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Abstract
Glioblastoma multiforme (GBM) is a lethal grade IV glioma (WHO classification) and widely prevalent primary brain tumor 
in adults. GBM tumors harbor cellular heterogeneity with the presence of a small subpopulation of tumor cells, described 
as GBM cancer stem cells (CSCs) that pose resistance to standard anticancer regimens and eventually mediate aggressive 
relapse or intractable progressive GBM. Existing conventional anticancer therapies for GBM do not target GBM stem cells 
and are mostly palliative; therefore, exploration of new strategies to target stem cells of GBM has to be prioritized for the 
development of effective GBM therapy. Recent developments in the understanding of GBM pathophysiology demonstrated 
dysregulation of epigenetic mechanisms along with the genetic changes in GBM CSCs. Altered expression/activity of key 
epigenetic regulators, especially histone deacetylases (HDACs) in GBM stem cells has been associated with poor prognosis; 
inhibiting the activity of HDACs using histone deacetylase inhibitors (HDACi) has been promising as mono-therapeutic in 
targeting GBM and in sensitizing GBM stem cells to an existing anticancer regimen. Here, we review the development of pan/
selective HDACi as potential anticancer agents in targeting the stem cells of glioblastoma as a mono or combination therapy.
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Introduction

Glioblastoma multiforme (GBM), most frequently reported 
primary brain malignancy categorized as GBM IDH-wild 
type, GBM IDH-mutant, and GBM NOS tumors (WHO 
classification), is a lethal and aggressive grade IV glioma 
(WHO classification) with global prevalence [1–4]. GBM 
comprises about 16% of all primary brain tumors and con-
stitutes a major part (about 54%) of gliomas with a median 
survival of 15 months post diagnosis [2, 3]. GBM is mostly 

managed in a case-dependent manner: contemporary treat-
ment regimen is mostly palliative medical care and includes 
maximal surgical resection of tumor, followed by concomi-
tant radiation and Temozolomide (TMZ) therapy, and long-
term maintenance with adjuvant Temozolomide chemo-
therapy [5–7]. Despite some therapeutic advancement in the 
anticancer treatment of non-CNS cancers, GBM tumor has 
remained medically intractable due to impediments posed by 
a limited understanding of GBM microenvironment intrica-
cies and restricted permeability of anticancer drugs to brain 
and GBM tumors [8–10]. Furthermore, similar to the pres-
ence of heterogeneity in non-CNS cancers [11–13], there is 
mounting evidence that shows the presence of cellular het-
erogeneity in GBM [14–18]and several cellular studies have 
established the existence of a distinct subpopulation of can-
cer stem cells (stem cell-like cancer cells or tumor stem cells 
or tumor-initiating cells) within GBM tumors [19–21]. Such 
Glioblastoma CSCs are highly potent in tumor initiation, 
progression, maintenance, invasion, angiogenesis, immune 
response modulation, intracellular drug efflux, and possess 
efficient metabolic plasticity and repair machinery [21–28]. 
These characteristics of GBM stem cells pose greater thera-
peutic resistance to existing anticancer therapeutics [23, 24], 
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and necessitates the development of alternative therapeu-
tic strategies to effectively treat GBM and improve qual-
ity of life post-diagnosis [19, 28]. There is growing interest 
to augment current treatment modalities by targeting these 
CSCs with HDACito develop better and effective anticancer 
therapeutics for GBM treatment [29, 30]. In this review, we 
have focused on the use of histone deacetylase inhibitors 
(HDACi)—an epigenetic drug in targeting GBM stem cells 
for the development of effective anticancer therapeutics.

CSCs and GBM

Cellular heterogeneity and hierarchy of cells in hematologi-
cal malignancies and other cancers have been well estab-
lished [11–17, 31, 32]. Recent application of technologi-
cal advancements of single-cell sequencing experiments to 
cancer research has been pivotal in advancing molecular 
understanding of cellular heterogeneity in cancers, provided 
a foundational basis for the phylogeny of cancer cells and 
augmented clonal evolution concept in cancers viz. copy 
number evolution and point mutation evolution in tumors 
of different origins [12, 31, 33–43]. Such studies have been 
instrumental in identifying a rare population of cells (usu-
ally less than 1% of cells and characterized as cancer stem 
cells) within cancer mass and have demonstrated the pres-
ence of common founder mutation for different lineage 
trajectories within cancer tissues [12, 35, 37]. Many other 
studies have also described similar rare cell sub-populations 
within cancer mass as CSCs [21, 44–51]. These cells have 
been shown to possess self-renewal properties [52–54], 
tumor-initiating potentials [52, 55]and are often implicated 

