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Key points

� Artificial intelligence and deep learning are increasingly prevalent in pathology and used to process
large amounts of data.

� Unsupervised learning allows computational networks to discover patterns in data without signifi-
cant training.

� This emerging type of machine learning facilitates a more human-like analytical approach, allowing
for nuanced conclusions to be made without the need for specific pre-defined direction.
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CNN Convolutional neural network

TGCA The Cancer Genome Atlas

t-SNE t-Distributed Stochastic
Neighbor Embedding

WHO World Health Organization
A pplications of artificial intelligence and
particularly deep learning to aid pathologists
in carrying out laborious and qualitative

tasks in histopathologic image analysis have now
become ubiquitous. We introduce and illustrate
how unsupervised machine learning workflows
can be deployed in existing pathology workflows
to begin learning autonomously through explora-
tion and without the need for extensive direction.
Although still in its infancy, this type of machine
learning, which more closely mirrors human intelli-
gence, stands to add another exciting layer of
innovation to computational pathology and accel-
erate the transition to autonomous pathologic tis-
sue analysis.
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Most of human and animal learning is
unsupervised. If intelligence was a cake, un-
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supervised learning would be the icing on
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THE NEED FOR ARTIFICIAL AGENTS TO

ANALYZE MEDICAL IMAGING DATA

There is a growing appreciation for the need to
accelerate the transition ofmicroscopic tissueanal-
ysis from one centered around glass slides, toward
a more digital, automated, and quantitative disci-
pline.1,2 Even though this evolution has been met
with both fear and excitement by pathologists, the
adoption of machine learning is a trend that
stretches far beyond pathology and is rather
becoming a common theme across all of health
care andsociety.3,4 This revolution is perhapspartly
driven by transformative changes in the ability to
generate, digitally store, and process data. The
cost of digital storage, for example, has decreased
by almost 6 orders ofmagnitude over the past 4 de-
cades, making it less of a barrier for data collection.
This has been especially true for domains like pa-
thology, where file sizes have been comparatively
large with single glass slides often requiring a giga-
byte of data for digital storage.
Regardless of the underlying reasons for this

exponential decrease in the cost of data storage,
these types of innovations are already changing
how we use medical infrastructure and resources.
For example, these technological improvements
have led to the increasing reliance on advanced
medical imaging (eg, computed tomography,
MRIs) over the past 40 years and will likely
continue to do so for the foreseeable future. As
the medical community’s ability to generate and
store high-quality data continues to grow, the de-
mand for highly specialized humans (pathologists
and radiologists) needed to interpret the data will
likely not be able to keep up. Specifically, this is
becoming a reality in pathology, as the discipline’s
ability to digitally scan and store whole slide im-
ages at qualities suitable for diagnostic practice
is also rapidly growing.5 Moreover, the concurrent
advent of artificial intelligence and deep learning
could transform how histologic data are analyzed
and used from each patient’s specimen.6,7
THE PERILS AND PROMISES OF DEEP

LEARNING FOR PATHOLOGIC IMAGE

ANALYSIS

Although pattern recognition can be said to be an
innate skill for the human brain, it is common
practice to convert this diagnostic “art” into a
set of teachable, highly reproducible, and objec-
tive set of rules to improve consistency among
observers. This strategy has been particularly
important for high-stakes decision in areas like
medicine. For example, in pathology, trainees
are encouraged to arrive at diagnoses by making
a set of progressive decisions geared at carefully
narrowing the differential diagnosis to a single or
small set of likely diseases (eg, lesion vs no
lesion; infectious vs neoplastic process). Develop-
ment of such sets of reliable rules and robust de-
cision tree-type frameworks not only improves
reproducibility among humans but has also
made this process highly conducive to automa-
tion by machines.
For example, in traditional machine learning ap-

