Pineal Region Glioblastomas: Clinical Characteristics, Treatment and Survival Outcome

Xiaodong Niu, Chenghong Wang, Xingwang Zhou, Yuan Yang, Yanhui Liu, Yuekang Zhang, Qing Mao

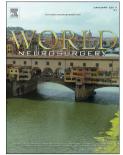
PII: S1878-8750(20)32391-3

DOI: https://doi.org/10.1016/j.wneu.2020.11.016

Reference: WNEU 16287

To appear in: *World Neurosurgery*

Received Date: 1 September 2020


Revised Date: 3 November 2020

Accepted Date: 4 November 2020

Please cite this article as: Niu X, Wang C, Zhou X, Yang Y, Liu Y, Zhang Y, Mao Q, Pineal Region Glioblastomas: Clinical Characteristics, Treatment and Survival Outcome, *World Neurosurgery* (2020), doi: https://doi.org/10.1016/j.wneu.2020.11.016.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc.

Title Page

Pineal Region Glioblastomas: Clinical Characteristics, Treatment and Survival Outcome

Xiaodong Niu^{1,2}, Chenghong Wang¹, Xingwang Zhou^{1,2}, Yuan Yang^{1,2}, Yanhui Liu^{1,2}, Yuekang Zhang^{1,2}, Qing Mao^{1,2}

Author Affiliations:

¹Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China; ²West China Glioma Centre, West China Hospital, Sichuan University, Chengdu, China;

Xiaodong Niu, Chenghong Wang and Xingwang Zhou are co-first authors.

Corresponding Authors:

Yuekang Zhang, MD, Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China. Phone: (86) 18980601516. Fax: (86) 28-85423021. E-mail: zhangykhuaxi@163.com. Qing Mao, MD, Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China. Phone: (86) 18980601506. Fax: (86) 28-85423021. E-mail: qingmao2000@163.com.

(Yuekang Zhang, zhangykhuaxi@163.com; Qing Mao, maoqing20000@163.com)

\sim	urn		D		nr		
U	սո	aı			UΙ	U.	

Pineal Region Glioblastomas: Clinical Characteristics, Treatment and Survival Outcome

3

4 ABSTRACT

5 **OBJECTIVE:** Given the rarity in the pineal GBM patients, clinical characteristics, treatment, and 6 prognostic factors are not well characterized. This study aimed to investigate these characteristics and 7 identify the prognostic factors of overall survival (OS).

8 **METHODS:** A retrospective analysis of newly diagnosed pineal GBM patients, including our three 9 cases and an additional forty-four cases from published articles, was conducted. Survival analysis was 10 performed by Kaplan-Meier analysis and Cox regression analysis was used to determine the prognostic 11 factors.

12 **RESULTS:** A total of 47 patients (28 males and 19 females) were enrolled, with a median of 46 years 13 (range, 5-74 years). Forty-four patients (90.9%) had preoperative obstructive hydrocephalus. Among 14 38 patients, 21 (55.3%) had distal leptomeningeal dissemination. Forty-five (95.7%) patients had 15 resection/biopsy, in which 6 had GTR, 22 had STR, 7 had PR, and 10 had biopsy. Adjuvant therapy 16 included radiotherapy in 36 patients and chemotherapy in 27 patients. The median OS was 10.0 months. 17The 6-month, 1-year and 2-year survival rates were 68.0%, 42.6% and 17.0%, respectively. COX 18 regression analysis revealed that patients receiving biopsy (p = 0.042) or chemotherapy (p = 0.029) had 19 the better OS and these were regarded as independent prognostic factors. Further survival analysis 20 showed that chemoradiotherapy had better survival benefit than other regimens.

21 **CONCLUSIONS:** In this study, we summarized the characteristics of pineal GBM patients and 22 revealed the correlation between clinical characteristics and prognosis. This study may make the 23 readers have a deep understanding of these rare GBMs and provide some references for future 24 management.

25 Key words Pineal region; Glioblastoma; H3 K27M; Survival analysis; Prognostic factors

26

27 INTRODUCTION

28 Pineal region tumors account for about 0.4%-1% of all intracranial tumors in adults and contain a wide 29 variety of histological types, generally comprising of germ cell, pineal parenchymal, and extra-pineal tumors arising from the surrounding parenchyma.¹⁻⁴ Glioma arising from the surrounding glial stroma 30 31 is a rare subtype of pineal region tumors and malignant gliomas or glioblastoma (GBMs) located in this region are extremely rare.⁴⁻⁷ To our knowledge, pineal region gliomas are either included in larger 32 series along with other tumors or reported as case reports/series.^{6–11} So far, very few cases with pineal 33 34 region glioblastoma (also called pineal GBM) have been reported in the English-language literature. 35 Little is known about the clinical characteristics, treatment, and prognosis of this rare entity. In this 36 study, we report three cases with pineal GBM and thoroughly review the English-language literature, to 37 summarize the clinical characteristics and treatment strategy in the pineal GBM patients, and determine 38 the prognostic factors of overall survival (OS).

39 METHODS

40 **Patients Source**

41 We searched the Glioma database in our institution and identified three patients with newly diagnosed 42 pineal GBM between 2016 and 2019. We also thoroughly retrieved the English-language literature 43 about pineal GBM from PubMed and Web of Science and ultimately identified 44 cases with pineal GBM from 28 articles published between 1954 and 2020.^{6,7,16–25,8,26–33,9–15} The key terms used for the 44 45 standard retrieval strategy were "pineal region glioblastoma" OR "pineal glioblastoma" OR "pineal 46 region glioma" OR "pineal glioma". Meanwhile, references of included articles were tracked. The 47inclusion criteria were as follows: (a) the cases published in English-language articles were newly 48 diagnosed pineal GBM, including these cases originating from the pineal region and simultaneously 49 involving the thalamus or midbrain; (b) non-English-language articles were also included only if an 50 English abstract was available; (c) the main clinical data (age, sex, and duration of symptoms, tumor 51 extending, diameter, preoperative hydrocephalus), treatment (surgery, radiotherapy, and chemotherapy) 52and time to events (OS, status) for survival analysis were available. Articles without important clinical 53and survival data, including age, sex, survival time, and status, were excluded. Informed consent of 54 three cases in our institution was obtained from patients or their families.

55 Date Extraction and Definition

56 Clinical and radiological features, surgical and adjuvant therapy, and survival data of pineal GBM

57 patients were extracted and collected from three cases in our institution and forty-four cases published 58 previously. Surgical resection or biopsy was performed for all patients and the obtained tissue samples 59 were used for pathological examination. The surgical extent of resection (EOR) included gross total 60 resection (GTR), subtotal resection (STR), and partial resection (PR). Postoperative adjuvant therapies 61 including radiotherapy and chemotherapy were extracted according to the records. For survival 62 analysis, all patients were divided into two groups by age (<18 and \geq 18 years). The duration of 63 symptoms was classified into two groups ($\leq 1/>1$ month) by the median value. The OS was recorded 64 from the included cases.

