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Abstract

Purpose—Methylation of the O6-methylguanine methyltransferase (MGMT) gene promoter is 

associated with improved treatment response and survival in patients with Glioblastoma (GB), but 

the necessary pathological specimen can be non-diagnostic. In this study, we assessed whether 

radiomics features pre-treatment 18F-DOPA PET imaging could be used to predict pathologic 

MGMT status.

Methods—This study included 86 patients with newly diagnosed GB, split into three groups 

(training, validating, predicting). We performed radiomics analysis on 18F-DOPA PET images by 

extracting features two tumor-based contours: a “Gold” contour of all abnormal uptake per expert 

Nuclear Medicine physician, and an “HGG” contour based on a T/N > 20 representing the most 

aggressive components. Feature selection was performed by comparing the weighted feature 

importance and filtering with bivariate analysis. Optimization of model parameters was explored 

using grid search with selected features. The stability of the model with increasing input features 

was also investigated for model robustness. The model predictions were then applied by 

comparing the overall survival (OS) probability of the GB patients with unknown MGMT status vs 

those with known MGMT status.

Results—A radiomics signature was constructed to predict MGMT methylation status. Using 

features extracted HGG contour alone with a Random Forest model, we achieved 80% ± 10% 

accuracy for 95% confidence level in predicting MGMT status. The prediction accuracy was not 

improved with the addition of the Gold contour or with more input features. The model was 
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applied to the patients with unknown MGMT methylation status. The prediction results are 

consistent with what is expected using OS as a surrogate.

Conclusions—This study suggests that 3 features radiomics modeling of 18F-DOPA PET 

imaging can predict the MGMT methylation status with reasonable accuracy. It may provide 

valuable therapeutic guidance for patients where MGMT testing is inconclusive or non-diagnostic.

INTRODUCTION

Glioblastoma (GB) is the most common primary malignant brain tumor with a median 

progression free survival of only about 9 months and survival of approximately one year [1]. 

The standard treatment of GB is surgical resection followed by radiation therapy and 

chemotherapy.

Studies [2–4] indicate that promotion of the O6-methylguanine–DNA methyltransferase 

(MGMT) DNA-repair gene has been associated with significantly longer survival of GB 

patients, a median of 22 months. Knowledge of this biomarker can therefore impact the 

therapeutic regimen. MGMT unmethylated have a poor prognosis and may be better suited 

to hypofractionated radiotherapy courses or enrollment on clinical trials. MGMT status is an 

important factor to be considered to balance quality of life, oncologic outcome and toxicity. 

The current standard of care to obtain MGMT status is with pathologic assessment a 

biopsied specimen, which presents multiple challenges. First, a larger than diagnostic biopsy 

specimen is needed, which could be too invasive and not possible for every patient; second, 

the accuracy of the pathological analysis is highly dependent on biopsy location, yielding 

indetermined results for about 20%−50% [2, 5] of GB patients; third, laboratory access to 

this type of pathological assessment is limited and turn-around time may be too long to 

incorporate into treatment decisions. Therefore, it would be paramount to develop a tool that 

is capable of predicting MGMT promoter methylation status in a rapid, less invasive manner 

with reasonable accuracy.

Radiomics can be used as a possible tool to extract pathological or genomic information 

medical images [6, 7]. It has potential to provide more accurate information because the 

evaluation is no longer susceptible to sampling error, but rather on the entire tumor, and is 

not subjected to biopsy restrictions in eloquent brain. Selection of consistent imaging 

technique is important in radiomics assessment. Conventional T1-contrast-enhancing (T1-

CE) and T2/FLAIR MR imaging is currently the standard of care used for GB diagnosis, 

surgical biopsy or resection planning, radiation therapy treatment planning, and serial 

follow-up imaging to evaluate progression. However, T1-CE within a brain tumor is highly 

dependent on the disruption of the blood-brain barrier, and can therefore present without 

contrast enhancement [8–12]. T2/FLAIR is also used, but lacks the differentiation between 

aggressive disease and edema [8, 9, 11, 13]. For PET imaging, 18F-FDG is the most popular 

and clinically utilized PET tracer, but uptake can be lower than or similar to that of normal 

gray matter, and can be increased in inflammatory lesions, which limits its application in GB 

tumor detection [14]. Amino acid tracers such as 18F-DOPA (3,4-dihydroxy-6-[18F]fluoro-

L-phenylalanine) have shown high tumor-to-background signal and high sensitivity for 
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glioma detection compared with MRI and FDG PET imaging [8, 14–16]. It has been 

successfully utilized for neurosurgical planning and radiotherapy target delineation [8, 17].