proaches, computer engineers leverage these
rules and frameworks to develop surrogate hand-
crafted computer features that attempt to mimic
or parallel the morphologic features (eg, necrosis,
mitoses) that pathologists use to arrive to a diag-
nosis. Once digitized, the quantitative value of
these multiple features can serve as objective
morphologic signatures for image classification.
Although these have been quite effective,7 one
limitation of this traditional approach is that the
relatively small number of manually engineered
patterns (100–1000s), are often unable to capture
complex positional information that humans
innately use to carry out specialized pattern recog-
nition tasks. Recently however, transformative in-
novations in computer vision, particularly a form
of artificial intelligence (AI) known as deep
learning, has helped overcome this.8 Particularly,
a specific type of deep learning algorithm, known
as convolutional neural networks (CNN), attempts
to mimic how the human brain processes visual
information and has allowed scientists to transition
away from these laborious manual hand crafted
features and instead rely on data to drive feature
design.9 Like the brain’s visual cortex, the multi-
layered CNN architecture first detects elementary
features (eg, color, shapes, edges) within an image
and sequentially aggregates different combina-
tions of the patterns to generate millions of
advanced spatially dependant features of higher
classification value.8 Importantly, these features
are computationally designed and selected and
not reliant on humans for their generation. Once
these features are developed and trained on a
particular task, test images can be introduced to
these networks to quantify the presence of these
complex features and then use them to carry out
classification tasks. With sufficient data and pro-
cessing power that has recently become available,
these novel computational tools were theoretically
predicted to surpass the performance of tradi-
tional tools for classification.
This hypothesis was ultimately proven to be cor-

rect during the 2012 ImageNet computer vision
competition.10,11 Here, computer scientists annu-
ally compete to determine the most effective
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approaches and algorithms for classifying images
that span 1000 different classes of common
objects (eg, cats, dogs, planes). When this com-
petition first started, the ImageNet winners used
algorithms that were designed around the tradi-
tional hand-crafted feature approaches. These
approaches had classification error rates of
approximately 27%; much higher than a human
given this same task (w3% error) and perhaps
too high for any practical application. In 2012
however, AI pioneer Geoffrey Hinton and his
team introduced, the first CNN-based algorithm
in this image recognition competition and substan-
tially reduced the winning error rate to 16%.10,11

Every year since, sequential modifications have
improved on his innovation, with state-of-the-art
CNNs now equaling, and even surpassing,
humans at classifying the diverse image types
found in this competition. Although an impressive
feat, many critics have rightfully pointed out that
this competition represents a highly controlled
environment and task that does not fully capture
the dynamic decision-making capabilities of hu-
man observers in the real-world environment.

In recent years, these breakthroughs in deep
learning approaches to pattern recognition have
infiltrated the medical field.12–16 Numerous
studies have now shown that deep learning can
perform many visual diagnostic tasks at levels
that match or even exceed human experts in
both primary care settings and more definitive
pathologic analyses.12,15 These systems are so
robust that the tools have largely now become
democratized, allowing anyone with access to
data to develop and use them without the need
for significant training in the computer sciences.
This has been particularly effective in pathology,
where repetitive patterns can be used to generate
massive datasets that the algorithms can use to
learn and classify future images (Fig. 1). However,
despite these heralded successes, many surveys
across all fields (eg, medicine, finance) find that
most implementations of AI initiatives are met
with significant challenges and failure. Arguably,
a major component of these failures is the current
inability for supervised learning approaches to
fully mimic the diverse complement of skills and
inference capabilities of the human observer. In
this perspective, we wish to introduce the
concept of unsupervised learning and how it dif-
fers from the supervised tasks that have now
become ubiquitous in histopathologic image anal-
ysis. We supplement some of these theoretic
concepts with examples from our own work to
illustrate how unsupervised deep learning ap-
proaches can be introduced into pathology work-
flows to overcome some of the existing barriers
we believe are preventing the deployment of AI
in pathology.

UNSUPERVISED LEARNING

Unsupervised learning fundamentally differs from
supervised learning because it does not rely on
specific classification instructions. Instead, it re-
lies on autonomously grouping objects through
exploration and discovery of the underlying
pattern and structures in data. As alluded to in
the quote at the beginning of this piece, this
approach is viewed as the primary way we as
humans collect information and build knowledge
about the world around us. Although this undi-
rected approach may not afford unsupervised
learning the ability to resolve the same level of
detail for specific user-defined tasks, it provides
a highly flexible approach to define patterns in
data that do not need to be predicted or antici-
pated. Unsupervised learning also affords
humans with the ability to handle unanticipated
changes in conditions and extend knowledge
outside the training parameters (Fig. 2). The regu-
lar implementation of such strategies into
machine learning workflows could help broaden
AI-workflow performances in a wider spectrum
of scenarios without the constant and infeasible
task of continual needing to update supervised
training parameters as knowledge and diagnostic
goals evolve.