65 Immunohistochemistry

66 Immunohistochemistry of tissue samples from our three cases was performed on formalin-fixed, 67 paraffin-embedded (FFPE) tissue sections. Molecular subtyping including IDH1, ATRX, 1p/19q, 68 MGMT promoter (MGMTp) methylation status, P53, EGFRvIII, Ki-67, and H3 K27M were examined 69 by immunohistochemistry or genetic testing according to the 2016 World Health Organization 70 Classification of Tumors of the Central Nervous System ³⁴. All H3K27M detections were confirmed 71 finally by genetic testing. Positive staining in less than 50% of cells was considered negative. The 72 details of the molecular features of other cases were also extracted.

73 **Statistical Analysis**

74 All statistical analysis was performed using Stata (version 15.0, StataCorp LLC) and GraphPad Prism 75 (version 8, San Diego, USA). Continuous variables were presented as means \pm standard deviations and 76 median. The median value of a continuous variable was considered as the cut-off. The relationship 77between categorical variables was evaluated using Fisher's exact test or Chi-squared test. Estimates of 78 the OS were calculated with the Kaplan-Meier analysis, and the differences between the subgroups 79 were evaluated using the log-rank test. Cox regression analysis was utilized to calculate the hazard 80 ratio (HR) and 95% confidence interval (95% CI) and to determine the possible independent prognostic 81 factors concerning OS. P < 0.05 was considered statistically significant.

82 RESULTS

83 **Patient Demographics and Clinical Characteristics**

84 A total of 47 patients (28 males and 19 females) with pineal GBM were included in this study. The 85 flow diagram of cases selection and inclusion according to the PRISMA guidelines was shown in 86 Figure 1. The mean age of all patients was 41.5 ± 18.9 years, and the median age was 46 years (range,

87 5-74 years). The duration of symptoms ranged from one day to 108 months, with a median duration of 88 1 month. In cases available for the data of tumor diameter, the median diameter of tumors was 2.75cm. 89 Of 42 patients available for the tumor extent data, the tumors in 25 patients (59.5%) extended into the 90 third ventricular (8 patients) or involved thalamus/midbrain (17 patients) structures. Forty-four patients 91 (90.9%) had preoperative obstructive hydrocephalus and the majority of these had mild hydrocephalus. 92 Among 38 patients available on distal recurrence data, 21 patients (55.3%) had distal dissemination, 93 including 15 patients with intracranial dissemination and 6 patients with spinal dissemination. The 94 details and summary of demographics and clinical characteristics of all patients were shown in Tables 95 1 and 2. In addition, the summary of clinical presentation types of pineal GBM patients was shown in 96 Table 3.

97 Surgical Resection and Adjuvant Therapy

98 Of all included patients, the date of surgical resection or biopsy was available in 45 patients (95.7%). 99 Among these 45 patients, 6 had GTR, 22 had STR, 7 had PR, and 10 had biopsy. Due to more than half 100 of the patients with preoperative obstructive hydrocephalus, the majority of these patients underwent 101 cerebral spinal fluid (CSF) draining to relieve intracranial pressure and improve clinical symptoms in 102 the whole course of this disease. Draining types of CSF included ventriculoperitoneal shunt (VPS), 103 endoscopic third ventriculostomy (ETV), and external ventricular drainage (EVD). Among 40 patients 104 available on draining timing of CSF, 12 (30.0%) patients had pre-operation draining, 14 (35.0%) had 105 intra-operation draining, and 6 (15.0%) had post-operation draining, and 8 patients (20.0%) had not 106 undergone CSF draining in the whole course of the disease. Among patients available for adjuvant 107 therapy data, 36 (90.0%) patients had received radiotherapy, and 27 (73.0%) patients had received 108 chemotherapy. Furthermore, among these 44 patients, 27 (61.4%) had received chemoradiotherapy, and 109 9 (20.5%) had received radiotherapy only, 2 had received chemotherapy only, and 6 had no adjuvant 110 therapy (Table 2).

111 H3 K27M Mutant Characteristics

In this study, H3 K27M detection was available in 11 cases. Among these, H3 K27M in 5 (45.5%) cases were mutant, whereas the remaining were wild type (WT). IDH1 detection data was available in 10 patients and IDH1 mutant was found in only one patient (10%). Of 9 patients available for ATRX data, 6 patients (66.7%) had ATRX loss. None had 1p/19q co-deletion in 3 patients with 1p/19q detection. MGMT promoter (MGMTp) methylation status was available in 7 patients and only 1

patient (14.3%) showed methylation. P53 expression status was available in our three patients and all
were positive. EGFRvIII detection was available in 7 patients and only one (14.3%) was positive

119 (**Table 4**).

120 Kaplan–Meier and Cox Regression Analysis

121 The OS of all patients ranged from one week to forty-one months, with a median OS of 10.0 months 122and a mean OS of 12.1 months. The 6-month, 1-year and 2-year survival rates were 68.0%, 42.6% and 123 17.0%, respectively. Kaplan-Meier analysis was performed to determine the impact of variables on OS 124 (Figure 2). The analysis results revealed that a biopsy has better outcomes compared to surgical 125resection, whereas no significant difference of OS was found between GTR, STR, and PR in pineal 126 GBM patients. Meanwhile, patients receiving radiotherapy or chemotherapy had better outcomes 127 compared with counterparts. Furthermore, the chemoradiotherapy regimen had the best outcome 128 compared with radiotherapy/ chemotherapy only or no adjuvant therapy by Kaplan-Meier analysis. 129 Univariate and multivariate Cox regression analysis revealed that surgery type (HR 0.214, 95%CI 130 0.048-0.946, p = 0.042) and chemotherapy (HR 0.308, 95%CI 0.108-0.885, p = 0.029) were the 131 independent prognostic factors of OS (Table 5). Furthermore, survival analysis of adjuvant therapy 132 showed that chemoradiotherapy had better survival benefit than only radiotherapy/chemotherapy or 133other (p < 0.05).