in treatment resistance to a wide range of anticancer agents 
in many cancers [22, 24, 56, 57]. Identification and char-
acterization of these CSCs in solid tumors have remained 
debatable due to usage of conventional marker-dependent 
strategies that could not account for their small number 
[58–61], high variability in marker gene expression [62–66], 
overlapping molecular profiles with other cancer cells [48, 
67, 68], functional heterogeneity [69], metabolic plasticity 
[70–72] and potential to switch from differentiated tumor 
cells, and vice versa [36, 73–75]. Despite these challenges, 
a large number of reports [76–82] have described the identi-
fication and characterization of CSCs at the molecular level 
to much finer details. Similar to the presence of CSCs in 
non-CNS cancers, GBM also nurtures subpopulations of 
cells that have been characterized as GBM stem cells [21, 
83–85] and have been shown to be potentially originating 
from neural stem/progenitor cells [86–88], non-stem cancer 
cells and from local brain cells [75, 89–92] (Fig. 1). GBM 
CSCs express a wide range of markers like CD133 [21, 
93–95], SOX2 [96–98], Nestin [95, 99], Musashi1 [100, 
101], Bmi-1 [102–104], SALL4 [105, 106], OCT-4 [97, 107, 
108], STAT3 [109], NANOG [110, 111], c-Myc [112, 113], 
and some of these markers are common either to embry-
onic stem cells and/or to adult neural stem cells [114, 115]. 
Although GBM stem cells share many markers with neural 
stem cells and non-stem cancer cells, still GBM stem cells 
are distinguishable due to the expression of embryonic stem 
cell markers [114] and dysregulation of specific signaling 
pathwaysvizWnt, Hedgehog-Gli, RTK-Akt, STAT3,TGF-β 
Notch signaling and bone morphogenetic protein (BMPs) 
pathway [28, 75, 116–119]. In addition to the expression of 

Fig. 1   Origin of Cancer stem cells in GBM tumors. Cancer stem cells formed from aberrant genetic or epigenetic dysregulation of neural stem/
progenitors, non stem cancer cells, glia and from cancer stem cells
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differential markers than non-stem cancer cells, GBM stem 
cell-associated genetic and epigenetic [120, 121]signatures 
provide for high tumorigenicity, capability to resist niche-
induced differentiation [117]and for greater therapeutic 
resistance to conventional anticancer agents [22, 24, 122]. 
Studies suggest that anticancer treatment results in transient 
quiescence in GBM stem cells followed by enrichment and/
or enhanced proliferation of GBM stem cells, which in turn 
result in much aggressive, resistant and recurrent glioma 
[123]. Recent efforts have established the role of epigenetic 
and chromatin remodeling mechanisms in regulating GBM 
stem cell transitioning between slow-cycling persistent and 
fast cycling forms in response to kinase inhibitors, and this 
transitioning has been shown in mediating resistance to 
anticancer agents [122]. Next-generation sequencing tech-
nologies have been instrumental in identifying distinct epi-
genome states associated with molecular profiles of GBM 
stem cells in different transitional states [124]. Along with 
other regulatory mechanisms, several reports demonstrated 
differential regulation of histone and non-histone acetyla-
tion—a key regulatory modification in GBM tumors [125].

Histone deacetylases in GBM cancer stem cell

HDACs are the epigenetic enzymes that dynamically reg-
ulate the acetylation status of histones and non-histone 
proteins by removing acetyl moieties from specific lysine 
residues. HDACs mediate deacetylation of histone proteins 
which in turn alters chromatin conformation dynamics 
towards transcriptionally non-permissive chromatin result-
ing in downregulation of gene expression [126]. Further-
more, HDACs regulate various cellular activities by dea-
cetylation of non-histone proteins like STATs, NF-kB, P53, 
FOXO, HSP90, tubulin, etc.[127, 128]. HDACs are gener-
ally categorized into four different classes: class I (HDAC 1, 
2, 3 and 8), class II (class IIa – 4, 5, 7, 9 and class IIb- 6, 10), 
class III (sirt1-7) and class IV (HDAC 11). Among these, 
class I, class II and class IV are Zinc dependent, while class 
III is NAD+ dependent. HDACs have been implicated in 
many GBM tumors [129–131], hematological [132–136] 
and in several other solid malignancies [129, 137, 138]. 
Aberrant HDAC expression/activities [139–142] regulate 
tumor progression, invasion, poor prognosis and survival 
outcome [143–145], and changes in HDACs expression level 
have been reported in several gliomas [141, 143–147]. Fur-
thermore, resistance to anticancer therapy has been associ-
ated with the expression of HDAC4, HDAC6 and HDAC8 
[130, 131, 143], and Knockdown of HDAC1 and 2 induces 
anticancer effects in glioma tumors [146]. In addition, dif-
ferential expression/activity of HDACs has been reported 
in GBM CSCs compared to non-stem cancer cell or neural 
stem/progenitor cells and dysregulated HDAC expression 
has been associated with altered signaling mechanisms like 