To illustrate the differences between supervised
and unsupervised learning, we consider both
continuous and discrete outputs generated by
both approaches (see Fig. 2). A classic super-
vised classification task that uses continuous
data would involve investigating if the aggressive-
ness of meningiomas (or another tumor type) can
be predicted as a continuous function of the Ki-67
index (regression analysis). Conversely, the World
Health Organization (WHO) current grading sys-
tem represents a more discrete supervised classi-
fication task in which the combined presence of
specific features (eg, necrosis, nucleoli), at vary-
ing amounts, could be sufficient to warrant a spe-
cific WHO grades (I vs II). Although these
techniques are highly effective, there could, of
course, be other ways to better organize the pat-
terns, combinations, and respective amounts of
features, like mitoses and necrosis. Importantly,
although some of these patterns may not corre-
late with a desired task (aggressiveness), reoccur-
ring patterns may provide important insight and
have other important implications to the underly-
ing biology of these tumors and help guide more
personalized therapies. These are the types of
“serendipitous” or “anomalous” patterns that are
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Fig. 2. Differences between machine learning methods. Illustrated are the distinct outputs of the 2 main groups
of machine learning methods. In supervised learning, labeled samples with both input and output data are used
to develop a model that can approximate the relationship between those values. The developed model can then
be used to make future prediction of a specific output given a set of input values. In regression analysis, the
output value is continuous, whereas for classic classification tasks, the output categorizes the test case into
one specific class. In unsupervised learning, the algorithm uses only input data to propose the natural structure
globally present within the data points, without the use of a specific output for guidance. Similar to supervised
learning outputs, the outputs can be both continuous or grouped into more discrete clusters.
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often discovered by expert pathologists who have
seen high volumes of cases in their careers.
Conversely, these are also the main types of pat-
terns central to unsupervised analyses.

Dimensionality reduction techniques, such as
principal component analysis, and t-SNE (t-
distributed Stochastic Neighbor Embedding) pro-
vide data visualization outputs that allow
Fig. 1. Supervised annotation of a digital whole slide im
digital slide image of an infiltrating glioblastoma showing
brain tissue, and blood. (B) Corresponding CNN-generate
probability scores for each of the 13 trained classes of this
of the tumor and tissue patterns detected. The most likely
on these values is a glioma. Lesional areas are collectivel
other tissue components are a different color. This depicts
sification tasks by CNN in pathology.
exploration into local and global patterns in contin-
uous data. This information also can be discretized
using hierarchical clustering, which facilitates the
grouping of data into different clusters with an
ontological tree highlighting the distance similarity
of each data point to one another. Although these
spatial and cluster associations are “unlabeled,”
they provide an initial starting point for the human
age using CNNs. (A) Hematoxylin-eosin (H&E)-stained
the typical heterogeneous mixture of tumor, necrosis,
d class activation map (CAM) of the entire slide. The
CNN listed below the image provide a global overview
diagnosis of the lesion represented in this case based
y depicted with a brown color on the CAM, whereas
the powerful supervised capabilities of supervised clas-
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observer to find clinical or other relevant biological
correlates that could explain why these associa-
tions arose. In this article, we provide some exam-
ples from our work to illustrate how we have used
unsupervised approaches to help automate
“anomaly” detection during routine classification
tasks and also for automated ontological organiza-
tion of tumor types without explicit instruction.
Further development of such tools could serve to
complement more supervised approaches by
providing access to more advanced decision-
making capabilities needed to better automate
the diagnostic pathology workflow.

DIMENSIONALITY REDUCTION FOR

HIGHLIGHTING ANOMALOUS CASES AND

REDUCING ERRORS

Most current studies that use deep learning for
computer vision in pathology involve highly
focused and controlled classification tasks. Unfor-
tunately, in the real world, there often can be
extreme biological variability from case to case,
even for common lesions like glioblastoma (eg,
gliosarcomatous, small cell and epithelioid vari-
ants).17 Similarly, tumor classification schemes
are still evolving, making it cumbersome to contin-
ually tune and authoritatively validate complex
machine learning classifiers.18 As a result, unex-
pected classification errors can occur in these
situations (eg, mistaking a small cell glioblastoma
for a diffuse large B-cell lymphoma) or even
when more elementary artifacts are encountered
that were not comprehensively included in the
training data. This includes differences in cellu-
larity from edema, changes in the intensity of
staining, and folds in tissue. In our hands, this
phenomenon is perhaps one of the largest barriers
to widespread adoption of these tools in pathol-
ogy. Although this obstacle can theoretically be
overcome with increasing amounts of data, the
unpredictability of how tumor phenotypes and
groupings will continue to change in the era of
personalized medicine, where patients may
receive a myriad of individualized therapies, can
make such efforts extremely difficult to stan-
dardize (or “supervise”).
To highlight how unsupervised learning ap-

