them are related to our problem
of BTC. The concerned group with our problem in this
repository is BRAIN-DSC-MRI, which contains two types
of brain tumors: low- and high-grade gliomas. The data is
collected from 49 patients of different ages.

D. BRATS 2015 [66]

The BRATS 2015 data set is created for brain tumor
segmentation. However, in several contributions [78]-[80],
it has been used for tumor classification. It consists of two
types of tumors: low- and high-grade gliomas. The overall
data set consists of 274 MR scans with 220 and 54 for
high- and low-grade glioma, respectively. The MRI scanning
is performed using four modalities: T1, Tlc, T2, and Flair,
with an image size of 240 x 240 x 155.

E. Harvard (AANLIB) [67]

The whole-brain Atlas or ANNLIB is an online repository
for MRI of the Central Nervous System. This database is
available online, consisting of more than 13 000 brain MRIs
of 30 different cases. These MRIs contain a large variety of
normal and tumor images including different types of stroke
or brain attacks, several types of gliomas, Alzheimer’s, and
infectious diseases.
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Fig. 5. Sample images from both data sets. (a) Multigrade brain tumor data
set. (b) Brain tumor public data set.

F. Internet Brain Segmentation Repository [68]

IBSR is an open-source repository for brain tumor segmen-
tation and classification. This data set consists of 18 T1 3-D
MRI scans. Each of the MRI scans contains 60-65 slices,
with a resolution of 256 x 256 pixels. The data is collected
from 14 male and four female patients aged seven to 71 years,
covering a large variability of brain anatomies.

V. TRANSFER LEARNING FOR MEDICAL
IMAGE ANALYSIS

Due to the advancement in deep learning, transfer learn-
ing techniques have been integral to almost every field of
computer vision, i.e., multimedia [81], surveillance [82], and
medical [83]. Among these domains, transfer learning in
medical imaging is the most prominent, where the weights
of standard models, trained on nonmedical images or natural
image classification data sets, particularly ImageNet [84], are
fine-tuned on medical imaging data. This transfer learning
process is adopted in almost every modality of medical imag-
ing, including X-rays, CT scans, pathological images, positron
emission tomography (PET), and MRI [85].

In this section, our main target is to review transfer learning
techniques based on MR images, especially brain tumor seg-
mentation, classification, and retrieval. The detailed descrip-
tions of each method including publication year, pretrained
model, and data set with its main target, are given in Table V.
The range of these methods is from 2015 to 2019, starting
from traditional machine learning techniques to state-of-the-
art deep learning models. In addition, we also review a few
transfer learning methods, focusing on breast cancer recogni-
tion and prostate cancer classification, to show the importance
of transfer learning in the medical imaging domain, i.e., MR
images.

VI. COMPARATIVE STUDY OF
DIFFERENT CNNS

As discussed in Section III, several CNNs and their variants,
such as VGG-16, VGG-19, and CapsNets, have been already
explored in the literature for BTC. However, the baseline
and most popular CNN architectures have not been deeply
investigated for this problem. Furthermore, some of the exist-
ing studies have used a single data set for experiments and
validation of BTC results. For instance, [43] and [44] inves-
tigated CapsNets for BTC but using only a single data set
introduced in [106]. Due to these reasons, it is important to
investigate the baseline and recent CNN models for BTC using
multiple data sets. To this end, this section compares several
state-of-the-art CNNs for BTC using two data sets, i.e., [32]

s “Data set 17 and [31] as “Data set 2.” The remaining
four data sets are either not freely available or contain 3-D
images that are different from the first two data sets and
cannot be processed by the CNNs under consideration. The
CNNs used for the comparison are AlexNet [107], GoogleNet
[105], VGG [70], SqueezeNet [108], MobileNet [109], and
ResNet [110]. The system used for the implementation of these
CNNss is equipped with an NVidia GetForce TITAN X (Pascal)
GPU. Furthermore, we use Caffe [111] deep learning frame-
work with NVidia DIGITS [112] for the evaluation. During the
training process of each model, several options about different
parameters are considered due to which the output accuracy
varies. These parameters include the number of epochs, which
affects the accuracy positively up to a certain limit. As per
the current training setup, we selected 30 epochs because the
accuracy stops increasing after this limit. Another important
parameter for consideration is the learning rate, which is opted
as 0.001 as optimal after exhaustive experiments. The next
parameter affecting accuracy is the solver type, which was
selected to be stochastic gradient descent due to its better per-
formance [113]. The final parameter is Softmax loss function,
which computes the multinomial logistic loss of the Softmax
classifier [114].