There have been efforts to develop radiomics models to predict pathology or treatment 

response using MR and PET imaging [18–23], but many of them lack validation to their 

models by independent test/validation data sets. In this work, by developing and validating a 

radiomics model, we aim to predict MGMT methylation status of GB patients through 18F-

DOPA-PET imaging, and to use it as complimentary information for biopsy, especially for 

those patients where MGMT status cannot be determined pathologically. Our study is the 

first to look at using radiomics feature extraction 18F-DOPA-PET imaging in newly 

diagnosed GB patients to predict MGMT promotion status.

MATERIALS/METHODS

Patients Cohorts

The study cohort included patients three institutional prospective studies (NCT01165632, 

NCT02020720, NCT01991977) with 18F-DOPA-PET imaging. A total of 86 patients were 

identified with Grade IV newly diagnosed Glioblastoma, IDH-Mutant, IDH-wildtype, or 

NOS, between 2010 and 2018. All patients had 18F-DOPA PET imaging performed before 

starting radiotherapy. All patients had pathological assessment, including MGMT promoter 

methylation status whenever sufficient tissue was available.

Among the 86 patients, 69 had conclusive MGMT methylation status, and were randomly 

split into two groups: 59 patients in Group I for radiomics model training and 10 patients in 

Group II for model validation. The demographic and pathologic information for the total 

patient cohort and for each group is summarized in Table 1. The random split provided a 

similar demographic distribution of the patients in each group. Due to the limited number of 

patients, the percentage for the training group was intentionally made large to reduce the 

chance of overfitting, while the validation group size was still sufficient to show the 

statistical significance of the model predictions. The validation data (Group II) were not 

exposed to feature engineering or the modelling process, and were kept as an independent 

data set for validation only. The MGMT methylation status of the remaining 17 patients 

could not be determined pathologically, and were assigned to Group III, which was used as 

another independent and indirect test to our model by comparing their OS data as a surrogate 

to MGMT status.

The population of the enrolled patients was enriched for unmethylated, higher risk patients. 

Thus the MGMT status was biased towards unmethylated: among all the patients with 

conclusive MGMT methylation status, 63% of the patients were unmethylated. The IDH 

status of the patient cohort was highly biased toward wild-type (92% among all with 

determined IDH status). Consequently IDH information for modeling was not investigated 

in this work. It would be ideal to have a completely balanced data cohort, but the higher 

enrichment of the patients with unmethylated MGMT reflects the true clinical setting of the 

patients for radiation therapy. The selection of patients in the clinical trials was blind to 

MGMT status. The patients were referred to radiation oncology by surgeons and medical 

oncologists. It reflects the fact that radiation oncology often treats the most aggressive and 
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unfavorable cases. With random split, a similar unbalance was maintained in both the 

training and validation cohorts (Table 1).

PET Image Data Acquisition

PET imaging was performed on a GE Discovery 690XT or a GE Discovery MI PET/CT 

system. 18F-DOPA was injected intravenously at a dose of 5 mCi ± 10%. A scout CT scan 

was acquired to aid in position the head within the field of view. The CT portion of the 

PET/CT scan, used for attenuation correction, was acquired with the following technique: 

120 kVp, 35 mA, 1 second per rotation and a pitch of 0.984. The PET scan was then started 

10 min after tracer injection. PET sinograms were reconstructed using a fully 3D iterative 

reconstruction algorithm with corrections for attenuation, scatter, randoms, deadtime, decay 

and normalization applied. The PET images were reconstructed into a 300 mm field of view 

with a pixel size of 1.17 mm and slice thickness of 1.96 mm and 279 mm for the Discovery 

690XT and MI systems respectively [15]. The two scanners used in this study have matched 

spatial resolution, but Discovery MI has higher sensitivity. The PET images were then 

rigidly registered to and resampled to match the planning CT images with 1 mm slice 

thickness. The aligned PET images were used for feature extraction.

