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Intraoperative imaging

Intraoperative imaging, by acquiring and displaying timely information during surgery, 

provides a beneficial adjunct to glioma surgery. Gliomas can be difficult to differentiate from 

surrounding tissue making intraoperative estimates of residual tumor inaccurate. During 

surgical resection, brain shift of as much as 1 cm can occur after craniotomy and dural 

opening 1 due to CSF egress, diminished mass effect, osmotic diuresis, edema, lesion 

resection, or intraoperative pneumocephalus 2,3 These changes render preoperatively 

acquired images increasingly inaccurate as the surgery proceeds, limiting their usefulness in 

guiding intraoperative decision-making.

Intraoperative imaging allows visualization of brain shift and other changes which have 

occurred during tumor resection providing an updated set of images to guide additional 

tumor resection. The opportunity to perform additional resection reduces the need for return 

to OR, as residual tumor can be taken after the intraoperative scan and before closure 4. 

Intraoperative imaging can also identify intraoperative complications such as hematoma so 

that these can be promptly managed while the patient is still in OR 2,4. Through real time 

monitoring, intraoperative imaging has led to the development of novel interventions for 

gliomas including laser interstitial thermal therapy (LITT) and focused ultrasound blood 

brain barrier disruption (FUS BBBD).

While beneficial, intraoperative imaging and intraoperative MRI (iMRI) in particular also 

presents several clinical challenges. Between patient set up, scanning time, moving the MRI 

into and out of the operating room, instrument counts, and safety protocol procedures, iMRI 

can add over 2 hours to craniotomy 2. Solutions to some of these inherent problems have 

been mitigated by establishing iMRI workflows and newer methods that shorten scanning 
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times2. As newer technology becomes available such as 5-ALA5 further studies are needed 

to establish the relative benefit costs of different intraoperative adjuncts.

Intraoperative Ultrasound (iUS)

The first report of iUS for brain tumors was by Ballantine et al. in 1950.6 Original 

ultrasound techniques were first developed using 2D B-mode. This technology is based on 

pulsed acoustic waves that are reflected off the tissue of interest and detected at transducers 

to display their properties based on time and scattering. Most neurosurgical transducers 

operate within 1-25MHz and provide up to 10cm of depth penetration. A basic principle is 

that the higher the frequency, the better the resolution closer to the probe, however, higher 

frequencies have less penetration and hence less ability to image deeper structures (ex. 

25MHz can provide maximum resolutions only a few centimeters from the emitting source). 
7 Most often, the transducer type is determined by tumor size, craniotomy, anatomy of 

interest, and surgeon preference. iUS has significant advantages in that it has a lower cost of 

purchase and upkeep, takes up less OR space, is less disruptive to workflow, and may be 

available in settings in which intra-operative MR imaging is not available.8

Integration with Neuronavigation and Brain Shift

iUS has been an effective tool in maximizing resection of brain tumors 9–11 (Figure 1). 

Advances in technology have revitalized the use of iUS. Most US systems used in 

neurosurgical operating rooms use 2D B-mode ultrasound. One method of reconstructing a 

3D image is to acquire a “sweep” of 2D images while tracking the probe with 

neuronavigation and rebuilding these into a 3-D dataset. This technique has provided 

powerful volumetric data that is typically collected by freehand sweeps, mechanical sweeps 

or a phased array transducer. 12 3D ultrasound data can then be integrated and fused with 

pre-operative MRI scans for neuronavigaton 13–17. Research groups have developed 3D 

US/MRI fusion-based neuronavigation and this approach has been commercialized recently.

Because intraoperative ultrasound offers real-time imaging, it can help by giving updated 

information regarding brain shift. There are a variety of techniques which have been applied 

to compensate for brain shift including rigid registration using hyperechoic structures 18, 

automated non-rigid registration 19–21, a “pseudo-US” technique 22, and vessel registration 
23. iUS is often compared to iMRI as both can provide updated imaging in the operating 

room. There are no randomized controlled trials, comparing iUS to iMRI, but there are 

mixed reviews showing less sensitivity in detecting small residual tumor volumes. 10,11,24,25.