sonic hedgehog (SHH) pathway (essential for stemness, 
viability and radio-resistance) and in some cases correlates 
with glioma progression [130, 143]. Furthermore, increased 
levels of SIRT1, SIRT2 [148, 149], class III (NAD-depend-
ent) HDACs, has been reported in CSC of GBM compared 
to NSC and normal brain cells. CD133 positive GBM cells 
express increased levels of SIRT1, SIRT2, SIRT4 and 
decreased levels of SIRT6 in comparison to CD133 negative 
populations [148]. In addition, SIRT1 knockdown enhances 
radio-sensitivity of GBM stem cells and reduces tumor 
volume with the positive therapeutic outcome on CD133 
positive GBM tumors [148]. The interplay of SIRT3 and 
TRAP1 in GBM CSCs mediates enhanced metabolic plas-
ticity, essential for reducing ROS production, maintaining 
mitochondrial functions and metabolic adaptions to GBM 
tumor microenvironment [150]. Thus, the role of HDACs 
in CSC functions of GBM is intriguing as a potential thera-
peutic candidate in targeting the CSC and development of 
better anticancer therapeutics for GBM.

HDAC inhibitors in GBM cancer stem cells

In a pursuit to expand the repertoire of existing antican-
cer treatment, there have been efforts to sensitize GBM 
stem cells and restore aberrant gene expression by com-
plementing existing treatment modalities with epigenetic 
therapeutics [151, 152]. Among various epigenetic targets, 
targeting Histone deacetylase (HDAC) activity by the use 
of various small molecule chemical HDACi in combination 
with existing anticancer treatments has been emerging as a 
promising anticancer strategy in preclinical studies [153]. 
HDACi exhibits anticancer function by increasing the acety-
lation levels of histone and non-histone proteins; eventually 
enhancing DNA alkylating agent-induced chromatin damage 
on de-condensed chromatin and also by mitigating cancer-
associated gene silencing by regulating the transcriptional 
activation of various genes involved in apoptosis, cell cycle 
arrest and proliferation [154, 155]. Research on these lines 
has resulted in the development of many HDAC inhibitors 
with different class specificities, and interestingly some of 
them cross the blood–brain barrier (BBB) at physiologically 
tolerable concentrations. Several studies have demonstrated 
the development of pan/selective HDAC inhibition as adju-
vant therapy in sensitizing GBM stem cells to existing treat-
ments. Potent anticancer effects of HDACi is being explored 
at various stages of preclinical and clinical trials as a com-
bination or monotherapy in GBM tumors.

HDACi as a mono‑therapeutic in GBM stem cells

HDAC inhibitors have been potential therapeutic candidates 
for treating GBM tumors and recent molecular research 
efforts further support the emerging anticancer effects of 
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various HDACi on GBM. HDACi act as chemo/radio-sensi-
tizers and target GBM CSCs to potentiate anticancer proper-
ties of conventional anticancer therapies. As a mono thera-
peutic anti-GBM agent, HDACi has been shown to reduce 
cancer stem cell burden in GBM tumors (Fig. 2) by modu-
lating molecular pathways regulating stemness, prolifera-
tion, differentiation, cell cycle arrest, apoptosis, autophagy, 
vasculogenic mimicry of CSCs, etc. [143, 156–158] (Fig. 3). 

