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Predicting Isocitrate Dehydrogenase (IDH)
Mutation Status in Gliomas Using

Multiparameter MRI Radiomics Features
Hong Peng, MD,1,2† Jiaohua Huo, BD,3† Bo Li, BS,4 Yuanyuan Cui, MD,1,2

Hao Zhang, MS,1,2 Liang Zhang, PhD,3* and Lin Ma, PhD, MD1,2*

Background: Accurate and noninvasive detection of isocitrate dehydrogenase (IDH, including IDH1 and IDH2) status is
clinically meaningful for molecular stratification of glioma, but remains challenging.
Purpose: To establish a model for classifying IDH status in gliomas based on multiparametric MRI.
Study Type: Retrospective, radiomics.
Population: In all, 105 consecutive cases of grade II–IV glioma with 50 IDH1 or IDH2 mutant (IDHm) and 55 IDH wildtype
(IDHw) were separated into a training cohort (n = 73) and a test cohort (n = 32).
Field Strength/Sequence: Contrast-enhanced T1-weighted (CE-T1W), T2-weighted (T2W), and arterial spin labeling (ASL)
images were acquired at 3.0T.
Assessment: Two doctors manually labeled the volume of interest (VOI) on CE-T1W, then T2W and ASL were coregistered
to CE-T1W. A total of 851 radiomics features were extracted on each VOI of three sequences. From the training cohort, all
radiomics features with age and gender were processed by the Mann–Whitney U-test, Pearson test, and least absolute
shrinkage and selection operator to obtain optimal feature groups to train support vector machine models. The accuracy
and area under curve (AUC) of all models for classifying the IDH status were calculated on the test cohort. Two subtasks
were performed to verify the efficiency of texture features and the Pearson test in IDH status classification, respectively.
Statistical Tests: The permutation test with Bonferroni correction; chi-square test.
Results: The accuracy and AUC of the classifier, which combines the features of all three sequences, achieved 0.823 and
0.770 (P < 0.05), respectively. The best model established by texture features only had an AUC of 0.819 and an accuracy
of 0.761. The best model established without the Pearson test got an AUC of 0.747 and an accuracy of 0.719.
Data Conclusion: IDH genotypes of glioma can be identified by radiomics features from multiparameter MRI. The Pearson
test improved the performance of the IDH classification models.
Level of Evidence: 4
Technical Efficacy Stage: 1
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GLIOMA is a devastating brain tumor with poor progno-
sis, uncertain pathogenesis, various biological characters,

and low median survival time.1 Previous studies have shown
that the mutation status of isocitrate dehydrogenase (IDH) is
a critical factor for the diagnosis, treatment, and prognosis of
gliomas2,3; preoperative identification of the IDH mutation
status would be of great clinical significance in selecting

potential patients. It benefits chemotherapy, and thus assists
with planning pf the therapy regime.4,5 In the 2016 World
Health Organization (WHO) classification of central nervous
system (CNS) tumors, IDH was identified as a basic bio-
marker for subtyping of gliomas,6 as well as an important clue
for prognosis. However, confirmation of IDH mutation sta-
tus requires a tissue sample, usually obtained through surgery
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or biopsy, which has the risk of inducing neurological deficits
and reducing quality of life.7,8 Magnetic resonance imaging
(MRI) is a routine and noninvasive technique for evaluating
gliomas. However, the sensitivity and specificity for identifica-
tion of IDH mutation by MRI ranges from 56–100% and
from 51–100%, respectively.9 Therefore, more reliable
methods to predict IDH mutation status in gliomas by MRI
are desired.

Previous studies have evaluated the performance of vari-
ous machine-learning algorithms on predicting the genotypes
of gliomas.10–12 High-throughput features derived from MRI
have been shown to have a great advantage that helps to effec-
tively predict the classification of IDH.13,14 The ability of fea-
tures to noninvasively predict –IDH mutation status of
glioma from a single MR sequence, such as T2 weighted
imaging has been shown,15 Dynamic contrast-enhanced
MRI16 and dynamic susceptibility contrast-enhanced MRI17

have been evaluated. Combinations of features from multiple
sequences have been shown to be more reliable to predict the
genotypes related to the occurrence of gliomas.18,19 Further-
more, deep-learning models were developed to predict IDH
mutation status preoperatively based on MRI data.20,21

Thus, the purpose of this study was to investigate the
utility of a radiomics signature based on multiparametric
MRI as a preoperative and noninvasive biomarker of IDH
status in gliomas.