Artifacts in intraoperative US

Although iUS usefulness improves with surgeon experience, there are conditions present 

during surgery such as blood products that can make interpretation variable and challenging. 

For instance, sound waves transmit through air at 330 m/s, saline at 1,480m/s, and brain 

tissue around 1,550 m/s. 26 This can produce errors in location of approximately 1.6mm, 

10cm from the transducer. A clinically significant problem is that there is an artifactual 

hyperechoic signal due to changes in impedance at the margin of the fluid filled resection 

cavity and the surrounding parenchyma which makes interpretation of the images 
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particularly challenging in the area of greatest clinical concern. Recently, a promising 

acoustic coupling fluid has been developed to reduce this artifact, and is currently in phase 1 

clinical studies 27.

Advanced iUS Modalities

There are a number of advanced ultrasound modalities currently in development. One 

promising well-studied technique, 28 is contrast enhanced ultrasound (CEUS). CEUS utilizes 

a microbubble based contrast, similar to that used in echocardiograhpy, which can outline 

gliomas, differentiate between tumor/edematous brain, provide grading information, show 

dynamic arterial/venous phases of the lesion, and be integrated to navigation systems as 

described above 29,30. A recent review from our group, highlights the current state of the art. 
31

Intraoperative MRI (iMRI)

Intraoperative MRI (iMRI) in neurosurgery started at Brigham & Women’s Hospital (BWH) 

in Boston, MA in 1994 (Figure 2) 2,32,33. Between 1995 and 2007, over 1,000 craniotomies 

using iMRI were completed 4. General Electric working closely with BWH in the early 

1990’s developed an open-configuration iMRI consisting of two vertically oriented 

superconducting magnets with separate communicating cryocoolers in a “double-donut” 

conformation 3,4. The General Electric Signa System 0.5-T field machine allowed for the 

patient’s head to be placed in the vertical gap between the coils, as close as possible to the 

magnet isocenter 3, minimizing spatial distortion and signal loss 34 while allowing for access 

to the patient by the surgeon and assistants. The system had the option of docking the 

operating table into the magnet sideways or lengthwise, depending on what configuration 

would maximize patient access 3. The patient was fixed, and the MRI was also fixed; one did 

not need to move either to acquire iMRI. The main disadvantages of this early system were 

low field strength, which limited image resolution and the need for all surgical instruments 

and personnel to be MRI compatible3.

In later iMRI systems, the MRI was fixed, but the patient had to be rotated into the MRI 

machine, which was placed at a 160 degree angle to the operating room table 35,36. Other 

open-configuration iMRIs included the Siemens systems, including one with a table that 

could rotate into and out of a 1.5-T closed-bore magnet, and the Medtronic PoleStar system 

(Medtronic, Minneapolis, MN) 3. The advantage of these systems was that minimal 

modifications to OR suites had to be made, unlike the original iMRI. The major 

disadvantage was again the relatively low field strength 32

A significant development in iMRIs was the modification of diagnostic closed-configuration 

MRI scanners for intraoperative use. One system (IMRIS, Deerfield Imaging, Minnetonka, 

MN) is a rail-mounted system which moves the MRI instrument to the patient allowing for 

minimal patient movement 37,38. Launched commercially in 2005 and first launched in 

Europe in 2010 35, over 60 such systems have been installed worldwide to date 32. A major 

advantage of iMRI with machines in or adjacent to ORs are that the patient does not need to 

be moved; therefore, IV lines, catheters, and endotracheal tubes are at less risk of dislodging 
35.
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To reduce scanning time, which prolongs overall surgical time, iMRI sequences can be 

tailored to particular types of tumors or lesions 2. There is no universal iMRI protocol; 

rather, image sequences are obtained and reformatted into imaging planes and- if further 

resection is required-merged with stereotactic surgical navigation systems 34. The standard 

sequences obtained during iMRI for glioma resections may include T1 (gadolinium 

enhanced or non-enhanced) T2, and fluid attenuated inversion recovery (FLAIR) as well as 

diffusion images 39.