Vorinostat, also known as suberoylanilidehydroxamic 
acid (SAHA), is a class I and class II pan HDACi. It has been 

in clinic for treating cutaneous T-cell lymphoma (CTCL) 
and is being actively investigated for treating various solid 
malignancies including GBM. As a mono therapeutic agent, 
Vorinostat targets both CSCs and non-stem cancer cells of 
GBM. Orzan et al. (2011) have shown Vorinostat induced 
downregulation of EZH2 (Enhancer of zeste homolog 2) 
expression—a PRC (polycomb repressor complex 2) asso-
ciated main catalytic enzyme – regulates stemness, differ-
entiation and apoptosis in cancer stem cell of GBM. Over-
all, Vorinostat treatment reduces stemness (low CD133 

Fig. 2   Therapeutic treatment of GBM with a Conventional anticancer therapy (Radiation and Temozolomide), b HDACi monotherapy and c 
HDACi combinatorial treatment. The CSCs in GBM were reduced by HDACi monotherapy and combinatorial therapy
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markers), promotes differentiation and apoptosis in GBM 
CSCs [159]. In addition to this, Hsu et al. (2016) reported 
Vorinostat induced decrease in cell viability, cell growth, 
sphere and colony formation potential in CSCs of human 
glioblastoma line U87MG. Vorinostat treatment promotes 
apoptosis by inducing expression of cleaved PARP and cas-
pase 3. Treatments with milder concentrations of Vorinostat 
results in cell cycle arrest with more G1 cells compared to 
S and G2/M cells [156] and has been found to decrease tube 
formation (vasculogenic mimicry) in GBM patient-derived 
stem cells [157]. Similar other reports also demonstrated 
Vorinostat-mediated increase in global histone H4 acety-
lation levels and significant induction of p21WAF1 and 
γ-H2AX proteins -markers of cell growth arrest and DNA 
damage response (DDR pathway), respectively.

Valproate, a short-chain fatty acid, inhibits class I and 
class IIa HDACs. It has been in clinical usage as an anti-
convulsant and a mood stabilizer. Valproate also exhib-
its anticancer activity and capacity to target the CSCs of 
GBM. Riva et al. (2016) have shown temporal and cell line-
dependent effects of Valproate on GBM CSCs. Valproate 
alone is a potent cytotoxic agent and induces differentia-
tion in proliferating stem cells. Short-term and long-term 
treatments with Valproate also affect genome methylation 
levels although such changes are not consistent among vari-
ous cancer stem cell lines. Valproate treatment to patient 
GBM derived CSCs in in vitro has been shown not only to 
decrease stemness marker expression like CD133, Nanog, 
Oct3/4, ZFP 342, Sox2 and telomerase reverse transcriptase 
but also to promote neuronal (increased expression of TUJ1) 

and glial (increased GFAP expression) differentiation mark-
ers, besides reducing the overall proliferation [158]. Also, 
Valproate fails to reduce cancer cell viability and sensitiza-
tion to TMZ treatment in a subtype of GBM stem cell lines 
[160].

Treatment with Trichostatin A (TSA), another class 
of HDACi, to patient-derived GBM CSCs in vitro results 
in repression of stem cell markers viz. CD133, Nanog, 
Oct3/4, ZFP 342, Sox2 and overall promotion of neuronal 
(increased expression of TUJ1) and glial (increased GFAP 
expression) differentiation markers, besides reduction in 
proliferation [158]. In other systems like U87 derived stem 
cells, TSA alone reduces neurosphere formation, prolifera-
tion and promotes differentiation, besides affecting the cell 
viability [161]. TSA affects the activation of DNER/Deltex 
signaling pathway, which in turn reduces stemness (reduced 
CD133 expression) and proliferation in neurosphere assay 
and colony formation assay, increases apoptosis and induces 
differentiation markers like TUJ1 and GFAP expression in 
GBM CSCs [162]. TSA significantly decreases tube forma-
tion (vasculogenic mimicry) in GBM patient-derived stem 
cells [157].

Like TSA, Entinostat (MS-275) negatively regulates 
stemness (reduced CD133 expression) and proliferation 
(reduced neurosphere forming properties) and promotes dif-
ferentiation via DNER/Deltex signaling pathway in GBM 
CSCs [162]. MS-275 significantly decreases tube formation 
(vasculogenic mimicry) in GBM patient-derived stem cells 
[157]. Recent efforts to screen and develop novel HDACi led 
to identification of compound 26, an analog of Entinostat, 

Fig. 3   Therapeutic role of HDACi in cancer stem cells of GBM tumors
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as a blood–brain barrier permeable HDAC inhibitor capable 
of decreasing cell viability, inducing apoptosis, inhibiting 
sphere formation and promoting cell cycle arrest, besides 
increasing H3 acetylation in patient-derived GBM stem 
cells. Compound 26 HDACi has been found to extend the 
survival time when used in combination with TMZ [152], 
in orthotopic intracranial tumor models.