134 Illustrative Case (case 1)

135A 21-year-old male with a complaint of headache for one week was admitted to our institution (Oct. 136 2018). Physical examination on admission was unremarkable. Preoperative brain MRI examination 137(Figure 3A-F) revealed a lesion located in the pineal region with extending the posterior third 138 ventricular and left thalamus region and without hydrocephalus. Based on our surgical experience of 139 deep brain tumors in our center, surgical resection with STR of the tumor was successfully carried out 140 due to infiltrating the left thalamus (Figure 3G-L). Histological detection of tissue sample revealed 141 necrosis microvascular proliferation with and the consideration of glioblastoma. 142 Immunohistochemistry revealed GFAP (+), Olig-2 (+), ATRX (-), P53 (+), PD-1 (-), PDL1 (-), VEGF 143 (-), VEGFR2 (-), EGFRvIII (-) and Ki-67 (MIB-1) 5-8%. Genetic testing showed IDH1/2 (-), MGMTp 144 methylation (-), TERT (-) and H3 K27M (+). Thus, the definitive diagnosis of this patient was 145 considered as diffuse midline glioma (DMG), H3K27M mutant (Grade IV). The postoperative course 146 was uneventful. He was discharged and transferred to the rehabilitation hospital. However, he

147 complained of a headache again eighteen days after surgery, and brain CT showed increased 148 hydrocephalus (Figure 3M). Thus, ventriculoperitoneal shunt (VPS) was performed (Nov. 2018) and 149 his symptoms and the hydrocephalus were alleviative postoperatively (Figure 3N). The patient was 150 improved gradually. Subsequently, concurrent chemoradiotherapy (Dec. 2018) and adjuvant 151chemotherapy (Jan. 2019) with temozolomide (TMZ) were administrated. Three months after surgery, 152follow-up brain MRI revealed the enhancement of pineal region, left thalamus, and dura mater in the 153left frontal lobe, considering the pseudo-progression of glioma or the possibility of local recurrence and 154 distal dissemination (Figure 30, P). Although the patient continued chemotherapy with TMZ, the 155enhancement nidus of pineal remained enlarged until 7 months after surgery (Figure 30, R). Fourteen 156 months after surgery, however, brain MRI revealed the regression of the tumor (Figure 3S, T). He had 157finished 12 cycles of TMZ (Apr. 2020) and he had good performance status and no progression of the 158disease.

159 **DISCUSSION**

160 Pineal GBMs are extremely uncommon intracranial tumors.^{1-4,10} A previous review showed that pineal 161 GBMs accounted for approximately 20% of pineal gliomas.⁴ Usually, pineal GBMs were reported in 162 case reports/series. To the best of our knowledge, there is a lack of integrative study focusing on the 163 clinical characteristics, treatment, and prognosis of exclusive pineal GBMs. This study included 47 164 patients with pineal GBM and the findings demonstrated that these patients had poor survival outcomes 165(median OS of 10 months), which was similar to diffuse intrinsic pontine glioma (DIPG) or diffuse midline glioma (DMG), H3 K27M mutant.^{35–37} Meanwhile, this study, for the first time, revealed the 166 167correlation between clinical characteristics, treatment, and survival outcome in these rare patients with 168 pineal GBM.

Unlike other common midline gliomas, such as thalamus or brainstem gliomas, usually occurred in children,^{34,36,37} this study and previous reviews showed pineal GBMs commonly occurred in adults, accounting for 87.2% of all included patients. A peak period of age with the onset of the disease was found in this study, which was an age range of 40-64 years. Interestingly, there was sex preference within the two populations of children and elder patients, in which all children were female and the majority of elder patients were male. However, due to basing on the published case series and possible selective bias, this finding should be further confirmed.

176 Duration of symptoms, referring to the interval between the onset of symptoms and diagnosis, may

reflect the development process and growth speed of tumors. The duration of symptoms of pineal gliomas is usually shorter than them of hemispheric gliomas.²⁹ Previous studies showed that duration of symptoms was associated with survival outcome and shorter duration implied poorer outcome.^{38–40} In this study, the patients with a shorter duration of symptoms had a worse outcome, although the duration of symptoms was not significantly associated with OS. This finding was similar to previous reports on midline gliomas.^{38,39} Patients with pineal GBM generally present with symptoms related to increased intracranial pressure (ICP) due to obstructive hydrocephalus.^{4,37}

184 The majority of pineal GBMs have similar radiological features. These malignant tumors are often 185 presented solid lesions with/without involving adjacent structures and commonly with contrast-enhancement.^{6,10,11} About half of pineal tumors are with the involvement of adjacent structures, 186 187 including the third ventricle and thalamus/midbrain, which easily lead to obstructive hydrocephalus. 188 Previous studies showed over half of the common midline gliomas had obstructive hydrocephalus,^{38,39} and the majority of pineal GBM patients occurred preoperatively.^{4,11,23} Most diffuse gliomas including 189 190 common midline gliomas, such as thalamus or brainstem gliomas, are infrequent with distal 191 recurrence/metastasis, whereas our study and reviews revealed that common distal leptomeningeal dissemination occurred in pineal GBMs, including intracranial and spinal dissemination.^{6,8,9,11,16} 192 193 Usually, these patients with distal leptomeningeal dissemination previously had local recurrence, which 194 can indicate disease progression and poor outcome, although distal dissemination was not significantly 195associated with OS.

196 Several previous studies have shown that maximal resection of gliomas, including cerebral 197 hemisphere gliomas and adult thalamic gliomas, was associated with longer survival.⁴⁰⁻⁴² A recent 198 study on surgery of pineal region tumors revealed that complete microsurgical resection was associated with better tumor-free survival and long-term survival, except for diffuse gliomas.⁴³ A previous study⁷ 199 200 showed that maximal resection didn't benefit the OS of diffuse gliomas, especially high-grade gliomas. 201 Due to no relative consensus or guideline, previous studies showed that surgical resection (77.8%) was 202 mainly performed for the diagnosis and treatment of pineal gliomas. However, this study demonstrated 203 that surgical resection had a worse survival outcome compared to biopsy in pineal GBM patients. This 204 result should be explained cautiously because it may be influenced by some factors. Firstly, due to 205 anatomical complexity and profound surgical risks, surgical resection is usually difficult, and easily 206 result in the direct injury of the critical adjacent structures and high probability of disseminating

subarachnoid/ventricular spaces.^{44–47} Sometimes, surgical resection may be performed for patients with larger tumors and improved intracranial hypertension and these patients had poor survival in itself. Besides, this result may also be affected by significant selection/publication bias based on the published articles. From the view of our result, biopsy may have a better outcome than surgical resection, however, this conclusion should be further verified by multicentric studies with larger sample size.

213Postoperative adjuvant radiotherapy and chemotherapy are helpful for prolonging the survival of 214 gliomas.^{48,49} This study revealed chemotherapy can prolong the OS of these patients with pineal GBM 215 and was considered as an independent prognostic factor. Although radiotherapy was not an independent 216 prognostic factor, survival analysis of adjuvant therapy demonstrated that patients receiving 217 chemoradiotherapy had longer OS than other regimens, including radiotherapy/chemotherapy only or 218 no adjuvant therapy. These findings were consistent with previous studies on cerebral GBM.^{48,49} 219 However, this study revealed patients receiving only radiotherapy or chemotherapy compared without 220 any adjuvant therapy still had a similar outcome, which may be associated with poor compliance and 221 incomplete course of treatment.