The detailed results of all CNNs over Data set 1 and
Data set 2 are given in Table VI. Three evaluation metrics,
including accuracy, frames per second (fps), and model size,
are used during experiments for comparison. Accuracy shows
the correct predictions of each BTC approach, while fps refers
to the processing speed of each method under consideration.
The model size is the amount of memory needed for the
deployment of the final prediction architecture. The first metric
“accuracy” is considered in the majority of the studies for
comparison than the latter two metrics “fps” and “model size.”
We considered all metrics for comparison to show the strength
of each architecture under consideration, considering their
performance and practicality.

It can be observed from the obtained results that SqueezeNet
achieved the best fps and model size due to its efficiency.
However, in most cases, the model is overfit, i.e., completely
biased toward a single class on both data sets. AlexNet and
GoogleNet achieved almost similar results but not higher
enough for consideration in the CAD system due to its
critical nature. Furthermore, the results of MobileNet and
ResNet are also low and are not trustworthy enough for
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TABLE V
DETAILED DESCRIPTION OF MEDICAL IMAGING WITH A FOCUS ON MRI TRANSFER LEARNING TECHNIQUES
Pre-trained . . s
Method | Year Aim Modality Dataset Descriptions
model used
Welghtgd SVM, . They presented four transfer learning classifiers
Reweighted Brain tumor . .
SVM segmentation that are capable of tral.nmg the model \'th small
[86] 2015 ? MRI IBSR [87] amount of data with different characteristics. The
TrAdaBoost, and . . .
. . . transfer learning technique minimized the
and Adaptive classification . .
classification error up to 60%.
SVM
This is a three-fold method with the following
major steps:
Mild i. Selection of the most informative features
cognitive MRI, from both auxiliary and target domains.

[88] 2015 DTSVM impairment CSF, and MCI [88] ii. Sample-subset selection from both domains.
conversion PET iii. A domain transfer SVM for selected features
prediction fusion and classification of Mild Cognitive

Impairment-Converters (MCI-C) and MCI-
Normal Control (MCI-NC).
15 layers CNN . In this work, authors trained a deep CNN model on

[89] 2017 | without pooling Brain tumor MRI RUN DMC brain MR images, followed by its evaluation with

segmentation [90] . : .
layer. images from different domains.
. They trained their own CNN model with public

[91] 2017 Custom CNN Bra.m M.RI MRI ILSVRC2011 datasets, containing both medical and non-medical

classification [92] . . . .
images and fine-tuned it on brain MRI images.
. Harvard . . .
Brain MRI Medical This work is developed for the preprocessing of

[93] 2018 RAISR [94] super MRI School Data brain MRI by utilizing image super resolution using

resolution [95] transfer learning of RAISR and PST algorithm.
Breast University This method fine-tuned an existing pre-trained

[96] 2018 ResNet [97] cancer MRI Hospital ResNet. '[97] classification .archltectu.re for t}.le

malignancy Aachen recognition of breast lesions malignancy in
(Germany) contrast-enhanced MRI.
Brain This work fine-tuned a ResNet pre-trained model

(72] 2019 ResNet34 [73] abnormality MRI ) on ImageNet dataset for recognition of normal and

classification abnormal brain MRI.
Two state-of-the-art Deep Learning models are
used in this work for the detection of malignant
. prostate lesions in MRI. Authors achieved the third
. Malignant . . .
Inception V3 rostate Trio and highest accuracy among 33 groups in online
[98] 2019 [99] and VGG- pros MRI ProstateX competition organized by “Society of
lesion Skyra [100] . . . '

16 [70] detection Photo-Optical Instrumentation Engineers” and
“American Association of Physicists in Medicine
and National Cancer Institute” from November
2016 to January 2017 [101].

Prostate PROSTATEx- Developed a multi-parametric magnetic resonance

[102] 2019 Custom CNN cancer MRI 2[101] transfer learning technique for detection of prostate

classification cancer using MRI.
. Performed a block-wise fine-tuning strategy for the

[74] 2019 VGG-19 [70] Bral'n tumor MRI CE-MRI classification of multi-class brain tumor, which is

classification dataset [74] . . . .
more challenging than the binary classification.
Content- Content-based retrieval method to retrieve similar
based brain CE-MRI brain tumor images using VGG-19 features and
[103] 2019 VGG-19 [70] tumor MRI dataset [74] closed-form  metric learning for similarity
retrieval measurement.
Brain tumor The main aim of this work is brain tumor
GoogleNet Brain tumor it classification into three different classes i.e.,

[104] 2019 . . MRI public dataset . . . .