Similarly, ITF2357(Givinostat)—a pan HDACi- BBB 
penetrant, has been shown to attenuate tumor growth [163] 
and cell viability by promoting the apoptosis and autophagy 
in GBM CSCs [164]. On similar lines, ITF2357 (Givinostat) 
reduces neurosphere formation in patient-derived GBM stem 
cells and promotes differentiation [163].

Tubacin, a selective HDAC6i, is shown to have thera-
peutic importance in CNS diseases including brain tumors. 
Tubacin acts as anticancer agent by inhibiting HDAC6, 
which is often increased in GBM CSCs and has been 
implicated in mediating radio-resistance. Besides inhib-
iting HDAC6 activity in GBM CSCs, tubacin treatment 
also increases acetylation levels of tubulin. Furthermore, 
it reduces the stemness by affecting the SHH pathway and 
promotes differentiation, apoptosis and radiation sensitivity 
[143]. In addition to nonspecific pan HDACi, use of spe-
cific HDAC inhibitors like Tubacin has also been shown to 
reduce GBM stem cell viability by promoting apoptosis and 
enhancing response to radiotherapy [143].

GBM tumors also develop resistance to anti-angiogenic 
therapeutics by developing angiogenic mimicry. HDACi 
MC1568 significantly decrease tube formation (vasculogenic 
mimicry) in GBM patient-derived stem cells [157]. In addi-
tion, treatment with mocetinostat, compound 106, MC1746, 
MC2129, results in histone H4 hyper-acetylation and signifi-
cant induction of p21WAF1 and γ-H2AX proteins, mark-
ers of growth arrest and DDR pathway, respectively, with a 
slight increase of the cleaved PARP-1 levels, as evident by 
western blot analysis.

As mentioned in the previous section, apart from Zinc- 
dependent class 1 and class2 HDAC enzymes, Sirtuins—
NAD dependent class III HDACs—have been implicated in 
the pathophysiology of GBM and GBM CSCs [149, 150]. 
Sirtuin inhibitors like Ex-527(SIRT1 selective), AGK-2 
(SIRT2 selective) and Benzodeazaoxaflavins (SIRT1/SIRT2 
inhibitor) have been evaluated for the anticancer activity in 
GBM CSCs. AGK-2 and Benzodeazaoxaflavins analogues 
show potent anti-proliferative activity in patient-derived 
CSCs of GBM [165]. Interestingly, Nicotinamide-induced 
inhibition of Sirtuins increases Trap1 acetylation which 
negatively affects metabolic plasticity and maintenance of 
CSCs [150].

Other malignant brain tumors (medulloblastoma) driven 
by CSCs have also been shown to be sensitive to HDAC 
inhibition and a pan HDAC inhibitor sodium butyrate in 
combination with Etoposide-induced significant reduction in 

colony formation assay, reduced neurosphere formation abil-
ity of medulloblastoma cells, reduced cell viability and pro-
moted neuronal (Gria2) and glial (GLAST) lineage differen-
tiation [166]. HDACi from hydroxamic acids (Vorinostat and 
Panobinostat) to benzamideEntinostat and short-chain fatty 
acid VPA have been shown to effectively sensitize epend-
ymoma stem cells, which usually pose resistance to chemo-
therapy, to standard anticancer drugs like Vincristine (VCR), 
Cisplatin (CDDP) and Temozolomide (TMZ) [167]. Also, 
in ependymoma tumors the resistance is shown by CSCs to 
established anticancer drugs like temozolomide, vincristine 
and cisplatin, but the cells respond to HDACi SAHA treat-
ment, showing attenuation in neurosphere formation ability 
of CSCs and promoting neuronal differentiation [167].