DMGs occur primarily in midline locations, such as brainstem, thalamus, and spinal cord,³⁴⁻³⁷ 222 223 whereas uncommon in the pineal region.^{10,11,13} After the revised 2016 World Health Organization 224 (WHO) central nervous system (CNS) tumor classification, H3 K27M mutant status is detected commonly in CNS tumors in midline locations, such as brainstem and thalamus.⁵⁰ However, little is 225226 known about H3 K27M mutant in pineal gliomas due to the rarity of these tumors. In this study, H3 227K27M mutant status was available in 11 pineal GBM patients and H3 K27M mutant was found in 5 228 (45.5%) patients. Similar to common midline gliomas, H3 K27M-mutant GBMs in this study are usually associated with a high frequency of P53 alteration.⁵¹ Several studies showed H3 K27M-mutant 229 patients had a poor outcome compared to WT.^{36,37,40} However, a recent study of a larger series of H3 230 231 K27M-mutant DMG in different anatomical locations demonstrated that H3K27M mutation was not significantly associated with a poorer prognosis in supratentorial gliomas compared with WT 232 233gliomas.³⁷ In this study, survival analysis of H3 K27M mutant status on OS was not performed due to 234the small sample size. The prognostic value of H3 K27M mutation in pineal GBM patients should be 235 further studied with larger sample size.

236 Limitations

237 Our study had some limitations that should be noted. This study was a retrospective analysis and 238 includes a limited sample size of pineal GBM patients from case reports/series, which could lead to 239selection/publication bias and low statistical power. Besides, due to the incomplete data of included 240 cases, such as Karnofsky Performance Status (KPS), subgroup analyses for treatment options were not 241 performed. Moreover, included cases had and wide time span and had different options of adjuvant 242 therapy, such as chemotherapy, however, subgroup analysis of adjuvant treatment by periods was 243unable to be compared, due to limited samples and being not available for detailed information of 244 therapy. Based on these limitations, the conclusions in this study should be cautiously explained and 245 should be further verified by the multicentric studies with larger sample size.

246 **CONCLUSIONS**

In this study, we summarized the characteristics of pineal GBM patients based on individual data and revealed the correlation between clinical characteristics and prognosis. This study may make the readers have a deep understanding of these rare tumors and provide some references for future management. However, these conclusions should be cautiously explained and further studied.

251

252 **REFERENCES**

- 253 1. Hirato J, Nakazato Y. Pathology of pineal region tumors. *Journal of Neuro-Oncology*.
- 254 2001;54(SPEC. ISS.):239-249. doi:10.1023/a:1012721723387
- 255 2. Knierim DS, Yamada S. Pineal Tumors and Associated Lesions: The Effect of Ethnicity on
- 256 Tumor Type and Treatment. *Pediatric Neurosurgery*. 2003;38(6):307-323.
- 257 doi:10.1159/000070415
- 258 3. DeGirolami U, Schmidek H. Clinicopathological study of 53 tumors of the pineal region.
- 259 Journal of Neurosurgery. 1973;39(4):455-462. doi:10.3171/jns.1973.39.4.0455
- 260 4. Magrini S, Feletti A, Marton E, Longatti P. Gliomas of the pineal region. *Journal of*
- 261 Neuro-Oncology. 2013;115(1):103-111. doi:10.1007/s11060-013-1200-9
- Al-Hussaini M, Sultan I, Abuirmileh N, Jaradat I, Qaddoumi I. Pineal gland tumors: experience
 from the SEER database. *Journal of Neuro-Oncology*. 2009;94(3):351-358.
- 264 doi:10.1007/s11060-009-9881-9
- Amini A, Schmidt RH, Salzman KL, Chin SS, Couldwell WT. Glioblastoma multiforme of the
 pineal region. *Journal of Neuro-Oncology*. 2006;79(3):307-314.
- 267 doi:10.1007/s11060-006-9145-x
- Li D, Wen R, Gao Y, et al. Pineal Region Gliomas: A Single-Center Experience with 25 Cases.
 World Neurosurgery. 2020;133:e6-e17. doi:10.1016/j.wneu.2019.06.189
- 8. Orrego E, Casavilca S, Garcia-Corrochano P, Rojas-Meza S, Castillo M, Castaneda CA.
- 271 Glioblastoma of pineal region: report of four cases and literature review. CNS Oncology.
- 272 2017;6(4):251-259. doi:10.2217/cns-2016-0047
- 273 9. Stowe HB, Miller CR, Wu J, Randazzo DM, Ju AW. Pineal Region Glioblastoma, a Case
- 274 Report and Literature Review. *Frontiers in oncology*. 2017;7:123.
- 275 doi:10.3389/fonc.2017.00123
- 276 10. D'Amico RS, Zanazzi G, Wu P, Canoll P, Bruce JN. Pineal region glioblastomas display
- 277 features of diffuse midline and non-midline gliomas. *Journal of Neuro-Oncology*.
- 278 2018;140(1):63-73. doi:10.1007/s11060-018-2931-4
- 279 11. Sajan A, Hewitt K, Soleiman A, Velayudhan V. Pineal glioblastoma: Case report and literature
- 280 review of an exceedingly rare etiology for pineal region mass. *Clinical Imaging*.
- 281 2020;60(1):95-99. doi:10.1016/j.clinimag.2019.12.002

282	12.	Nadvi SS, Timatkia K. Primary pineal glioblastoma multiforme mimicking a germ cell tumour.
283		British Journal of Neurosurgery. 2018;32(4):456-457. doi:10.1080/02688697.2016.1265084
284	13.	Gilbert AR, Zaky W, Gokden M, et al. Extending the Neuroanatomic Territory of Diffuse
285		Midline Glioma, K27M Mutant: Pineal Region Origin. Pediatric Neurosurgery.
286		2018;53(1):59-63. doi:10.1159/000481513
287	14.	Granados AM, Ospina C, Paredes S. Pineal gliosarcoma in a 5-year-old girl. Radiology Case
288		Reports. 2018;13(1):244-247. doi:10.1016/j.radcr.2017.11.003
289	15.	Sugita Y, Terasaki M, Tanigawa K, et al. Gliosarcomas arising from the pineal gland region:
290		uncommon localization and rare tumors. <i>Neuropathology</i> . 2016;36(1):56-63.
291		doi:10.1111/neup.12226
292	16.	Matsuda R, Hironaka Y, Suigimoto T, Nakase H. Glioblastoma Multiforme in the Pineal
293		Region with Leptomeningeal Dissemination and Lumbar Metastasis. Journal of Korean
294		Neurosurgical Society. 2015;58(5):479. doi:10.3340/jkns.2015.58.5.479
295	17.	Liu Y, Hao S, Yu L, Gao Z. Long-term temozolomide might be an optimal choice for patient
296		with multifocal glioblastoma, especially with deep-seated structure involvement: a case report
297		and literature review. World Journal of Surgical Oncology. 2015;13(1):142.
298		doi:10.1186/s12957-015-0558-x
299	18.	Mansour J, Fields B, Macomson S, Rixe O. Significant anti-tumor effect of bevacizumab in
300		treatment of pineal gland glioblastoma multiforme. Targeted Oncology. 2014;9(4):395-398.
301		doi:10.1007/s11523-014-0327-8
302	19.	Peterson JC, Chamoun RB, Liverman CS. High-failure Rate of ETV in Pineal Region
303		Glioblastoma. Neurosurgery Quarterly. 2014;24(4):259-262.
304		doi:10.1097/WNQ.000000000000141
305	20.	Suzuki R, Suzuki K, Sugiura Y, et al. [A case of glioblastoma multiforme in the pineal region
306		with intraventricular hemorrhage]. No shinkei geka Neurological surgery. 2014;42(5):429-435.
307		http://www.ncbi.nlm.nih.gov/pubmed/24807547.
308	21.	Ozgural O, Kahilogullari G, Bozkurt M, Heper AO, Savas A. Primary pineal glioblastoma: A
309		case report. Turkish Neurosurgery. 2013;23(4):572-574.
310		doi:10.5137/1019-5149.JTN.5994-12.1