[105] classification [31] glioma, meningioma, and pituitary tumors using a
pre-trained GoogleNet [105] architecture.

their implementation in real-world BTC systems. Results show
that VGGNet obtained the best accuracy compared with all
other CNNs under consideration, with a similar average fps
but larger model size than other CNNs. These results are

insightful to both industry and hospitals in the sense that
they can select a method of their choice, considering their
requirements, accuracy, deployment environment, and other
constraints.

Authorized licensed use limited to: University of Exeter. Downloaded on July 01,2020 at 18:45:20 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MUHAMMAD et al.: DEEP LEARNING FOR MULTIGRADE BTC IN SMART HEALTHCARE SYSTEMS 9

TABLE VI

EXPERIMENTAL RESULTS OF DIFFERENT CNN MODELS OVER DATA SET 1 AND DATA SET 2 WITH ACCURACY AND NECESSARY DETAILS. THE TERMS
“WOA” AND “WA” USED IN THIS TABLE REFER TO “WITHOUT AUGMENTATION” AND “WITH AUGMENTATION,” RESPECTIVELY

Accuracy (%)
Multi-grade brain tumor dataset [32] Brain tumor public dataset [31]
Model Full Segmented MRI Full Segmented MRI Fps . MOISI%
brain MRI WOA WA brain MRI WOA WA size (MB)
AlexNet [107] 45 59 88 93 78 80 17 219
GoogleNet [105] 33 37 92 90 66 66 23 39.66
VGGNet [70] - 91 93 - 89 94 31 930
SqueezeNet [108] 74 90 - 72 - - 53 2.86
MobileNet [109] 40 28 58 69 63 60 39 12.23
ResNet [110] 29 33 69 57 48 64 26 910

VII. CHALLENGES, RECOMMENDATIONS, AND
FUTURE RESEARCH DIRECTIONS

Processing and analyzing MRI data of brain tumors are
among the most challenging tasks for computer vision scien-
tists. MRI is an advanced technique for producing high-quality
images of the human body parts [115]. It plays a key role in
processing and detecting the right stage and in deciding the
correct therapy for the tumor-infected person. To accomplish
this task, researchers have proposed many automatic tech-
niques by using MRI (T1, T2, and FLAIR) [116], [117]. The
main reason is that these MRIs are not affected by radiations,
and their contrast is better compared with other modalities.
This point is taken into consideration in medical image
analysis, as several parameters, including similarity measures,
modality, image contents, transformation, implementation, and
optimization of algorithms, affect the performance. Similarly,
the selection of a machine learning method for BTC is also
a crucial step, requiring a careful assessment. Most machine
learning methods resort to features extracted from images
via traditional strategies, followed by their classification. This
process can be overly complex and time-consuming if the
extracted features are highly dimensional. Other problems
associated with machine learning approaches include the
diversity of classes and challenges associated with distance
measurement between images. It can also be observed that
medical images are usually affected by low-light contrast,
deteriorating their quality, which consequently affects the
classification accuracy.

Recently, methods relying on learned representations (deep
learning, especially CNNs) have gained momentum for
BTC problems at the expense of handcrafted feature-based
methods [41]. Despite their strength and huge popularity,
CNN-based methods encounter many challenges. For instance,
they require a huge amount of data for training, which can be
either not available for each domain, or it can be very chal-
lenging to get the desired accuracy for a target problem [118].
Also, increasing the number of layers in a CNN model cannot
guarantee an increase in classification accuracy. Similarly,
deep learning models are computationally expensive due to
their underlying running hardware devices (GPU and RAM).
Thus, deploying these models in real scenarios, especially
in clinical practice, remains an unsolved challenge [119].
Concluding the challenges faced by the current research
community, there are several recommendations and future
directions for research scientists. Achieving higher accuracy
is always the priority while dealing with problems related to
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Fig. 6. Generic diagram for future research recommendations, where the
MRI generated data are processed through GAN to create new images and the
newly created data set plus the existing data are passed to an end-to-end deep
learning model, generating the detailed results. The output data are distributed
to various places, where it can be analyzed further for different purposes.
Considering the available resources and required users’ services, the optimal
computing platform can be used for analysis. This provides personalized
medical services, leading to smart healthcare.

healthcare with CAD techniques. The literature of BTC is
richer in terms of studies; however, certain areas still need
further extensive research. The future recommendations of
BTC literature are schematically represented in Fig. 6 with
a focus on personalized and smart healthcare that is briefly
discussed in Sections VII-A-VII-J.