HDACi  as a combinatorial therapeutics in GBM stem 
cells

Though HDACi as mono-therapeutic agents exhibit prom-
ising anticancer activity, efforts are underway to boost 
their anticancer activities in targeting the CSCs with 
combinatorial usage of existing anti-cancer drugs. Several 
studies have demonstrated the synergistic effect of combi-
natorial usage of HDACi with anticancer drugs in targeting 
CSCs of GBM (Fig. 2). Asklund et al. (2012) have dem-
onstrated the application of HDACi Valproate, Vorinostat 
and Sodium phenylbutyrate along with the FDA approved 
drug Bortezomib (a proteasome inhibitor) in GBM stem 
cell lines TB101 and R11. These HDACi in combination 
with Bortezomib at clinically relevant drug concentrations 
have shown a synergistic effect in reducing cell viabil-
ity of GBM CSCs. In addition, HDACi Vorinostat along 
with Bortezomib reduced colony formation and increased 
apoptosis in GBM stem cell lines [168]. Similar studies 
from Sung et al. (2019) showed a synergistic effect of co-
treatment with Vorinostat and Melatonin on human Gli-
oma CSC cell lines GSC267 and GSC23. Vorinostat and 
Melatonin treatment reduced the expression of Transcrip-
tion factor EB (TFEB) and increased the expression of 
cleaved PARP and phosphorylated γH2AX. Such co-treat-
ments also reduced the number and size of tumor spheres 
formed by CSCs of GBM. Along similar lines, combined 
treatment severely compromised the tumorigenic poten-
tial of CSCs in orthotopic xenograft tumors induced by 
CSCs and resulted in prolonged survival [169]. Singh et al. 
(2015) reported epigenetic therapeutics based combina-
torial treatment like Pan HDACi—Vorinostat and class I 
HDACi—Entinostat in combination with LSD1/KDM1A 
(lysine specific demethylase1) inhibitor Tranylcypromine, 
which resulted in reduced cell viability in patient-derived 
CSC of GBM, reducing TP53 and TP73 expression in mice 
GBM xenograft tumor model, reducing the tumor size and 
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promoting the survival of animals [153]. Valproate with 
Salinomycin has shown anticancer activity in GBM-CSC 
recently [170].

HDACi (SAHA and LBH589) have shown a synergistic 
effect with Obatoclax—(a BCL2 inhibitor in clinical tri-
als for treating solid and circulatory tumors) in targeting 
GBM cells. Interestingly, subtypes of GBM with BCL2 
family member’s overexpression have been observed to 
develop resistance to radio-sensitizing effect of these 
HDACi but have responded positively to similar treat-
ment supplemented/ reinforced with Obatoclax. The com-
binatorial application of SAHA and LBH589 with BCL2 
inhibitor Obatoclax affected networks of genes linked to 
cell death and survival, cell morphology, cell cycle and 
resulted in increased caspase activity, LC3BI/II conversion 
and showed a synergistic effect to induce apoptosis and 
autophagy in GBM CSCs [171].

HDACi mediated synergistic effect is not restricted 
to only anti-cancer chemical agents but has also been 
reported with biological agents. Tung et  al. (2018) 
reported synergistic effects of HDACi LBH589, SAHA 
and TSA and overexpression of transcription factor Krup-
pel-like factor 9 (KLF9) in inducing cell death by apop-
tosis and necrosis in human GBM stem cell lines [172]. 
Similar synergistic actions of HDACi have been observed 
with the oncolytic viral sensitizers like Delta 24-RGD. 
HDACi like Scriptaid, LBH589, MS275 and VPA used 
with Delta 24-RGD virus synergistically enhanced onco-
lytic ability of Delta 24-RGD oncolytic virus therapy in 
GBM CSCs [173].

Clinical trials of HDACi for glioblastoma tumors

Many HDACi have been approved by the FDA and are in 
clinic for treating circulatory malignancies which are mostly 
driven by CSCs. The FDA approved HDACi for treating 
various circulatory cancers include Vorinostat and FK228 
(Romidepsin) for treating cutaneous T-cell lymphoma 
(CTCL), Belinostat (PXD101) for peripheral T-cell lym-
phoma (PTCL) and Panobinostat (Farydak) for the treatment 
of multiple myeloma [174]. Interestingly, various promising 
HDACi are being evaluated in pre/clinical trials for treating 
GBM (Table 1) and some other cancer stem cell-driven solid 
malignancies. Few of the HDACi in clinical trials for treat-
ing GBM and other brain tumors exhibit potent anticancer 
activity in combination with radio and/or chemotherapy. 
However, in these studies, HDACi is being evaluated as a 
generalized anticancer agent and not for specifically target-
ing GBM stem cells. Future studies are warranted to evaluate 
anti-cancer stem cell properties of HDACi in clinical trials 
and such studies might provide better indices for evaluation 
of HDACi in targeting GBM stem cells.