proaches can help overcome these limitations,
we recently explored how anomalies and artifacts
can be effectively detected and flagged using the
dimensionality reduction technique known as
t-SNE.19 Specifically, we generated approximately
80,000 training images spanning approximately
100 surgical cases to train and create a multiclass
classifier that could annotate 13 common tissue
classes encountered in neuropathology (eg, white
matter, dura, lymphoma, gliomas, blood, meningi-
oma, metastasis) (see Fig. 1). When deploying our
classifier in a traditional supervised manner to
classify a set of 123 testing cases, it was able to
correctly diagnose 86% of the test cases (14%
errors). Interestingly, most errors arose from “un-
trained” and relatively “rare” tumor subtypes (eg,
gliosarcoma, hemangioblastoma) that were not
included in the original training set.
To address this issue, without having to develop

additional training examples, we instead used un-
supervised techniques to determine if outlier test
cases could be efficiently detected as anomalous
and prevent them from being classified incor-
rectly.19 Toward this, we used the same CNN
used to classify images shown in Fig. 1, to
generate a t-SNE plot and visualize the learned
representations within the network (Fig. 3). On
this 2-dimensional (2D) grid, the proximity of 2 im-
ages (represented as individual dots) or groups of
images (clusters of similarly colored dots) indi-
cates their degree of similarity. Although the close
proximity of the similarly colored dots represents
the supervised component of learning, the dis-
tances between different classes is largely driven
by unsupervised tissue patterns independently
learned by the computer.
By closely examining the organization, many

“intelligent” associations are evident. For example,
the network grouped cellular tissue elements close
together on the right half of the 2D plot. Similarly,
the glioma image cluster (cluster of blue dots) is
positionally closest to normal glial tissue (yellow/
green/dark green dots), suggesting that the CNN
could have learned some implicit patterns of sim-
ilarities in these glial tissue elements. Moreover,
more cohesive tumors (meningiomas, metasta-
ses) also appear close to one another on the
plot (orange and purple dots). This organization
of tissue classes demonstrates intelligible unsu-
pervised learning that has been patterned within
CNNs. From a practical perspective, this rich po-
sitional information on a plot can be used to auto-
mate the detection of anomalous cases into
histopathologic image analysis. When a test im-
age (a slide the computer has not seen before)
is regionally sampled and overlaid onto these
plots (depicted as red diamonds in Fig. 3), the
overlap between test images and those found in
the training set suggests high similarities in the
tissue architecture (see Fig. 3A). However, when
the CNN is presented with a previously unen-
countered class (eg, hemangioblastoma) or
variant (eg, gliosarcoma), the vast differences in
the histologic patterns (and imaging data struc-
tures) between the rare/untrained testing cases
and stereotypical training datasets become



Fig. 3. Dimensionality reduction for anomaly detection. Planar representation of the internal high-dimensional
data structure of the final layer of the 13-class CNN used to generate the CAM in Fig. 1. Each colored dot repre-
sents an w512 mm2 histologic image. During supervised training, images belonging to the same class allow the
CNN to optimize features for robust classification. The t-SNE plot of these data allow us to understand the unsu-
pervised association of the global data structure. In (A), images patched from a test image (red diamonds,
glioblastoma) are overlaid onto the t-SNE plot. The overlap of the test and training images suggests that the
data structure of the test image is similar to the training image. In (B), image patches from the test image of
an untrained class (hemangioblastoma) show a distinct data structure compared with the training images. This
suggests an anomalous or unlearned tissue class. (Adapted from Faust K, Xie Q, Han D, et al. Visualizing histo-
pathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality
reduction. BMC Bioinformatics. 2018;19(1):173; with permission.)
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immediately evident. These differences are
depicted by the images grouping in a unique
and nonoverlapping area of the t-SNE plot (see
Fig. 3B). We leverage this property to objectively
define untrained/anomalies in data and prevent
classification errors in these challenging circum-
stances. In fact, even without any modifications
to the network or use of additional data, we
were able to reduce errors by more than 60% us-
ing this alternative approach.19 As a result, unsu-
pervised visualization of data structures provides
immediately available approaches to monitor un-
expected pathologies. This approach can poten-
tially not only help reduce errors but also
excitingly potentially detect common tumor with
anomalous biology (ie, significant infiltration by
lymphocytes) with important implications for
emerging treatments, like immunotherapy.