A. Public Availability of BTC Data Sets

The main issue with the BTC literature is the scarcity of
public data sets. Many researchers are passionate to work
in this field, but there are still a severely limited number of
publicly available data repositories. This restricts the experi-
mentation and testing of new BTC methods and their maturity
compared with other domains, where data sets can be accessed
freely (e.g., ImageNet data set [120]). As mentioned previ-
ously, the major requirement of any deep learning model is the
huge amount of annotated data for achieving better accuracy
scores. Unfortunately, most of the existing BTC data sets

Authorized licensed use limited to: University of Exeter. Downloaded on July 01,2020 at 18:45:20 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

contain a limited number of images for each class, resulting
in lower accuracy levels for the implemented methods. For
this reason, we used data augmentation in our experiments
in Section VI. Furthermore, the majority of already available
data sets only provide data for high-level classification, with no
focus on further grades of brain tumors that can be very helpful
to radiologists for early diagnosis. Therefore, it is highly
recommended to create challenging data sets with detailed
grading of each image in future research and ensure their
availability for the benefit of the entire research community.

B. End-to-End Deep Learning Models

Although the majority of the recent techniques are based on
deep learning, they use different models for detection, classi-
fication, and segmentation, as discussed in Section III. This
increases the computational complexity of the implemented
methods, making them less suitable for their consideration
in clinical practice. Currently, there is no end-to-end deep
learning model, which can detect a tumor in the input MRI
image, segment it, and classify its nature as a final output.
Thus, both industry and academia are highly encouraged to
further investigate deep learning models for the problem of
BTC in this context. This can greatly reduce the overall
running time of the target BTC model, ultimately matching the
practical constraints of smart healthcare and clinical practice.

C. Edge Intelligence for MRI Data Analysis

Edge intelligence is used on a wide scale in differ-
ent domains [121], [122] because of its numerous advan-
tages, such as reduced bandwidth and threats, minimal
latency, improved consistency, compliance, and lower cost. For
instance, Chen et al. [123] presented a deep learning and edge
intelligence-assisted system for distributed video surveillance
applications. Their system processes data at network edges
instead of network centers, reducing communication overhead,
thereby providing accurate video analysis results with elastic
and scalable computing power. Similarly, Pace et al. [124]
proposed “BodyEdge,” a framework for supporting healthcare
applications in industry 4.0 with the main focus on reducing
the data load toward the Internet. In the field of BTC, the MRI
data are normally collected in the Digital Imaging and Com-
munications in Medicine (DICOM) format, which is manually
converted into slices for further analysis. This process is time-
consuming and tedious with comparatively higher changes of
errors. Through edge intelligence, the DICOM images can be
automatically processed over the capturing device for efficient
analysis with better accuracy. Currently, there is no such a
concept of edge intelligence for the specific problem of BTC,
which can be a new trend for further research in this domain.

D. Merging Fog and Cloud Computing With Federated
Learning: A New Dawn for BTC

Fog computing is an extension of cloud computing
performed over the edge through a distributed network.
Fog computing makes it easy to facilitate the regular process-
ing and generates the output fast enough by using capabilities
of edge network [125]. In the medical field, the data collected
from a specific MRI capturing device should be quickly
formulated and processed over different cloud and fog layers
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for efficient analysis. This can be possible by exploring fog
and cloud computing with an extensive investigation of the
new emerging framework of Al “Federated Learning” (FA)
for BTC in future studies. In FA architecture, models use the
distributed mobile/edge devices for computation due to their
recently improved capabilities for executing a machine learn-
ing model. Using this hybrid computing platform, a model can
be improved by training it locally via the data collected by
the concerned edge device, and the changes in terms of model
parameters and weights can be reported to cloud through a
secure communication link, e.g., homomorphic encryption as
employed by Feng et al. [126] for outsourcing big data in the
federated cloud environment. The most important aspect of FA
is the preservation of user’s privacy, which is utterly important
in the medical domain. In the case of BTC, the output of
brain tumors, classified into various grades, will be generated
directly over the cloud or fog, making the overall process
smarter and more feasible compared with manual lengthy
processes.