Delineation of Volumes of Interest

For each patient, two tumor volumes of interest (VOIs) were defined. An expert Nuclear 

Medicine physician blinded to pathological results contoured the gold-standard (“Gold”) 
18F-DOPA PET-avid region of the tumor for each patient. The second VOI was delineated 

quantitatively with a specified tumor-to-normal hemispheric (T/N) ratio based on 

standardized uptake values (SUV). The normal hemisphere SUV uptake was based on a 

volumetric SUV mean of the normal contralateral brain of the patient. previous work, a T/N 

ratio larger than 20 can be used to define the highly aggressive portions of the PET-avid 

tumor region [8]. This second VOI is referred to as the “HGG” (High Grade Glioma) 

contour. Figure 1 illustrates 3 patients who were imaged with 18F-DOPA PET and the 

corresponding Gold (gold) and HGG (green) contours.

Radiomics Feature Extraction

The radiomics features were extracted with in-house software, using PyRadiomics [24] and 

python’s skicit-learn package. Three types of features were calculated the tumor VOIs: 

shape, tumor intensity and tumor texture, for both Gold and HGG contours, respectively. For 

each extraction setting (contour, bin width and filter), 26 shape based features and 19 

intensity based features were extracted. The texture features contain four classes: gray level 

co-occurrence matrix (GLCM), gray level dependence matrix (GLDM), gray level run 

length matrix (GLRLM), and gray level size zone matrix (GLSZM). Respectively, 24, 16, 16 

and 14 features were extracted for each texture class for any specific extraction 

configuration. With 16 different settings, which were permutations of binwidth (2, 4, 8, 16), 

two filters (original and LoG) and two contours (Gold and HGG), the total number of 

extracted radiomics imaging features was 1450. For multifocal lesions, the summed volume 

and summed area were used to calculate the shape features and the distances were calculated 

as pairwise Euclidean distance with the maximum expansion covering all the lesions. Patient 
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age and tumor laterality were also considered, but all pathologic information was excluded 

the feature space to ensure that the model input was independent of pathological diagnosis.

Feature Selection

We used a multi-stage method to select features and reduce the dimensionality of the 

modeling. Because a high correlation was expected for a given feature extracted with 

different configurations, each feature set different extraction configurations was evaluated 

separately.

The features were first filtered by bivariate Pearson correlation coefficient, which was 

calculated for each possible pair of features. For a pair of features with the coefficient larger 

than the preset threshold, one feature in the pair was arbitrarily excluded selection. 

Approximately 70% of the features had a pair correlation that exceeded our threshold of 0.9 

and were thus excluded.

The investigation of multiple feature interactions and the final feature selection was done 

with a weighted feature importance algorithm. This algorithm iterated through all the 

possible combinations of the filtered features with a fixed set size (n= 3, 4, 5) and calculated 

the summed Random Forest model-based feature importance, weighted by the F1 score, 

which combines the precision and sensitivity measures, of the model. Figure 2 illustrates the 

schematic workflow of the algorithm, which explored the multivariate nature of the data 

structure and tried to find a robust combination of the features with consistent performance.

Based on the summed feature-importance values, the features were ranked high to low. Then 

the features were again filtered by the Pearson correlation coefficient. If a feature x had a 

correlation coefficient larger than 0.5 with a higher ranked feature y, then feature x was 

excluded. The final n features (n = 3, 4, 5) were selected to ensure that they have the highest 

importance but low mutual correlations. For the model based with the combination of the 

Gold and HGG contour, the features both contours were combined and the selection process 

was the same as sketched in Figure 2, but in the last step at least one feature each contour 

was selected to make sure that the final group of features was not all a single contour.

Model Construction

Six machine learning models were evaluated with the selected features. The models included 

Extra Trees, Support Vector Machine (SVM) with linear kernel, SVM with Gaussian kernel, 

Random Forest (RF), XGBoost, and fully connected Neural Network (NN). The models 

were chosen due to their popularity and success in machine learning (for example [7], [19] 

and [25]).