HDACi anticancer drug efficacy and CSCs of GBM

Despite the therapeutic advancement in anticancer treatment, 
success of anticancer drugs in treating GBM is generally low 
due to many limitations: ability to cross the blood–brain 
barrier at toxicologically permissible concentrations, effec-
tive blood to CSF diffusion, blood to tumor barrier perme-
ability and maintenance of pharmacologically effective drug 
concentration within tumor core, physiologically relevant 
diffusion rates in brain and tumor parenchyma, duration of 
effective plasma concentration, drug metabolism, elimina-
tion from the brain and to overcome resistance exhibited by 
CSCs of GBM [175, 176]. In general, CSCs pose a major 
obstacle in treating solid malignancies and often mediate 
refractory resistance to radio cum chemotherapies due to 
specially fortified survival mechanisms, ranging from physi-
cal avoidance of drugs to better drug-induced damage repair 
mechanisms and enhanced metabolic plasticity. Presence of 
CSCs in hypoxic tumor core microenvironment often pro-
vides physical protection from drug exposure [177]. Such 
hypoxia-associated niche microenvironment not only pro-
tects CSCs from the generation of excessive reactive oxygen 

Table 1   Clinical trial data of HDACi in treating Glioblatoma tumors 
(source: ClinicalTrials.gov)
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species on radiation therapy due to limited availability of 
oxygen but also generates signaling cascades from stromal 
connective tissues to activate other resistance mechanisms 
in CSCs upon exposure to an anticancer agent [177]. In 
case of physical exposure to cytotoxic drugs, CSCs deploy 
drug efflux mechanisms to reduce molecular exposure to the 
drugs in order to escape from drug-induced toxicity. CSCs of 
GBM contain efflux transport systems like multidrug resist-
ance (MDR) associated protein family including ATP bind-
ing cassette (ABC) transporters. Two of these transporters, 
P-glycoprotein (P-gp) and MDR protein (MRP) are major 
components that limit drug penetration into the CNS and 
to GBM stem cells [177, 178]. In addition to this, CSCs 
limit drug-induced damage by expressing enzymes for drug 
inactivation or by repressing enzymes needed for conversion 
of prodrugs to an active form. GBM stem cells are metaboli-
cally more plastic and can reversibly transition from fast-
dividing phenotype to slow dividing phenotypes to avoid 
favorable conditions for the drug action [179]. Many cancer-
targeting drugs are DNA alkylating agents and induce DNA 
damage in cancer cells. CSCs overexpress checkpoint and 
DNA repair proteins viz. ATM, Chk1/2, p53, BRCAs and 
XRCC5 and are better adapted to repair damages caused 
by the drugs and as such upregulate pro-survival and anti-
apoptotic molecular programs.

HDACi has been effective in restricting some of these 
above-mentioned resistance mechanisms in cancerous cells, 
e.g. use of HDACi Vorinostat, Trichostatin A, Entinostat 
not only sensitizes cancer cells to DNA damage agent but 
also limits the development of resistance to DNA alkylating 
agent by reducing expression of DNA repair-related pro-
teins like RAD51, RAD52, BRCA1/2, CtIP, Ku70, Ku86, 
DNA-PKCs, XRCC4 and DNA ligase 4 [180]. HDACi 
like Vorinostat has been shown to induce the accumulation 
of DNA double-strand breaks in normal and transformed 
cells. Also, Vorinostat preferentially targets cancer cells 
via upregulation of thioredoxin binding protein (a negative 
regulator of ROS scavenging protein thioredoxin)(TRX) and 
promotes the accumulation of ROS for effective damage to 
cancer cells [180]. In relation to drug efflux mechanisms, 
certain HDACi viz. Valproic acid, Apicidin, Romidepsin 
and Sodium butyrate increase expression of P-glycoprotein 
(P-gp) and MDR protein (MRP) in several cancer cells and 
might diminish expected response in combination therapy 
[180]. Although multidrug resistance-related transporters are 
upregulated by certain HDACi, only Romidepsin has been 
characterized as a substrate of P-gp [181]. HDACi Vori-
nostat and Oxamflatin circumvent drug efflux mechanisms 
mediated by P-gp or MRP successfully and target cancer 
cells in P-gp expressing independent manner [180]. Despite 
being tolerant to drug efflux mechanisms, CSCs develop 
resistance to HDACi also by activating various signaling 
pathways in response to HDACi exposure: resistance to 