E. Advanced Data-Enrichment Techniques

Data augmentation can be used to generate data up to an
extent, which can be used for training deep learning BTC
systems. However, the quality of generated data stalls or even
degrades after a certain level of augmentation is reached.
Thus, more advanced data-enrichment techniques need to be
investigated for BTC. Generative adversarial networks (GANs)
are among the advanced data-enrichment techniques and are
widely used for many applications in diverse domains, such
as medical image synthesis [127], [128], compressive sensing
MRI [129], [130], superresolution [130], security [131], classi-
fication [132], image-to-image transformation [133], and many
other useful purposes. GAN creates new data instances from
the existing data, realistically complying with the distribution
of the input data. As mentioned earlier, the main problem
in the BTC literature is the lack of data, which is currently
handled through various data augmentation techniques. GAN
has still not been explored yet for the problem of BTC, which
can easily handle the limited data problem by generating new
similar data from the input images. Thus, it is recommended
for scientists working in BTC domain to utilize GANs for
new data generation to effectively solve the limited data
problem and possibly improve the performance of state-of-
the-art methods.

F. Sequential Learning in DICOM Images

DICOM images are sequences of slices captured in an order,
where some slices have a small size, while others have a
large size of tumors [134]. The appearance of a brain tumor
varies in size and angle in different slices. When these slices
are converted into normal image formats, we may not locate
the exact position of a brain tumor. Singular 2-D image data
cannot provide enough information that can be used in further
treatment of tumors using laser therapy. This problem is not
addressed in the current literature, needing special attention
from both industry and academia. In future work, the DICOM
image slices in a group should be analyzed sequentially, which
can give enough information in the 3-D form to find the exact
location of the brain tumor. Thus, it can directly help and
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facilitate specialists in various diagnosis processes that are
applied after finding the exact location of a brain tumor.

G. Effective Methods for Commercial Clinical Applications

There is a special need for trustworthy methods in the BTC
literature, which can be implemented in clinics and hospitals
on a commercial scale and can be extended to smart health-
care [135]. The accuracy achieved by deep learning-based
BTC methods is better than traditional methods and convincing
enough to be considered as a second opinion for medical
specialists. However, it still needs improvements in terms
of accuracy, execution time, flexibility, cost, and scalability
for commercialization and practicability in real-world medical
applications.

H. Confidence and Explainability in Learning-Based BTC

Another crucial aspect when undertaking BTC via machine
learning methods is to also consider the usability of the devel-
oped methods by medical practitioners. Indeed, the perfor-
mance (accuracy) of the model when detecting and estimating
the severity of a tumor is of pivotal importance due to the
relevance and consequences of decisions to be made upon
the model’s output. However, for the medical community to
embrace the benefits of deep learning methods used for this
purpose, there are far more aspects to be considered beyond
model performance. Usability aspects, such as the confidence
of the output, must be also placed under the spotlight for
the developed models to be actionable. The reliability of the
produced predictions (as estimated, for instance, by meth-
ods such as test dropout [136] or Bayesian deep learning
methods [137]) can, indeed, make the medical specialist feel
more confident with decisions supported by black-box deep
learning models.

Likewise, there is a rising concern with assessing what
deep learning models eventually learn to observe from data,
particularly in the medical domain. Reasons span beyond the
usability of the model: recently reported cases confirm that
there is little knowledge about what models surpassing human
performance in the diagnosis of certain diseases are learning
from data [138], [139]. Posthoc techniques for eXplainable
Artificial Intelligence [140], [141] can give the clue needed not
only to disentangle the knowledge learned by these powerful
methods but also to open up new medical research directions.

L. Internet of Medical Things

Recently, the Internet of Medical Things (IoMT) attracted
more attention of the researchers due to the rapid develop-
ment in intelligent technologies and real-time data sharing
using the Internet of Things (IoT) [142], [143]. Due to
the efficient data sharing and communication technologies,
the concept of the IoT has been adopted by almost every
field of research, i.e., smart networking [144], energy man-
agement [145], business [146], healthcare [147], and med-
ical [148]. Among these areas, the medical domain especially
dealing with brain diseases is considered the most severe
case due to the life-threatening issues of patients. Considering
this aspect, BTC can be implemented in IoMT, which will
minimize the life risk of brain tumor patients by providing the
necessary precaution online and informing them about their

grade of the tumor. The main advantage of BTS integration
with the IoMT is to treat the patients in remote areas, i.e., those
who have limited access to medical services. The reported
performance of existing reviewed methods and models is good
enough to be considered in real-time scenarios. However,
there are still several challenges for researchers to present
a complete IoMT environment for taking decisions in real-
time. These challenges include privacy preservation [149],
the computational complexity of deep learning models [150],
the latency of deployed networks [151], and the compatibility
of smart devices with existing technologies [152], all needing
effective solutions for smooth integration with existing medical
and patients management systems for smart and personalized
healthcare.