311 22. Birbilis TA, Matis GK, Eleftheriadis SG, Theodoropoulou EN, Sivridis E. Spinal Metastasis of

312		Glioblastoma Multiforme. Spine. 2010;35(7):E264-E269.
313		doi:10.1097/BRS.0b013e3181c11748
314	23.	Moon K-S, Jung S, Jung T-Y, Kim I-Y, Lee M-C, Lee K-H. Primary glioblastoma in the pineal
315		region: a case report and review of the literature. Journal of Medical Case Reports.
316		2008;2(1):288. doi:10.1186/1752-1947-2-288
317	24.	Toyooka T, Miyazawa T, Fukui S, Otani N, Nawashiro H, Shima K. Central neurogenic
318		hyperventilation in a conscious man with CSF dissemination from a pineal glioblastoma.
319		Journal of Clinical Neuroscience. 2005;12(7):834-837. doi:10.1016/j.jocn.2004.09.027
320	25.	Gasparetto EL, Warszawiak D, Adam GP, Bleggi-Torres LF, Carvalho Neto A de.
321		Glioblastoma multiforme of the pineal region: case report. Arquivos de Neuro-Psiquiatria.
322		2003;61(2B):468-472. doi:10.1590/S0004-282X2003000300027
323	26.	Cho B-K, Wang K-C, Nam D-H, et al. Pineal tumors: experience with 48 cases over 10 years.
324		Child's Nervous System. 1998;14(1-2):53-58. doi:10.1007/s003810050175
325	27.	Pople IK, Arango JC, Scaravilli F. Intrinsic malignant glioma of the pineal gland. Child's
326		Nervous System. 1993;9(7):422-424. doi:10.1007/BF00306198
327	28.	Vaquero J, Ramiro J, Martinez R. Glioblastoma multiforme of the pineal region. Journal of
328		neurosurgical sciences. 1990;34(2):149-150. http://www.ncbi.nlm.nih.gov/pubmed/1965444.
329	29.	Edwards MSB, Hudgins RJ, Wilson CB, Levin VA, Wara WM. Pineal region tumors in
330		children. Journal of Neurosurgery. 1988;68(5):689-697. doi:10.3171/jns.1988.68.5.0689
331	30.	Frank F, Gaist G, Piazza G, Ricci RF, Sturiale C, Galassi E. Stereotaxic biopsy and radioactive
332		implantation for interstitial therapy of tumors of the pineal region. Surgical Neurology.
333		1985;23(3):275-280. doi:10.1016/0090-3019(85)90095-3
334	31.	Norbut AM, Mendelow H. Primary glioblastoma multiforme of the pineal region with
335		leptomeningeal metastases: A case report. Cancer. 1981;47(3):592-596.
336		doi:10.1002/1097-0142(19810201)47:3<592::AID-CNCR2820470328>3.0.CO;2-G
337	32.	Kalyanaraman UP. Primary Glioblastoma of the Pineal Gland. Archives of Neurology.
338		1979;36(11):717-718. doi:10.1001/archneur.1979.00500470087020
339	33.	Bradfield JS, Perez CA. Pineal Tumors and Ectopic Pinealomas. Radiology.
340		1972;103(2):399-406. doi:10.1148/103.2.399
9/1	24	Lauis DN Barry & Britanhaman C, et al. The 2016 Warld Haulth Organization Classification

341 34. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification

342		of Tumors of the Central Nervous System: a summary. Acta neuropathologica.
343		2016;131(6):803-820. doi:10.1007/s00401-016-1545-1
344	35.	Ebrahimi A, Skardelly M, Schuhmann MU, et al. High frequency of H3 K27M mutations in
345		adult midline gliomas. Journal of Cancer Research and Clinical Oncology.
346		2019;145(4):839-850. doi:10.1007/s00432-018-02836-5
347	36.	Karremann M, Gielen GH, Hoffmann M, et al. Diffuse high-grade gliomas with H3 K27M
348		mutations carry a dismal prognosis independent of tumor location. Neuro-oncology.
349		2018;20(1):123-131. doi:10.1093/neuonc/nox149
350	37.	Wang L, Li Z, Zhang M, et al. H3 K27M-mutant diffuse midline gliomas in different
351		anatomical locations. Human Pathology. 2018;78:89-96. doi:10.1016/j.humpath.2018.04.015
352	38.	Zhang P, Wang X, Ji N, et al. Clinical, radiological, and pathological features of 33 adult
353		unilateral thalamic gliomas. World journal of surgical oncology. 2016;14(1):78.
354		doi:10.1186/s12957-016-0820-x
355	39.	Niu X, Wang T, Yang Y, et al. Prognostic Factors for the Survival Outcome of Bilateral
356		Thalamic Glioma: An Integrated Survival Analysis. World Neurosurgery. 2018;110:e222-e230.
357		doi:10.1016/j.wneu.2017.10.132
358	40.	Niu X, Wang T, Zhou X, et al. Surgical treatment and survival outcome of patients with adult
359		thalamic glioma: a single institution experience of 8 years. Journal of Neuro-Oncology. March
360		2020. doi:10.1007/s11060-020-03430-x
361	41.	Brown TJ, Brennan MC, Li M, et al. Association of the Extent of Resection With Survival in
362		Glioblastoma: A Systematic Review and Meta-analysis. JAMA oncology.
363		2016;2(11):1460-1469. doi:10.1001/jamaoncol.2016.1373
364	42.	Esquenazi Y, Friedman E, Liu Z, Zhu J-J, Hsu S, Tandon N. The Survival Advantage of
365		"Supratotal" Resection of Glioblastoma Using Selective Cortical Mapping and the Subpial
366		Technique. Neurosurgery. 2017;81(2):275-288. doi:10.1093/neuros/nyw174
367	43.	Choque-Velasquez J, Resendiz-Nieves J, Jahromi BR, et al. Extent of Resection and
368		Long-Term Survival of Pineal Region Tumors in Helsinki Neurosurgery. World Neurosurgery.
369		2019;131:e379-e391. doi:10.1016/j.wneu.2019.07.169
370	44.	Kulwin C, Matsushima K, Malekpour M, Cohen-Gadol AA. Lateral supracerebellar
371		infratentorial approach for microsurgical resection of large midline pineal region tumors:

372		techniques to expand the operative corridor. Journal of Neurosurgery. 2016;124(1):269-276.
373		doi:10.3171/2015.2.JNS142088
374	45.	Yağmurlu K, Zaidi HA, Kalani MYS, Rhoton AL, Preul MC, Spetzler RF. Anterior
375		interhemispheric transsplenial approach to pineal region tumors: anatomical study and
376		illustrative case. Journal of Neurosurgery. 2018;128(1):182-192.
377		doi:10.3171/2016.9.JNS16279
378	46.	Sonabend AM, Bowden S, Bruce JN. Microsurgical resection of pineal region tumors. Journal
379		of Neuro-Oncology. 2016;130(2):351-366. doi:10.1007/s11060-016-2138-5
380	47.	Motiei-Langroudi R, Sadeghian H, Soleimani MM, Seddighi AS, Shahzadi S. Treatment
381		Results for Pineal Region Tumors: Role of Stereotactic Biopsy Plus Adjuvant Therapy vs.
382		Open Resection. Turkish neurosurgery. 2014;26(3):336-340.
383		doi:10.5137/1019-5149.JTN.11759-14.1
384	48.	Karam SD, Ney DE, Amini A, et al. Combined-Modality Therapy With Radiation and
385		Chemotherapy for Elderly Patients With Glioblastoma in the Temozolomide Era. JAMA
386		Neurology. 2016;73(7):821. doi:10.1001/jamaneurol.2016.0839
387	49.	Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant
388		temozolomide for glioblastoma. The New England journal of medicine. 2005;352(10):987-996.
389		doi:10.1056/NEJMoa043330
390	50.	Louis DN, Perry A, Ellison DW, et al. The 2016 World Health Organization Classification of
391		Tumors of the Central Nervous System: a summary. Acta Neuropathologica.
392		2016;131(6):803-820. doi:10.1007/s00401-016-1545-1
393	51.	Dong C, Yuan Z, Li Q, Wang Y. The clinicopathological and prognostic significance of TP53
394		alteration in K27M mutated gliomas: an individual-participant data meta-analysis.
395		Neurological Sciences. 2018;39(7):1191-1201. doi:10.1007/s10072-018-3407-1
396		

Study	Age	Sex	Pre-op hydro	Extending	Diameter (cm)	Dissemination	Surgery	CSF Drainage	Radio	Chemo	Survival (months)
Our case 1	21	М	Yes	Thalamus	2.5	Intracranial	STR	VPS	Yes	Yes	16, alive
Our case 2	30	Μ	Yes	Thalamus, Midbrain	6	Intracranial	STR	VPS	Yes	Yes	12
Our case 3	55	Μ	No	No	2.5	Intracranial	STR	No	No	No	10
Sajan, 2020	39	F	Yes	Midbrain	2.5	No	Biopsy	EVD, VPS	Yes	Yes	12, alive
Li, 2020	54	F	Yes	Thalamus	4.5	No	STR	-	No	Yes	4
	54	F	Yes	Thalamus, Midbrain	4.7	No	STR	-	No	Yes	6
	50	F	Yes	Thalamus	3.5	Intracranial	PR	-	No	No	5
	54	F	Yes	Third ventricular	3	No	GTR	-	No	No	7, alive
D'Amico, 2018	52	Μ	Yes	Thalamus	2.3	No	STR	ETV	No	No	2
	38	Μ	Yes	No	2	No	STR	ETV	Yes	Yes	20
	51	Μ	Yes	Thalamus	2	Intracranial	STR	ETV	Yes	Yes	24
	46	F	No	Third ventricular	2.6	No	STR	No	Yes	Yes	15
	74	Μ	Yes	No	2.3	No	STR	VPS	Yes	Yes	8
	36	Μ	Yes	Thalamus	2.6	No	STR	ETV	Yes	No	10
	38	Μ	Yes	Third ventricular	3	No	STR	ETV	Yes	Yes	23
Granados, 2018	5	F	Yes	Midbrain	-	Spinal	Biopsy	EVD	Yes	Yes	3, alive
Nadvi, 2018	19	F	Yes	No	-	No	Biopsy	VPS	Yes	Yes	12, alive
Gilbert, 2018	12	F	No	No	2.7	Intracranial	STR	No	Yes	Yes	8, alive
Orrego, 2017	48	F	Yes	No	4.5	No	STR	VPS	Yes	No	12
	50	Μ	Yes	Thalamus, Midbrain	2.8	No	PR	VPS	Yes	No	6
	56	Μ	Yes	Midbrain	2.8	Intracranial	PR	VPS	Yes	Yes	29
	25	Μ	Yes	Midbrain	-	No	GTR	VPS	Yes	Yes	32
Stowe, 2017	65	Μ	No	No	2.5	-	Biopsy	-	Yes	Yes	41, alive
Sugita, 2016	52	F	Yes	No	-	Intracranial	PR	ETV	Yes	Yes	24
	18	Μ	Yes	No	-	Spinal	PR	EVD	Yes	Yes	13
Liu, 2015	30	Μ	No	Thalamus	5	Intracranial	GTR	-	Yes	Yes	14, alive
Matsuda, 2015	31	Μ	Yes	No	-	Spinal	STR	VPS	Yes	Yes	5
Mansour, 2014	69	Μ	Yes	No	2	-	Biopsy	ETV	Yes	Yes	16
Suzuki, 2014	65	Μ	Yes	Third ventricular	-	-	STR	ETV	Yes	Yes	3, alive
Peterson, 2014	20	Μ	Yes	No	-	Spinal	Biopsy	ETV, EVD, VPS	-	-	10

Table1 Details of the included 47 cases with pineal GBM.

