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The incorporation of machine learning (ML), an application of artificial intelligence (AI) into 
the practice of medicine is one of the most promising areas of research and development in 
21st century neuro-oncology1,2. This newfound interest in using ML for solving practical 
problems in medicine is driven by recent advances in one of its algorithms: deep learning. 
Among the artificial networks used by deep learning,  deep neural networks (DNNs) are 
being applied to problems ranging from screening radiological and pathological imaging to 
screening for diabetic retinopathy.3–5 DNNs consist of many layered (hence “deep”) 
networks, mimicking the human brain, hence neural networks. Among them convolutional 
neural networks (CNN) are used for images and rooted on neocognitron6, a concept based 
on the biological mechanisms of visual recognition of the vertebrate primary visual cortex. 
DNNs can automatically extract hierarchical features from high dimensional imaging in order 
to perform an underlying predictive task – often supervised classification. However, their 
ability to automatically learn features can result in seemingly accurate but actually erroneous 
models that do not work in practice.7 Like many experimental techniques, DNNs must be 
employed and validated in a rigorous fashion to avoid confounding elements. 
 
Differentiating pseudo-progression from progression is one of the most common diagnostic 
dilemmas in neuro-oncology. It is a commonly held belief that within the high dimensional 
data of pathology or radiology imaging there exist distinct signals corresponding to 
progression or pseudo-progression. The gold standard for diagnosis of pseudo-progression 
is surgical biopsy and pathological examination that requires both a neurosurgical operation 
as well as analysis by a trained neuro-pathologist. Hollon et al. in their most recent work 
combine the use of stimulated Raman Spectroscopy (SRH) and DNNs in order to tackle the 
problem of distinguishing glioma recurrence from pseudo-progression on pathological 
analysis.8 Based on ten-fold cross-validated internal results, they demonstrated an average 
AUC of 96.2-98.7% for patient level predictions. Subsequently on an external test set, they 
achieve an impressive accuracy of 95.8% (sensitivity 100%, specificity 88.9%). One of the 
main benefits of ML is its ability to automate tasks, and one of the strongest 
recommendations of the work by Hollon et al. is its automation of the analysis. By using SRH 
to derive imaging from intraoperative tissue specimens and then automating the analysis 
with a DNN they bring the pathological diagnosis from the laboratory and into the operating 
room at the point of care. 
 
If ML can bring the diagnosis of pseudo-progression to the OR, it raises the question as to 
whether it can lead to a diagnosis without surgery at all – a tissue-free diagnosis from 
radiological imaging. If a DNN can diagnose pseudo-progression in SRH imaging though, 
can it diagnose pseudo-progression on MRI? Here the results have been decidedly less 
impressive. As noted by the authors, non-invasive predictions of pseudo-progression using 
MRI including routine MRI, perfusion MRI, and magnetic resonance spectroscopy (MRS) all 
have had limited results in the hands of expert clinicians with AUCs ranging in the 80s to low 
90s. The use of ML with radiology imaging, frequently referred to as “radiomics”, has had 
little better results with AUCs also ranging from 80-90%.9,10 Furthermore, all of these studies 
lack a rigorous external validation, and more hypothesis generating than conclusive. The 
pursuit of tissue-free diagnosis of pseudo-progression and other neuro-oncological diagnosis 
remains a promising future direction for ML in neuro-oncology as we work to incorporate 
technologies such as SRH driven technique into the OR.8 In all cases we expect that DNNs 
and other ML techniques will be at the forefront of future pathological and radiological 
advances in neuro-oncology. 
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