J. Synergies With Other Areas of Computational Intelligence

The interest in deep learning has propelled intense research
efforts around this family of machine learning models in the
last few years, yielding countless applications such as the one
targeted in this overview. However, many issues underneath
the use of deep learning methods still remain insufficiently
addressed to date. Renowned practical caveats include the
difficult architectural design of deep learning models, the
slow convergence of backpropagation for highly complex
deep architectures, their relative lack of interpretability, or the
burdensome hyperparameter tuning phase required for such
models to perform optimally for a given task [153]. The
wide acknowledgment of the research community around these
problems has ignited a shift of focus toward hybridizing deep
learning models with elements from other areas of computa-
tional intelligence [154], with an emphasis lately placed on
the use of evolutionary computation and swarm intelligence.

Indeed, a growing number of research works have focused
on different flavors of bio-inspired optimization heuristics to
overcome problems inherently deriving from deep learning as
the ones exemplified earlier. For instance, the use of different
forms of evolutionary programming has given rise to tools
to automate the design and configuration of complex neural
architectures [155], much like a fresh renaissance of old con-
cepts intersecting neural and evolutionary computation (e.g.,
NEAT). In this same line of reasoning, bio-inspired heuristics
specially devoted to undertake large-scale global optimization
problems can be thought today to be a serious competitor to the
classical gradient backpropagation algorithm that dominates
the spectrum of training algorithms for deep architectures
[156]. Further intersections between these two areas include
a more effective transfer of the learned knowledge between
different classification tasks that, for the medical area, can be
a catalyst to allow using deep learning models in new scenarios
with scarcely available data [156].

We believe that as in any other specific application area,
deep learning models empowered with evolutionary computa-
tion, edge and swarm intelligence, and FA will expedite and
increase the quality of its results when facing new problems in
multigrade brain tumor detection and characterization, even-
tually reaching unprecedented levels of self-configurability,
knowledge transferability, and accuracy. For this to occur,
newcomers to the field should steer their efforts toward this
expectedly profitable research avenue.
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VIII. CONCLUSION

Considering the recent development in the domain of BTC
and the limitations of existing studies, we presented a com-
prehensive survey of deep learning-based BTC methods. Deep
learning technologies accurately assist radiologists in predict-
ing the tumor regions and further classifying them into their
respective types. Many researchers contributed to the field of
BTC, but many challenges remain therein. Therefore, we con-
ducted this study to provide the overall literature of deep
learning-based BTC methods in a single survey and to draw the
attention of both academia and industry toward the necessary
development in this domain. This article comprehensively
discussed all deep learning-based BTC methods, with their
achievements and weaknesses, followed by complete informa-
tion about the existing publicly available data sets with their
respective resources. In order to empirically inform the con-
clusions drawn from our literature study, we experimentally
analyze various deep learning models by performing extensive
experiments over BTC data sets and highlighted the suitable
option for consideration in smart health care. Finally, this study
highlighted key challenges, such as lack of public data sets
and end-to-end deep learning models, and suggested detailed
directions for further research in BTC domain, i.e., exploring
edge/fog/cloud computing with FA, advanced data-enrichment
techniques, model confidence and explainability, IoMT, and
deep investigation of sequential and transfer learning strate-
gies. This can increase the maturity level of BTC methods
with better applicability for commercial clinical applications
and their smooth integration with smart healthcare.

The brain is an intriguing system whose complexity
demands sophisticated means to understand and characterize
its behavior. The unrivaled learning capability of deep learning
models has made them the standard choice to detect and
classify brain tumors from MRI images and other monitored
data alike, spawning a flurry of research activity overviewed
in this survey. We hope that the numerous research paths
outlined in our overview will serve as supportive material for
the research community currently working on this field and a
stimulating read for newcomers to this domain.
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