Ozgural, 2013	60	М	Yes	No	-	-	Biopsy	VPS	Yes	Yes	24, alive
Birbilis, 2010	54	F	Yes	No	-	Spinal	Biopsy	VPS	Yes	Yes	40
Moon, 2008	68	М	Yes	Thalamus, Midbrain	4	Intracranial	STR	VPS	No	No	2
Amini, 2006	40	М	Yes	Midbrain	-	Intracranial	STR	ETV, VPS	Yes	Yes	5
	43	М	Yes	Third ventricular	-	Intracranial	GTR	ETV	Yes	Yes	7
	52	F	Yes	No	-	Intracranial	Biopsy	ETV	Yes	No	2
Toyooka, 2005	40	М	Yes	No	-	Intracranial	PR	VPS	Yes	Yes	11
Gasparetto, 2003	29	F	Yes	Thalamus	-	- (PR	VPS	No	No	2
Cho, 1998	10~15	F	-	No	-	-	STR	-	Yes	No	6
Pople, 1993	6	F	Yes	Third ventricular	3	Intracranial	GTR	VPS	Yes	Yes	4
Vaquero, 1990	63	F	-	-	-	O	STR	VPS	Yes	No	6
Edwards, 1988	12	F	-	-	-	-	STR	-	Yes	Yes	18
Frank, 1985	52	F	Yes	-	-	No	Biopsy	-	Yes	-	4
Norbut, 1981	36	М	Yes	Third ventricular	-	Spinal	No	VPS	Yes	-	4
Kalyanaraman, 1979	68	F	Yes	No		-	GTR	-	Yes	-	4
Bradfield, 1972	5	F	Yes	-	-	No	No	VPS	-	-	27
	52	F	Yes	-		No	STR	-	-	-	0.2

M, male; F, female; Pre-op hydro, preoperative hydrocephalus; GTR, gross total resection; STR, subtotal resection; PR, partial resection; VPS, ventriculoperitoneal shunt;

ETV, endoscopic third ventriculostomy; EVD, external ventricular drainage; Radio, Radiotherapy; Chemo, chemotherapy; CSF, cerebral spinal fluid; -, not available or not

performed.

Characteristics	No.*
Age	47
< 18 years	6/47 (12.8%)
≥18 years	41/47 (87.2%)
Sex (Male)	47
Male	28/47 (59.6%)
Female	19/47 (40.4%)
Duration of symptoms	35
≤1 month	19/35 (54.3%)
>1 month	16/35 (45.7%)
Extending	42
Third ventricular	8/42 (19.0%)
Thalamus/Midbrain	17/42 (40.5%)
No	17/42 (40.5%)
Diameter	24
< 2.75cm	12/24 (50.0%)
≥2.75cm	12/24 (50.0%)
Preoperative hydrocephalus	47
No	7/47 (14.9%)
Mild	32/47 (68.1%)
Severe	8/47 (17.0%)
Distal recurrence	38
Intracranial	15/38 (39.5%)
Spinal	6/38 (15.8%)
No	17/38 (44.7%)
Surgery	45
GTR	6 /45 (13.3%)
STR	22/45 (48.9%)
PR	7 /45 (15.6%)
Biopsy	10/45 (22.2%)
Draining timing of CSF	40

Table 2 Summary of demographics and clinical features of all pineal GBM patients

Pre-operation	12/40 (30.0%)
Intra-operation	14/40 (35.0%)
Post-operation	6/40 (15.0%)
No	8/40 (20.0%)
Radiotherapy	44
Yes	36/44 (81.8%)
No	8/44 (28.2%)
Chemotherapy	41
Yes	29/41 (70.7%)
No	12/41 (29.3%)
Adjuvant therapy	44
Chemoradiotherapy	27/44 (61.4%)
Radiotherapy only	9/44 (20.5%)
Chemotherapy only	2/44 (4.5%)
No	6/44 (13.6%)

* referred as the available data from all included cases.

Symptoms	Percentage
Headache	90.0%
Nausea/vomiting	43.3%
Visual impairment	26.7%
Parinaud's syndrome	23.3%
Gate disturbance	23.3%
Behavioral disorder (memory/aypnia/concentration/irritability/hyperhidrosis)	23.3%
Conscious disturbance	13.3%
Vertigo/balance	13.3%
Limb numbness/weakness	10.0%
Urinary incontinence	6.7%
Seizure	3.3%

Table 3 Summary of clinical presentation types of pineal GBM patients

S4 J	4	Com	H3K27M	Ki-67	IDH1	ATRX loss	1p/19q	МGМТр	P53	EGFRvIII
Study	Age	Sex	ПЗК2 /М	(%)	IDHI	ATKA 1088	co-deletion	methylation	P55	EGFKVIII
Our case 1	21	М	Mut	5-8	WT	Lost	-	Unmethylated	Positive	Negative
Our case 2	30	М	Mut	10-20	WT	Maintained	-	-	Positive	-
Our case 3	55	М	WT	20	WT	Maintained	-	Unmethylated	Positive	-
Sajan, 2020	39	F	Mut	-	Mut	-	-	methylated	-	Positive
D'Amico, 2018	52	М	WT	5.20	WT	Lost	-	-	-	Negative
	51	М	WT	40	WT	Maintained	Negative	Unmethylated	-	Negative
	46	F	WT	12	WT	Lost	NA	Unmethylated	-	Negative
	74	М	WT	13.2	WT	Lost	Negative	Unmethylated	-	Negative
	36	М	WT	40.5	WT	Lost	Negative	Unmethylated	-	Test failed
	38	М	Mut	9.3	WT	Lost	X.	-	-	-
Gilbert, 2018	12	F	Mut	-	-	50	-	-	-	-

Table 4 Summary of molecular profiles of 11 pineal GBMs with H3 K27M detection

M, male; F, female; Mut, mutant; WT, wild type; -, not available or not performed.

IDH, isocitrate dehydrogenase; ATRX, α-thalassemia/mental retardation X-linked protein, MGMTp, O6-methylguanine-DNA methyltransferase promoter; EGFRvIII, epidermal growth factor receptor variant III.

	Ŋ	Univariat	e analysis	Mu	Multivariable analysis			
Variable	No	χ^2	p value	HR	95%CI	p value		
Age								
<18/≥18 years	6/41	0.007	0.933	-	-	-		
Sex								
Male/Female	28/19	0.383	0.536	-	-	-		
Duration of symptoms								
$\leq 1/>1$ month	19/16	0.008	0.927	-	-	-		
Extending								
Yes/No	24/18	1.083	0.298		-	-		
Diameter								
<2.75/≥2.75 cm	12/12	1.572	0.210	2 -	-	-		
Pre-op hydrocephalus								
Yes/No	40/4	2.377	0.123	-	-	-		
Distal recurrence								
Yes/No	21/17	0.031	0.860	-	-	-		
Surgery type								
Resection/Biopsy	35/10	5.388	0.020	0.214	0.048-0.946	0.042		
Drainage timing								
Pre/Intra/Post	12/14/6	0.283	0.595	-	-	-		
Radiotherapy								
Yes/No	36/8	11.941	0.001	0.389	0.126-1.199	0.100		
Chemotherapy								
Yes/No	29/12	17.410	<0.001	0.308	0.108-0.885	0.029		

Table 5 Univariate and multivariable analysis for overall survival of pineal GBMs

The bold P value underlines the statistically significant outcome measure (HR).