To normalize the features with varying magnitudes and units, the selected feature data were 

rescaled with a standard scaler X′ = (X − X)/σ, where X is the mean value of the feature and 

σ is the standard deviation. The scaler used for modeling was saved and the same scaler was 

recalled when the validation data was evaluated.

The parameters of each model were determined by grid search technique, which calculates 

different combinations of model parameter values (for example “max_depth”, 
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“max_leaf_nodes” etc. for Random Forest), and each combination was tested with 5-fold 

cross validation. The set of parameters with the best AUC_ROC score was considered as the 

final choice of the parameters.

Model Validation and Clinical Application Exercise

The constructed models using the training data (Group I) were then tested with the Group II 

validation data set. By comparing the test accuracy, sensitivity and specificity, the machine 

learning model with the best accuracy and most consistent performance was chosen. In this 

stage, no adjustment to the model was attempted. The smallest feature size with best 

accuracy was preferred.

As an application, the chosen model was applied to the Group III cohort with indetermined 

MGMT status for prediction. Without the ground truth of the MGMT status of those 

patients, the OS of the patients with the predicted MGMT status was compared with that of 

the patients with known corresponding MGMT status. The similarity of the OS curves was 

used as a surrogate to indirectly confirm the model prediction.

RESULTS

Feature Selection

Based on the algorithm used in this work, the radiomics features selected for various feature 

set sizes are summarized in Table 2

Model Training and Validation

A series of models were trained with 5-fold cross validation for the “Gold” and “HGG” 

tumor segmentation independently and then combined. For all models tested, Random 

Forest showed higher accuracy and more robust performance for both “Gold” and “HGG” 

tumor contours. Therefore, the results presented here are the Random Forest classifier only.

Three features were extracted the HGG contour and tested by the model using the 

independent Group II validation dataset, with 78% prediction accuracy. The sensitivity and 

specificity were 83% and 67% respectively. Higher prediction capability for unmethylated 

MGMT patients was expected due to the slightly biased data. The test accuracy was also 

consistent with the achieved Group I training data accuracy (80%) using the same model. 

With the features extracted “Gold” contour, 80% validation accuracy was achieved for the 

Group II dataset. The sensitivity and the specificity with the Random Forest model were 

100% and 33%, with an even stronger bias toward the unmethylated MGMT prediction. 

With 3-feature input, the accuracies for Group I training and Group II validation data were 

comparable (80% vs 78% respectively).

Including additional features in any radiomics model runs the risk of overfitting. To 

investigate the model accuracy and robustness, the models with 4-feature and 5-feature 

inputs were also studied. As shown in Figure 3 (a), features the HGG contours maintained 

similar validation accuracy, which is an indication of the robustness using the selected 

features. As shown in Figure 3 (b), including additional features the Gold contours increased 
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the training accuracy, but significantly reduced the testing accuracy. This is a clear indication 

of overfitting.

For the model trained with combined features both the HGG and Gold contours, no 

improvement in accuracy was observed. The best accuracy for the validation data set was 

67%, less than the accuracy obtained either the Gold contour or the HGG contour-based 

model. The overfitting was also clearly seen for the 5-feature input model (98% accuracy for 

train data and 44% accuracy for validation data). Based on these findings and because the 

HGG contour is less subjective, the RF model with 3-feature set based on HGG contour was 

chosen for predictive modeling.

Clinical Application

The model developed in this work was then applied to predict MGMT status for the patients 

with indetermined MGMT status (Group III). Due to the strong correlation between 

treatment outcome and MGMT status, the OS was used as a comparative surrogate to the 

predictions. Because the Group III patients were enrolled on different trials and treated with 

various doses to various defined target volumes, the overall survival might differ between 

trials. Therefore, we chose only the patients a single trial with largest patient enrollment.

In the Group I and II patient cohorts, 63 patients were the same prospective study 

(NCT01991977). Their OS probabilities were fitted by Kaplan–Meier Estimators and shown 

in Figure 4. The median OS was 16 months for the patients with unmethylated MGMT and 

39 months for the patients with methylated MGMT status.