Materials and Methods
Patients
This study was approved by the Ethics Committee of our hospital,
and written informed consent was obtained from all patients. We
retrospectively collected clinical information and the MRI data of all
patients from January 2015 to December 2018, with pathologically
diagnosed (after resection) grade II–IV gliomas according to the
WHO Classification of Tumors of the Central Nervous System.6

The inclusion criteria were as follows: 1) patients with avail-
able pathological analysis report; 2) patients with preoperative MRI
data; and 3) over 18 years old. A total of 208 patients were included.
Then 103 patients were excluded due to the following conditions: i)
patients lack of IDH gene expression status assessed by EnVision
immunohistochemical staining (DAKO, Hamburg, Germany) with
a standard protocol developed by the German Cancer Research Cen-
ter (n = 41); ii) patients lacked at least one of the following MRI
sequences: contrast-enhanced T1-weighted images (CE-T1W), T2-
weighted images (T2W), and arterial spin labeling images (ASL) (n
= 53); and iii) the MR images that had motion or other kinds of
artifacts that may affect subsequent segmentation and analysis (n
= 9). Finally, 105 subjects met the requirements and were included
in this study (50 cases of IDHm [mutant] and 55 cases of IDHw
[wildtype]). The clinical information (age and sex) and tumor char-
acteristics (grade and location) were summarized in Table 1.

The whole cohort was randomly split into a training cohort
(70%, n = 73) and a test cohort (30%, n = 32).

MRI Acquisition
MR images were acquired with a 3T MRI system (Discovery 750;
GE Healthcare, Milwaukee, WI) using a receive-only 32-channel
phased-array head coil. MRI included T2W fast spin-echo (FSE),
CE-T1W FSE-IR (inversion recovery), and ASL. T2W was obtained
with repetition time / echo time (TR/TE) = 4252/103.7 msec, field
of view (FOV) = 24 × 24 cm, matrix = 192 × 192, NEX (number
of excitations) = 1.5; CE T1W (TR/TE/TI [inversion time]
=1750/24/780 msec, FOV = 24 × 24 cm, matrix = 320 × 320,
NEX = 1) was acquired 2 minutes after intravenous administration
of contrast agents (Magnevist, 0.1 mmol/kg, Bayer HealthCare Phar-
maceuticals, Wayne, NJ). These images were obtained with identical
section thickness (5 mm) and section space (1.5 mm). ASL was
acquired using a background-suppressed 3D spiral FSE technique.
The parameters were as follows: TR/TE = 4844/10.5 msec, post-
labeling delay = 2025 msec, FOV = 24 × 24 cm,
section thickness = 4.0 mm, number of sections = 36, NEX = 3.

Data Preprocessing
A volume of interest (VOI) was manually segmented on the CE-
T1W slice-by-slice by two radiologists (P.H. and L.B., 11 and
15 years of experience, respectively). Areas of edema and necrosis
were excluded (Fig. 1a,b) so that only tumor was included (Fig. 1,
green areas). The T2W and the ASL perfusion images were cor-
egistered to the CE-T1W for each case using SPM12 (https://www.
fil.ion.ucl.ac.uk/spm/software/spm12/). The perfusion images were
automatically calculated by an MRI scanning system.

Finally, image intensity values were standardized using
PyRadiomics,22 an open source toolkit for medical image feature
extraction. The standardization method for one image: first calculat-
ing the mean value and variance of image pixels, then each pixel
value of the image is subtracted by the mean value and divided by
the variance (Fig. 2).