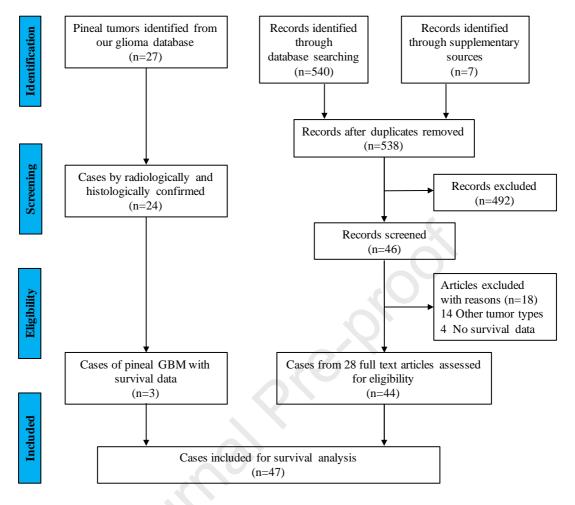
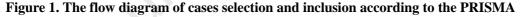

Figure legends

Figure 1. The flow diagram of cases selection and inclusion according to the PRISMA guidelines.


Figure 2. Kaplan-Meier survival curve of prognostic factors on OS in pineal GBM patients.

(A) Survival curve of OS in all patients. (B) Kaplan–Meier survival curve stratified by EOR (P = 0.419). (C) Kaplan–Meier survival curve stratified by resection or biopsy (P = 0.020). (D) Kaplan–Meier survival curve stratified by radiotherapy (P = 0.001). (E) Kaplan–Meier survival curve stratified by chemotherapy (P < 0.001). (F) Kaplan–Meier survival curve stratified by adjuvant therapy (P < 0.001).

Figure 3. Illustrative case. Case1. A 21-year-old male diagnosed with pineal GBM (diffuse midline glioma, H3K27M mutant, Grade IV). (**A-F**) Preoperative brain MRI revealing a lesion located in the pineal region extending the posterior third ventricular and left thalamus/brainstem regions, with obstructive hydrocephalus. (**G-L**) Postoperative 48h MRI showing the STR of the tumor and the remission of hydrocephalus. (**M, N**) Eighteen days after surgery, brain CT revealing the recurrence of hydrocephalus. Subsequently, ventriculoperitoneal shunt (VPS) was performed and the hydrocephalus was alleviative postoperatively. (**O, P**) Three months after surgery of tumor, axial brain MRI revealing the enhancement of pineal region and left thalamus, without hydrocephalus. (**Q, R**) Seven months after surgery, axial MRI showed the enhancement nidus of pineal remained enlarged compared with the last follow-up. (**S, T**) Axial MRI revealing decreasing lesion of pineal and left thalamus 14 months after surgery.

Figures

guidelines.

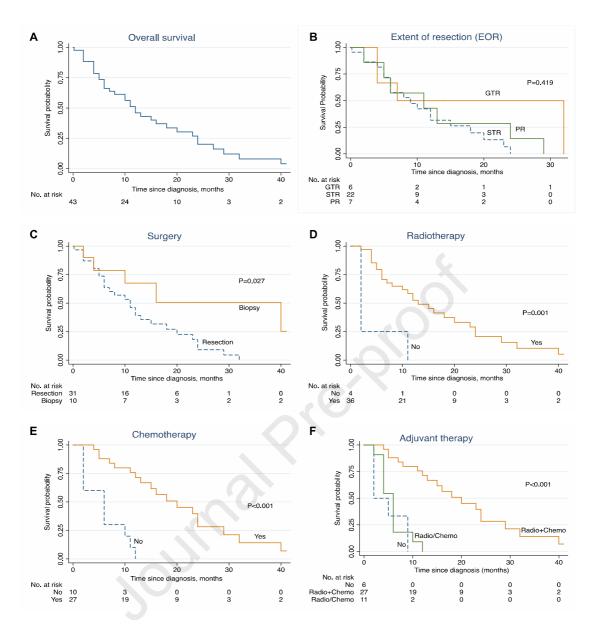


Figure 2. Kaplan-Meier survival curve of prognostic factors on OS in pineal GBM patients.

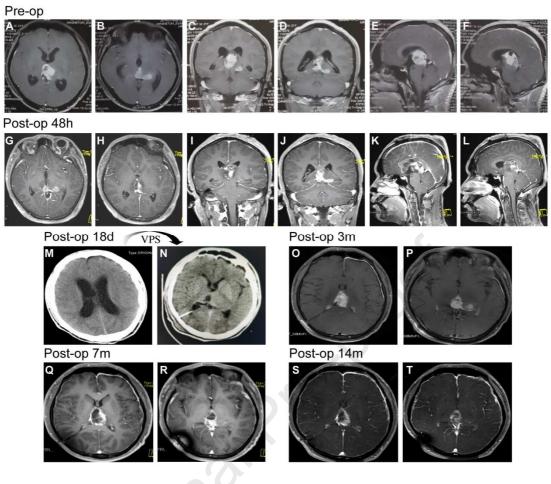


Figure 3. Illustrative case.

Abbreviations and Acronyms

- CSF: Cerebral spinal fluid
- DMG: Diffuse midline glioma
- ETV: Endoscopic third ventriculostomy
- EVD: External ventricular drainage
- GBM: Glioblastoma
- GTR: Gross total resection
- MRI: Magnetic resonance imaging
- OS: Overall survival
- PR: Partial resection
- STR: Subtotal resection
- VPS: Ventriculoperitoneal shunt

Disclosure

Statement

We certify that this manuscript is a unique submission and is not being considered for publication, in part or in full, with any other source in any medium.

Funding

This study was supported by the Sichuan provincial science and technology program (No. 2018SZ0143), the Innovation and Sparkle Project of Sichuan University (No. 2082604401004/060) and the technology innovation research and development project of Chengdu (No. 2019-YF05-00392-SN).

Acknowledgement

None.

Conflict of Interests

The authors declare no conflict of interests.

Informed consent

Informed consent was obtained for all included patients in our institution.

Ethical approval

This retrospective study was approved by the Institutional Review Board (IRB) of our hospital.

Credit Author Statement

Xiaodong Niu: Conceptualization, Methodology, Software, Writing- Original draft preparation.

Chenghong Wang: Data curation, Writing- Original draft preparation.

Xingwang Zhou: Data curation, Writing- Original draft preparation.

Yuan Yang: Methodology, Visualization, Supervision.

Yanhui Liu: Validation, Supervision.

Yuekang Zhang: Supervision, Writing- Reviewing and Editing,

Qing Mao: Supervision, Writing- Reviewing and Editing