Vorinostat, sodium butyrate, Valproic acid and Entinostat 
in BCL2 expressing cancer cells, activation of NF-kB by 
Vorinostat, Trichostatin A, Entinostat and Panobinostat 
reduce their efficacy in certain cancer cells, expression of 
retinoic signaling-associated proteins like RARα or PRAME 
(Preferentially expressed antigen in melanoma) cause resist-
ance to Entinostat, Vorinostat and butyrate in certain cancers 
[180]. In addition, resistance to HDACi has been observed 
in some specific genetic backgrounds like R132H mutation 
in isocitrate dehydrogenase 1(IDH1R132H) GBM cells and 
resistance developed due to the elevated levels of Octyl-2HG 
which in turn mediates NANOG expression [182]. Similarly, 
BCL2 overexpressed GBM stem cells have shown resistance 
to the radiosensitizing effect of HDAC inhibitors (SAHA 
and LBH589) [171]. In spite of these drug resistance-related 
challenges, HDACi has been promising against cancer resist-
ance and few reports demonstrated potential of HADCi in 
overcoming drug resistance like Trichostatin in eliminating 
resistant cells during transient resistance states to Temozo-
lomide in GBM treatment [179]. However, detailed mecha-
nisms of HDACi resistance specifically in GBM CSCs is 
not/poorly known and needs to be explored for the develop-
ment of effective treatment strategies.

Conclusion and future directions

The encouraging preclinical and clinical research data 
intriguing the researchers for further exploration of HDACi 
as promising futuristic addition to the contemporary anti-
cancer regimens, in sensitizing and targeting cancer stem 
cells for GBM treatment. Although HDACis as combinato-
rial therapeutics sensitize GBM CSCs to classical anticancer 
agents, it fails to circumvent drug-induced cytotoxicity in 
non-cancerous tissues and also in the development of drug 
resistance to HDACi, as has been reported in few studies on 
GBM tumors [171, 182]. Furthermore, the use of HDACi 
does not elicit a similar progressive response in all patient 
studies owing to inter-tumoral enormous heterogeneity. 
These limitations mostly obscure potential of HDACi in tar-
geting GBM stem cells and necessitate further investigations 
into the understanding of individual HDACs in the stem cell 
biology of GBM. Also, more precise prognostic molecular 
markers of GBM stem cells have to be identified and used to 
evaluate individual HDACi treatment response. In addition 
to pan HDAC inhibition, the role of individual HDACs and 
associated molecular pathways in GBM CSCs need further 
explorations [183]. Such studies could be instrumental in 
prioritizing individual HDACi with specific class selectiv-
ity over non-selective HDACis and would provide for mini-
mized off-target toxicity.

In order to expand the repertoire of brain available 
HDACi, low HDACi BBB permeability issue should be 
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improvised by better designing molecular architecture for 
efficient BBB permeability, CNS enrichment and brain 
retention. The futuristic design of next-generation HDACi 
should be focused on improving selectivity and efficacy in 
targeting CSCs of GBM; designing of HDACi equipped 
with surface recognition cap groups to uniquely expressed 
surface receptors in CSCs should be explored to increase 
therapeutic efficacy, bioavailability and decrease in side 
effects. Designing hybrid HDACi by conjugating with other 
pharmacophoric moieties may provide for multi functionali-
ties to modulate multifactorial oncogenic targets. HDACi 
in combination with other anti-cancer drugs for targeting 
GBM stem cells targeting the drug efflux ability, DNA repair 
machinery, angiogenic mimicry or angiogenesis and oth-
ers may provide better treatment outcomes. In addition, the 
HDACi dose optimization and time of treatment have to be 
considered for increasing the therapeutic efficacy of HDACi 
in GBM treatment. These aforementioned provisions need 
to be potentiated and improvised for GBM drug delivery 
to tumor core with the use of tissue or cell-selective drug 
accumulation approaches like nanoparticle [184, 185] or 
liposome formulations [186, 187] of HDACi. Moreover, 
the heterogeneity of CSCs and the presence of actively pro-
liferating and quiescent CSCs in GBM are also observed. 
Thus, it is important to design HDACis targeted towards 
the proliferative as well as quiescent cells alike. Designing 
novel HDACi which can overcome the prevailing limitations 
to effectively target CSCs of GBM might not seem to be a 
distant dream.
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