Feature Extraction
Feature extraction was performed using PyRadiomics. For each
image set in the training cohort, a total of 851 radiomics features
were extracted from each VOI. The definitions and calculation for-
mulas of all radiomics features are available on the Pyradiomics’s
website (https://pyradiomics.readthedocs.io/en/latest/features.html).
Fourteen shape features were extracted based on the shape of the
VOI. Eighteen first-order statistical features and 75 texture features
were extracted from nine kinds of images (the original image and
eight wave-let transform images). The 14 first-order statistics features
describe the distribution of voxel intensities within the image region
defined by the mask through commonly used and basic metrics. The
texture features include 24 gray level cooccurrence matrix (GLCM)
features, 16 gray level run length matrix (GLRLM) features, 16 gray
level size zone matrix (GLSZM) features, five neighboring gray tone
difference matrix (NGTDM) features, and 14 gray level dependence
matrix (GLDM) features. The 851 radiomics features (14 + (18
+ 24 + 16 + 16 + 5 + 14) × 9) plus age and gender, with a total of
853 dimensional features, were used for the classifier training. The
age was used as a continuous variable and the gender was a categori-
cal variable.
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Feature Selection
A group of optimal features for each MR sequence was selected
based on the training cohort before the training process. First, a
Mann–Whitney U-test was conducted on the features, and the fea-
tures with differences (P < 0.05) between two categories were pre-
served. Next, a Pearson test was used to assess the correlation
between features and categories, and features with P < 0.05 were
selected as potentially predictive. Finally, the LASSO (least absolute
shrinkage and selection operator)23 with default parameters was car-
ried out, and the features with nonzero weight were selected as the
optimal feature groups.

Classifier Modeling
The modeling of the support machine (SVM) was based on a
machine-learning toolkit of scikit-learn (https://scikit-learn.org/
stable/about.html#citing-scikit-learn). For the optimal feature groups
from three sequences, the model with the best performance was cho-
sen from four SVM classifiers, including default parameters SVM
(def), SVM with radial basis function kernel (RBF), with linear

kernel (linear), and with poly kernel (poly), which were built to pre-
dict IDH genotype, to represent them. To avoid overfitting, the
parameters of the three kernel function models were determined
using 5-fold cross-validation and grid search.

In addition, we combined the optimal feature groups of each
sequence into a set of multiparametric MRI features to train classi-
fiers, and experiments were performed on all possible combinations
of two or three sequences. The training process of multiparametric
MRI features was the same as that of single-sequence features. It
should be noted that, for a single sequence in the same case, the age,
gender, and shape features were the same, thus these repeated fea-
tures were eliminated before training. This process is referred to as
Method 1, below.

Classifier Modeling With Only Texture Features
In our study texture features accounted for 79.1% (75*9/853)
features in one sequence. In this part of the study, only texture fea-
tures (all features except age, gender, shape features, and first-order
statistical features) were sent to three stages of feature selection

TABLE 1. Clinical and Tumor Characteristics of the Whole Cohort

Total cases Mutated Wildtype P

Case numbers 105 50 (47.6%) 55 (52.4%)

Clinical characteristics

Sex 0.706

Male 61 (58.1%) 30 (60.0%) 31 (56.4%)

Female 44 (41.9%) 20 (40.0%) 24 (43.6%)

Age 0.005

18–30 17 (16.2%) 9 (18.0%) 8 (14.5%)

31–60 74 (70.5%) 40 (80.0%) 34 (61.8%)

>60 14 (13.3%) 1 (2.0%) 13 (23.7%)

Mean � SD 45.4 � 13.0 42.1 � 11.3 48.5 � 13.8

Grade 0.000

II 45 (42.9%) 34 (68.0%) 11 (20.0%)

III 16 (15.2%) 8 (16.0%) 8 (14.5%)

IV 44 (41.9%) 8 (16.0%) 36 (65.5%)

Tumor location 0.005

Frontal lobe 32 (30.6%) 25 (50.0%) 8 (14.6%)

Temporal lobe 18 (17.1%) 4 (8.0%) 10 (18.2%)

Parietal lobe 6 (5.7%) 3 (6.0%) 2 (3.6%)

Occipital lobe 1 (0.9%) 0 (0%) 1 (1.8%)

Central area 21 (20.0%) 7 (14.0%) 9 (16.4%)

Cerebellum 2 (1.9%) 0 (0%) 1 (1.8%)

Two or more 25 (23.8%) 11 (22.4%) 24 (43.6%)
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(Mann–Whitney U-test, Pearson test, and LASSO) to explore the
predictive efficacy of texture features compared with that of all fea-
tures. This process is referred to as Method 2, below.