Glioblastoma (GBM) and Extent of Resection

Maximal safe surgical resection of GBM is a key part of treatment. There are numerous 

studies showing a survival benefit with gross total resection of enhancing tumor 40–42. iMRI 

can play a significant role in aiding the surgeon during the resection of GBMs including 

identifying incomplete resections (Figure 3) and updating the neuronavigation dataset. In a 

prospective randomized control study, Senft et al. showed that iMRI had more complete 

resections of the enhancing tumor than controls (96%) and a longer progression-free survival 

(226 days vs 98 days).43 Another study identified 47% of patients who underwent additional 

resection because of residual disease identified on the intraoperative scan. 44 Napolitano et 

al. also showed in a non-randomized study that patients who underwent iMRI had a 17% 

improved quality of resection with 9% more gross total resection (GTR) without additional 

morbidity. iMRI may have an increasingly important role in the future as there is increasing 

emphasis on maximizing the extent of resection for particular molecular subtypes of GBMs 
45,46.

iMRI-guided biopsies

iMRI-guided frameless stereotactic brain biopsy can confirm intraoperatively that the biopsy 

needle has reached its target location and converts a blind procedure into a visualized 

procedure with high histologic yield 47,48. A prospective analysis (June 2009 to April 2011) 

showed that frameless stereotactic iMRI-guided tumor biopsy increased diagnostic 

effectiveness and safety and decreased cost 49. Several systems for iMRI-guided biopsies 

currently exist. Neurogate (Daum GmbH, Germany) is an MR-compatible device for 

stereotactic biopsy of lesions 50). A study of 28 patients between 1997 and 2000 with 

intracranial metastatic tumors or gliomas who underwent biopsy with Neurogate established 

stereotaxy in the open MRI as safe and accurate for intracranial biopsies 50). Other available 

MRI-compatible biopsy systems include the Magnetic VisiOn (Magnetic VisiOn GmbH, 

Switzerland), the Heidelberger Interventions-Trajektor (Pilling Weck Chirurgische Produkte 

GmbH, Karlstein, Germany) and the Navigus trajectory guide (Image-Guided Neurologics, 

Inc., Melbourne, FL, USA) 50.

The Clearpoint Smartframe system (MRIInterventions, California, USA) is an MRI-

compatible stereotactic tripod system originally developed for MRI-guided placement of 

deep brain stimulating electrode which can also be used for intracranial biopsies. The system 

consists of three circular fiducials and a cannula filled with gadolinium contrast 51. It is 

typically mounted on the scalp through screws that pierce skin and penetrate the outer 

cranium table, or the frame can be mounted directly on the skull 52. It provides 

submillimeter accuracy for stereotaxy 51. Another option is Hall and Truwit’s “prospective 
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stereotaxis” system which uses iMRI to target the lesion, monitor needle advancement, and 

track progress in real time at one to three images per second, and the needle can be advanced 

manually or via remote control 39,53,54

Laser Interstitial Thermal Therapy (LITT)

The advent of MR thermometry allowed the controlled delivery of laser energy to the brain 

with near real time monitoring of heating. Thermal therapy emerged from an observation in 

1891 that an inoperable sarcoma went into remission after a patient had a febrile strep 

infection 5556. Treatment of cancer by thermal methods was bypassed in favor of radiation 

and chemotherapy until its resurgence in 1967, when Cavaliere et al. 57 proposed that cancer 

cells may be preferentially vulnerable to heat 56,57. LITT was first used to ablate treatment-

resistant focal metastatic intracranial tumors, and was then approved by the FDA for use of 

soft tissue ablation in neurosurgery (Figures 4a and 4b) 58,59. Its use was later expanded to 

glioma surgery.

In a first clinical study of LITT in gliomas, median survival of 16 patients with 

supratentorial GBM who underwent LITT after first relapse increased from 9.4 to 11.2 

months (vs. a natural history of survival <5 months or after temozolomide chemotherapy 

5.4-7.1 months) 60. LITT has been used to ablate newly diagnosed and recurrent GBMs. In a 

study of 8 patients with newly diagnosed and 13 patients with recurrent GBMs, LITT 

extended median survival from 2 to 8 months in newly diagnosed GBM; medial survival of 

patients with recurrent GBMs who underwent LITT was 7 months, suggesting LITT may be 

an effective salvage therapy 61. LITT can also be used in cases of radiographic progression, 

especially when patients have few other salvage treatment options 62.