Our model was applied to the 12 of 17 Group III patients who had indetermined MGMT 

status and were enrolled on the same trial (NCT01991977). The patients with predicted 

unmethylated MGMT status by our model have the median survival of 18 months. Their OS 

curve is also plotted in Figure 4, showing similarity compared with the OS curve with 

known unmethylated MGMT status Group I and II and clear separation the OS curve with 

known methylated MGMT status. The patients with predicted methylated status are still 

alive at the time of this analysis. This agreement between OS suggests indirectly that our 

model has high predictive accuracy.

DISCUSSION

In this study, we demonstrated that a radiomics model based on 18F-DOPA PET images can 

be used to predict MGMT promotor methylation status which is a predictive biomarker for 

prognosis and an important factor to be considered in the treatment planning to balance life, 

oncologic outcome and toxicity.

The features used in modeling were selected by a multi-stage importance-ranked algorithm, 

but the interactions between features were not investigated. Because of the small sample size 

used in this study, the investigation on the interactions between features is not feasible. In 

the initial selection of the features based on Pearson Correlation coefficient, the choice of the 

feature in a highly correlated pair was also arbitrary. Therefore the selection of the best 

Qian et al. Page 7

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT01991977
https://clinicaltrials.gov/ct2/show/NCT01991977


features may not be exclusive or optimal, but the objective of this work is to identify one set 

of features that can be used to build a robust prediction model for clinical applications.

Overfitting is one of the most significant challenges to radiomics studies due to small sample 

sizes usually available in medical studies. The importance of model validation can never be 

overestimated and the ultimate test to the model robustness should rely on independent data. 

Encouraging studies, which use PET-imaging based radiomics to predict grades, create 

predictive biomarkers or predict outcomes for GB, have been published and demonstrated 

excellent predictive accuracies, but often independent validation of models has not been 

emphasized. For example some studies [22, 26–29] relied on cross validation of the training 

cohort without using independent test/validation data, which makes it difficult to compare 

model performance; some studies [28, 29] used large numbers of features compared with the 

sizes of their patient cohort, which makes the model vulnerable to overfitting. In the current 

work, the model stability was emphasized by using both an independent validation cohort 

and a surrogate clinical application each based on an independent cohort. To ensure the 

stability of the model, the validation dataset was kept completely independent of the 

modeling process to avoid any contamination to the test validity. In this study, the number of 

the features chosen for modeling was 3 and we believe that a small parametric set can 

effectively reduce the chance of overfitting.

This work also finds that the HGG contour, which contains the most aggressive component 

of the tumors, provides more stable model performance. The results the features of 

combined HGG and Gold contours suggest that top-ranked features extracted HGG contour 

and Gold contour are not compatible in statistical distribution for the reasons that are not 

well understood. The fact that the HGG model works the best may suggest that the most 

aggressive disease component of the tumor is a more pronounced biological phenotype than 

its surroundings, which has also been indicated in other work [30]. Why, biologically, the 

most aggressive “core” part of the tumor is more predictive to the MGMT status is a very 

interesting topic but is beyond the scope of this study.

The HGG contour-based model was utilized to predict the MGMT status for the patients in 

whom pathological analysis was not possible (e.g. insufficient tumor sample) or 

indeterminate. The OS was used as a surrogate check to test the modeling prediction. Both 

the median OS and the distribution Kaplan–Meier analysis of the predicted patient cohort 

agree well with those of the patients the same prospective protocol study with known 

unmethylated MGMT status, and are well distinguished those the patient cohort with known 

methylated MGMT. The results provide indirect confirmation to the validity of our HGG-

contour based model.

Due to the small sample size, the model’s training and validation is still limited. In addition 

to increasing sample size, future efforts will also be dedicated to incorporating our 

conventional, perfusion, and diffusion MRI parameters into feature extraction for more 

complex radiomics modeling. Future radiomics efforts may provide additional prognostic 

information to predict patient outcomes, patterns of failure, and additional genomic factors 

beyond what current pathologic markers such as MGMT predict.
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CONCLUSION

MGMT gene promoter is one of the critical biomarkers for the predictive prognosis of GB, 

but currently susceptible to sampling bias, size and location restrictions, and accessibility to 

analysis. In this work, we constructed a radiomics model based on 18F-DOPA PET images 

before radiotherapy obtained on a prospective trial to predict MGMT methylation status. 