Classifier Modeling Without a Pearson Test
To verify the effect of the Pearson test on the classification results,
we designed an additional experiment. Specifically, as in Method
2, only texture features were used for training, but the optimal fea-
ture group was selected by Mann–Whitney U-test and LASSO. This
process is referred to as Method 3.

Statistical Analysis
The chi-square test was performed using IBM SPSS Statistics
(v. 22.0; Armonk, NY) to analyze whether there were statistically
significant differences in clinical and tumor information between the

IDHm and IDHw groups. The Mann–Whitney U-test and Pearson
test were performed using SciPy24 for feature selection, an open
source mathematical, scientific, and engineering computing tool.
The level of confidence for all the statistical analyses mentioned
above was kept at 95% and results with P < 0.05 were significant.

To evaluate the models’ ability to distinguish IDHm and
IDHw, the values of accuracy (ACC), sensitivity (SEN), specificity
(SP), and AUC in the test cohort were calculated using the patholog-
ical diagnosis of IDH status as the reference standard.

The permutation test was used to analyze whether the optimal
feature group was an effective tool for distinguishing IDHm and
IDHw or just approximate a random guess. Since we compared the
performance of different models based on ACC, the ACC of the test
set was assessed by the permutation test with 1000 epochs,25 and
Bonferroni correction was applied to the result of permutation test.

FIGURE 1: Examples of volume of interest (VOI) segmentation. The green areas represent the regions of interest segmented on CE-
T1W for (a) IDH1 or IDH2 mutant (IDHm) of high-grade glioma, (b) IDH wildtype (IDHw) of high-grade glioma, (c) IDHm of low-grade
glioma, and (d) IDHw of low-grade glioma.
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When P < 0.05 for the permutation test, there was a significant dif-
ference between the real ACC and the random guess ACC. After
Bonferroni correction, the statistical significance level should be
0.05/11 ≈ 0.005, where 11 is the number of repeated experiments.

Due to the small size of the dataset and the random way of
split, this may lead to the high variance of classification results.
Therefore, the randomly split and model training and testing process
were repeated 11 times, all evaluation indexes of the test set were cal-
culated for each split, and models were evaluated by the average
value of 11 indexes. The models with the same average value were
evaluated by standard deviation of 11 indexes. The smaller the stan-
dard deviation, the more stable the model.

Results
Clinical Characteristics of the Study Cohort
No significant difference was found in gender (P = 0.706).
However, there were significant differences in age, grade, and
tumor location between IDHm and IDHw. See Table 1.

Performance of the Classification Model
After feature selection, the number of remaining features
belonging to four categories (clinical features, shape features,

first-order statistical features, and texture features) for the three
MR sequences were counted (Table 2). For all sequences, tex-
ture features accounted for the majority (77.6%, 85.0%, and
81.5% for T2W, ASL, and CE-T1W, respectively); the num-
ber and categories of texture features varied greatly in 11 splits.
The first-order statistical features are rarely found in the opti-
mal feature groups for T2W (4.0%) and ASL (0.8%), but rep-
resented a relatively large portion of the optimal features for
CE-T1W (13.9%). Only age was selected from clinical features
and only the sphericity of VOI (sphericity is a measure of the
roundness of the shape of the tumor region relative to a circle)
was selected from shape features, but these two features
appeared frequently in the feature selection results of T2W and
ASL. These two features appeared both seven times in
11 results of T2W. In the 11 results of ASL, these two features
appeared eight times and nine times, respectively.