MR-guided LITT is a major advancement because it allows for monitoring of ablation in 

real time with MRI 63. Without MRI guidance, LITT harbored an unacceptably high risk of 

thermal damage to the surrounding healthy brain 63. The Visualase System by Medtronic is 

an MRI-guided laser ablation system used in the US since 2007. It gained CE approval in 

March 2018 64,65. The Neuroblate System by Monteris is currently the only robotic LITT 

system 66. iMRI-guided LITT may be a safer alternative to patients in whom GBM is not 

accessible by surgery or in patients who are not surgical candidates due to medical 

comorbidities or other risks 67.

Intraoperative computed tomography (iCT)

iCT for glioma surgery was first described in the 1980s. 68. The initial limitations were 

image quality and hardware artifact 69. Current systems available include a multidetector CT 

which provides high resolution images of the soft tissue, or the cone-beam CT which 

provides better bony resolution with decreased cost and radiation exposure 70. Although the 

imaging quality when compared to iMRI of intra-axial malignant tumors is poor, there is a 

significant advantage in terms of acquisition time, cost, maintenance, workflow and 

avoidance of room logistics such as magnetic shielding.

Because iCT offers the ability to image with the patient’s head fixed in pins, it can be used 

to update neuronavigation, accommodate for brain shift, and obtain vascular imaging. 71. 
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This has also paved the way for automated registration techniques using a low-dose CT scan 

to reduce mean target registration errors to under 1mm. 72 One study showed the workflow 

interruption to obtaining an intraoperative scan is around 10-15 minutes with one of their 7 

glioma patients needing further resection after the intraoperative scan. 69

Conclusion

Intraoperative imaging is a useful adjunct to achieving a maximally safe resection during 

high-grade glioma surgery. There are a variety of modalities available including iMRI, iUS, 

iCT all of which aim to give the surgeon more information, address brain shift, identify 

residual tumor, and increase the extent of surgical resection.
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Synopsis:

This chapter includes intraoperative imaging techniques used during high-grade glioma 

surgery. Intraoperative imaging helps to alleviate problems encountered during glioma 

surgery such as brain shift and residual tumor. The chapter starts with a brief introduction 

followed by a review with the latest advances in intraoperative ultrasound, intraoperative 

MRI, and intraoperative CT.
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Key Points:

Intraoperative imaging allows accommodation of brain shift, identifies residual tumor and 

increases extent of resection. Intraoperative imaging techniques include ultrasound, MRI 

and CT.
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Fig. 1. 
Navigated iUS fused to a preoperative T1-weighted MRI image of a glioma. Navigated iUS 

allows for accommodation of brain shift showing shift of the hyperechoic tumor relative to 

the registered preoperative MRI.
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Fig. 2. 
The AMIGO suite for image-guided surgery at Brigham and Women’s Hospital.
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Fig. 3. 
Preoperative contrast-enhanced T1-weighted MRI of a recurrent GBM (left), intraoperative 

contrast-enhanced T1-weighted MRI showing residual tumor under the lip of the resection 

edge (middle), postoperative T1-weighted contrasted MRI showing gross total resection of 

enhancing tumor (right).
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Fig. 4. 
(A) Magnetic resonance thermometry allows the operator to assess relative temperature 

maps in real-time. The three panels are the same slice taken at different time points in the 

ablation. (Left) The tumor (pink outline) preablation with a cooler center (bluish hue) as 

cooled CO2 is sent around the catheter tip. (Middle) The same slice midablation with a 

relative warming up of the center of the catheter (greenish hue) and the beginnings of the 

thermal damage estimate beginning to appear (yellow). (Right) Further warming (reddish 
hue) and larger thermal damage estimate. (B) LITT ablation procedure performed in iMRI 

using magnetic resonance thermometry sequences to derive thermal damage estimates.
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