With careful feature engineering, 3 features PET images were chosen as the inputs to the 

tuned random forest model. About 80% accuracy was achieved for both Group I (training) 

and Group II (validation) patient cohorts.

Furthermore, the model was utilized to predict the MGMT status for the Group III patients 

whose MGMT status could not be determined pathologically. The predictions demonstrated 

agreement with the clinical survival outcomes, which indirectly confirms the validation of 

the radiomics model developed in this study.
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Fig. 1: Axial slice of 3 newly diagnosed GB patients.
a) Radiotherapy Planning CT, b) Registered 18F-DOPA PET, and c) Fused Image of PET and 

CT. The Gold (gold) contour and the HGG (green) contour are shown.
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Fig. 2: 
Schematic workflow of feature selection.
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Fig. 3: 
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The accuracy of Random Forest model to train and validation data sets as a function of 
the number of input features, for features based on (a) HGG tumor contour and (b) Gold 

tumor contour, respectively.
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Fig. 4: Kaplan–Meier Estimates of Overall Survival, grouped by MGMT Promoter Methylation 
Status.
All the patient data are the same prospective study. “Unmethylated” and “methylated” lines 

are for the patients with unambiguous MGMT status; “Predicted Unmethylated” line is for 

the patients without MGMT status pathological analysis but predicted to be unmethylated by 

the HGG contour based radiomics model. The p values of the curves with unmethylated 

status, with respect to the curve with methylated status, are calculated by the log rank test.
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Table 1:

Patient demographic and clinical data

Patient Cohort All Group I (Train) Group II (Test) Group III

Patients 86 59 10 17

Gender
Male 48 33 6 9

Female 38 26 4 8

Age (year)

Minimum 19 19 21 28

Maximum 86 77 68 86

Mean 55 56 51 53

Std 12 11 13 14

MGMT Status

Unmethylated 43 36 7 0

Methylated 26 23 3 0

Undetermined 17 0 0 17

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2021 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Qian et al. Page 17

Table 2:

Features selected for various set sizes. The category of a feature is indicated in the square bracket. In column 

4, the tumor contour is indicated in the parentheses.

Size of feature set Gold Contour HGG Contour HGG+Gold Contour

3
[gldm] HighGrayLevelEmphasis,
[glcm] Imc2,
[gldm] GrayLevelNonUniformity

[first_order] Kurtosis,
[gldm] HighGrayLevelEmphasis,
[shape] LeastAxisLength

(HGG) [first_order] Kurtosis,
(HGG) [gldm] HighGrayLevelEmphasis,

(Gold) [glcm] Imc2

4

[gldm] HighGrayLevelEmphasis,
[glcm] Imc2,
[gldm] GrayLevelNonUniformity,
[shape] LeastAxisLength

[first_order] Kurtosis,
[gldm] HighGrayLevelEmphasis,
[shape] LeastAxisLength,
[shape] Elongation

(HGG) [first_order] Kurtosis,
(HGG) [gldm] HighGrayLevelEmphasis,

(Gold) [glcm] Imc2,
(Gold) [gldm] HighGrayLevelEmphasis,

5

[gldm] HighGrayLevelEmphasis,
[glcm] Imc2,
[gldm] GrayLevelNonUniformity,
[shape] LeastAxisLength,
[glcm] DifferenceEntropy

[shape] LeastAxisLength,
[first_order] Kurtosis,
[gldm] HighGrayLevelEmphasis,
[shape] Elongation,
[glcm] Autocorrelation

(HGG) [first_order] Kurtosis,
(HGG) [gldm] HighGrayLevelEmphasis,

(HGG) [shape] LeastAxisLength,
(Gold) [glcm] Imc2,

(Gold) [gldm] HighGrayLevelEmphasis,
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