By comparing the average performance of all classifiers,
the best classifier is the one that used the RBF kernel and was
trained by three sequences features (Fig. 3). The average
ACC, AUC, SEN, SP, and P-value of seven RBF-SVM
models in predicting IDH mutation status are listed in
Table 3. The average AUC was 0.823 (95% confidence

FIGURE 2: The pipeline for IDH status prediction. The VOIs were segmented on CE-T1W. T2W and ASL sequences needed to be
registered to CE-T1W after “Tumor segmentation.”

TABLE 2. In Method 1, the Frequency of Four Types of Features in 11 Optimal Feature Groups of Three Sequences

Clinical Shape First-order Texture

T2W 7 (9.2%) 7 (9.2%) 3 (4.0%) 59 (77.6%)

ASL 8 (6.7%) 9 (7.5%) 1 (0.8%) 102 (85.0%)

CE-T1W 2 (1.8%) 3 (2.8%) 15 (13.9%) 88 (81.5%)

Some features appeared repeatedly in 11 splits. The data in parentheses are percentages.
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interval [CI]: 0.715, 0.931), and the average ACC was 0.770
(95% CI: 0.704, 0.835) with a SEN of 0.765 (95% CI:
0.562, 0.967) and SP of 0.776 (95% CI: 0.626, 0.926)
(Table 3). The parameters and classification indexes of all
models are given in Supplement Tables S1 and S4. Among
all the single sequences, CE-T1W had the highest ACC of
0.744 (95% CI: 0.667, 0.822) and AUC of 0.796 (95% CI:
0.679, 0.913) with SEN of 0.717 (95% CI: 0.534, 0.899)
and SP of 0.776 (95% CI: 0.636, 0.915) (Fig. 4).

Among the average results of the permutation test
(P-value, Table 3), the models trained by features from
CE-T1W, CE-T1W + T2W, CE-T1W + ASL, and CE-
T1W + T2W + ASL, respectively, can effectively distin-
guished the two types of IDHs (P-value < 0.005). The
model trained by features from three sequences had the
lowest P-value of 0.001. In addition, the values of P for
T2W, ASL, and T2W + ASL were 0.017, 0.009, and
0.006, respectively.

FIGURE 3: The prediction performances of all models in Method 1. The black numbers on the columns are the ACCs, and the red
data are the standard deviations. The “def,” “rbf,” “linear,” and “poly” represent four kinds of SVM. The RBF-SVM which trained by
features from all three sequences had the highest accuracy with the lowest standard deviation.

TABLE 3. Performances of the Seven RBF-SVM Classifiers (Method 1)

ACCa P-valueb AUCc Send Spe

T2W
f 0.670 (0.568, 0.773) 0.017 0.735 (0.641, 0.829) 0.684 (0.433,0.936) 0.655 (0.407, 0.903)

ASLg 0.722 (0.590, 0.853) 0.009 0.780 (0.635, 0.924) 0.722 (0.481, 0.963) 0.721 (0.547, 0.896)

CE-T1W
h 0.744 (0.667, 0.822) 0.002 0.796 (0.679, 0.913) 0.717 (0.534, 0.899) 0.776 (0.636, 0.915)

T2W + ASL 0.727 (0.605, 0.850) 0.006 0.806 (0.688, 0.923) 0.727 (0.523, 0.932) 0.727 (0.556, 0.899)

CE-T1W + T2W 0.753 (0.681, 0.824) 0.002 0.819 (0.708, 0.930) 0.743 (0.594, 0.893) 0.764 (0.699, 0.829)

CE-T1W + ASL 0.761 (0.653, 0.870) 0.003 0.804 (0.677, 0.931) 0.759 (0.548, 0.971) 0.764 (0.603, 0.925)

CE-T1W +
T2W + ASL

0.770 (0.704, 0.835) 0.001 0.823 (0.715, 0.931) 0.765 (0.562, 0.967) 0.776 (0.626, 0.926)

Data in parentheses are 95% confidence intervals.
aAccuracy.
bThe P-value of permutation test for the accuracy of test cohort.
cArea under receiver operating characteristic curve.
dSensitivity.
eSpecificity.
fT2-weighted image.
gArterial spin labeling image.
hContrast-enhanced T1-weighted image.
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Performance of Classifier Only Using Texture
Features
Table 4 shows the classification results of RBF-SVM models
from Method 2. The other three kinds of SVM indexes (linear
kernel, poly kernel, and default parameters) are presented in
Supplement Table S2. The result accuracy with them are lower
than that with the RBF kernel. For Method 2, the combined
features of the three sequences (CE-T1W + T2W + ASL) had
the best performance, with an ACC of 0.761 (95% CI: 0.696,
0.827) and AUC of 0.819 (95% CI: 0.762, 0.875).

Classifier Performance Without a Pearson Test
The classification results of RBF-SVM models from Method
3 are presented in Table 5. The classifier with the best

performance (ACC = 0.719, 95% CI: 0.605, 0.833) was CE-
T1W + T2W. All classification indexes of this subtask are
given in Supplement Table S3.

Discussion
We evaluated the ability of features from individual MR
sequences to predict IDH mutation status. The performance of
CE-T1W features was the best, which was consistent across the
three methods assessed in our study. As a noninvasive perfu-
sion MRI technique, ASL obtains cerebral blood flow without
administration of an exogenous contrast agent and provides
clues to the prediction of molecular features.10 In previous
studies, ASLs were shown to be helpful in predicting IDH
mutation.26,27 This is consistent with our results. In the first

FIGURE 4: Visual comparison of the performances of the three methods. The black numbers on columns are the ACCs.

TABLE 4. Performances of the Classifiers With Only Texture Features (Method 2)

ACCa AUCb Senc Spd

T2W
e 0.676 (0.574, 0.778) 0.751 (0.593, 0.909) 0.754 (0.468, 1) 0.588 (0.316, 0.860)

ASLf 0.719 (0.571, 0.866) 0.769 (0.604, 0.933) 0.727 (0.555, 0.899) 0.709 (0.458, 0.960)

CE-T1W
g 0.727 (0.674, 0.780) 0.766 (0.658, 0.873) 0.717 (0.579, 0.854) 0.739 (0.622, 0.857)

T2W + ASL 0.719 (0.581, 0.857) 0.791 (0.654, 0.927) 0.743 (0.464, 1) 0.691 (0.496, 0.886)

CE-T1W + T2W 0.759 (0.657, 0.860) 0.799 (0.742,0.856) 0.743 (0.521, 0.965) 0.776 (0.597, 0.954)

CE-T1W + ASL 0.747 (0.659, 0.836) 0.800 (0.727, 0.873) 0.738 (0.558, 0.918) 0.758 (0.555, 0.961)

CE-T1W + T2W + ASL 0.761 (0.696, 0.827) 0.819 (0.762, 0.875) 0.749 (0.564, 0.933) 0.776 (0.589, 0.963)

aAccuracy.
bArea under receiver operating characteristic curve.
cSensitivity.
dSpecificity.
eT2-weighted image.
fArterial spin labeling image.
gContrast-enhanced T1-weighted image.
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two methods of our study, ASL had a similar accuracy as CE-
T1W. It has been suggested that T2W features play a more
important role in distinguishing IDH mutation status than
CE-T1W

28; however, that study counted the number of fea-
tures belonging to each sequence in the optimal feature group,
rather than training the single sequence classifiers separately.

It has been shown that classification performance can
be improved by combining different sequences.29 Our results
showed that the ACCs and AUCs of all three sequences com-
bined were higher than that of an individual sequence. More-
over, the classifier with the best performance and the lowest
P-value is modeled by radiomics features from three
sequences. This suggests that the image features of different
sequences reflect a part of the visual features expressed by
IDH and can complement each other.

Texture features are the most important feature type for
glioma classification,30 and have proved useful for predicting
the IDH1-mutation status in gliomas.31,32 In our study, tex-
ture features accounted for the largest portion in the optimal
feature groups selected from each single sequence. Moreover,
the model trained only by texture features also showed a good
performance for identifying IDH mutation status. However,
the models that considered all of the features (clinical, shape,
first-order, and texture features) showed a much better diag-
nostic performance than assessments performed with only tex-
ture features. Although relatively few features were selected
from clinical, shape, and first-order features, these were rather
important for the complete description of IDH mutation sta-
tus. This could be attributable to the significant correlation
between these features and the incidence of IDH mutation.33

A large number of features extracted from the VOI can
fully describe the properties of the tumor area, but they also

include redundant and noise features that could increase the
unnecessary consumption of computing resources and make a
negative impact on the prediction efficiency. In order to improve
the classification performance of our study, the Mann–Whitney
U-test34 was used to remove features with no statistical differ-
ence in the average value between two categories of IDHm and
IDHw (P > 0.05); the Pearson test35 was used to remove fea-
tures with no significant correlation with categories (P > 0.05),
and LASSO23 was used to reduce redundant features.

A Pearson test is a commonly used statistical method for
measuring the linear relationship between two variables.35 The
correlation analysis is typically used in genotypic diagnosis of
glioma, either for result analysis30 or for feature dimension
reduction.36 The Pearson test was applied for result analysis of
IDH mutation status classification in a previous study,37 and
has not been used in feature selection. The performance of
Method 3, which was the same as Method 2 but without the
Pearson test, was lower than that of Methods 1 and 2. A
potential reason may be that there is more noise in the features
that have no linear relationship with the label and can disturb
the modeling process. This suggests that the Pearson test
should be included in the process of IDH mutation status pre-
diction to obtain a better outcome in future studies.

Limitations
First, only three sequences were included in this study. Future
studies may consider more sequences, such as diffusion-
weighted imaging (DWI), diffusion tensor imaging (DTI), and
so forth. And other critical biomarkers (such as 1p/19q, Ki67,
P53) were not investigated. Second, our method has not been
applied extensively in the classification of other histologic vari-
ables. Third, our model was trained and tested using relatively

TABLE 5. Performances of the Classifiers With Two-Stage Feature Selection (Method 3)

ACCa AUCb Senc Spd

T2W
e 0.639 (0.559, 0.719) 0.698 (0.562, 0.834) 0.690 (0.367, 1) 0.582 (0.287, 0.877)

ASLf 0.631 (0.512, 0.750) 0.673 (0.517, 0.830) 0.690 (0.481, 0.899) 0.564 (0.300, 0.827)

CE-T1W
g 0.693 (0.583, 0.803) 0.727 (0.589, 0.864) 0.695 (0.519, 0.871) 0.691 (0.504, 0.878)

T2W + ASL 0.651 (0.501, 0.800) 0.713 (0.483, 0.944) 0.668 (0.360, 0.977) 0.630 (0.405, 0.856)

CE-T1W + T2W 0.719 (0.605, 0.833) 0.747 (0.633, 0.861) 0.722 (0.525, 0.919) 0.715 (0.485, 0.945)

CE-T1W + ASL 0.713 (0.597, 0.829) 0.750 (0.626, 0.874) 0.727 (0.578, 0.877) 0.697 (0.518, 0.876)

CE-T1W + T2W + ASL 0.705 (0.617, 0.793) 0.745 (0.633, 0.857) 0.717 (0.579, 0.854) 0.691 (0.551, 0.830)

aAccuracy.
bArea under receiver operating characteristic curve.
cSensitivity.
dSpecificity.
eT2-weighted image.
fArterial spin labeling image.
gContrast-enhanced T1-weighted image.

8

Journal of Magnetic Resonance Imaging



small data collected from a single institution. A large-scale pro-
spective and multicenter validation cohort collection should
also be studied in future research.

Conclusion
In this study the classification model based on radiomics features
from CE-T1W, T2W, and ASL, through three stages of feature
selection (Mann–Whitney U-test, Pearson test, and LASSO),
had the best performance in predicting the IDH status of glio-
mas. The result suggested that this method has promising pre-
diction efficiency, and may become a helpful tool for the
diagnosis, treatment, and prognostic prediction of gliomas.
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