CLUSTERING TO AUTOMATE ONTOLOGICAL

ARRANGEMENT OF MICROSCOPIC PATTERNS

ON A LARGE SCALE

Although the qualitative detection of novel/
anomalous cases is an important component of
the microscopic examination, the ability to link
recurring patterns into potentially relevant
subgroups also represents an advanced and
important skill many pathologists contribute
to the ontological organization of tumors through
their diagnostic practice. Although the baseline
tumor subtypes have already been largely
defined, this skill will likely continue to help in
characterizing new diseases, outbreaks, and
differential responses to emerging treatment reg-
imens. This type of specialized pattern grouping
task also can be mirrored using unsupervised
clustering algorithms that ontologically arrange
cases into discrete groups based on shared
features.

To highlight how this tasked could be mirrored
in silico, we recently also developed a 74-class
tissue classifier mostly composed of tumors out-
lined in the WHO classification guide for brain tu-
mors. This diagnostic manual, developed from
input from many international experts, provides
a consensus approach to how tumors should be
organized based on their microscopic features,
molecular characteristics, and understood
biology (gliomas, meningiomas, with different
subtypes within each class).20 Notably, some
microscopic features, like high nuclear-to-
cytoplasmic ratio, can be shared between biolog-
ically unrelated classes. As such, this manual also
provides guidelines to help the practicing pathol-
ogist avoid known diagnostic pitfalls and effec-
tively exclude entities that exist on the
differential diagnosis.

Toward potentially being able to automate
such large-scale classification schemes, we
recently used 1691 whole slide images to
generate approximately 850,000 images span-
ning 74 different tissues classes to train a
CNN.21 By clustering the classes based on 512
high-level features optimized during the training
of the neural network, we found that indeed the
unsupervised hierarchical arrangement of clas-
ses, based solely on their histologic patterns,
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created a framework similar to that proposed in
the WHO (Fig. 4). Importantly, these unsuper-
vised approaches allow for examination of the in-
dividual features that the computer optimized
and used to group the tumor classes. This exer-
cise revealed the computer can autonomously
optimize and use many of the same morphologic
features (eg, perinuclear halos, mucin, epithe-
lium, luminal structures) that pathologists use to
guide grouping.21 Interestingly, even “errors”
appeared to be easily explainable. This included
grouping of highly vascular tumors (eg, heman-
gioblastoma and angiomatous meningioma,
see Fig. 4C) or lesions with a high nuclear-to-
cytoplastic ratio (eg, glioblastoma and diffuse
large B-cell lymphoma; see Fig. 4B). Together,
this highlights the ability of unsupervised
machine learning approaches to automate
advanced organizational tasks and propose a
complex grouping of histologic information
without the need for direct instruction.
Fig. 4. Clustering for unsupervised ontological arrangeme
archical arrangement of 74 trained classes (vertical axis) b
izontal axis). Many tumors belonging to the same b
meningiomas) are grouped together. Other tumors were
(mucin in chordoma and chondrosarcoma). (B) and (C) p
gram, highlighting the unsupervised clustering/relationsh
global patterns of deep learning feature activations. (Ada
ligent feature engineering and ontological mapping of b
Mach Intell. 2019;1(7):316-321; with permission.)
SUMMARY AND OUTLOOK

Although much of pathology can be taught
through concrete knowledge and patterns
described in textbooks, it is not uncommon for
even seasoned pathologists to encounter lesions
they have never previously seen. These could be
due to extremely rare lesions that arise only a
handful of times over a pathologist’s career,
newly emerging diseases (eg, microcephaly
induced by Zika virus infection), changes to ther-
apeutic management of common diseases, or
even artifacts that arise during the slide prepara-
tion process. Although each of these may be rare
events, serendipitous observations and a con-
stant sense of uncertainty is a regular part of
everyday pathologic analysis. As increasing
amounts of data are generated in an era in which
personalized therapies are on the horizon, these
rare examples will likely increase in frequency
and could provide clues to subgroups of patients
who experience durable and exceptional
nt of morphologic patterns by deep learning. (A) Hier-
ased on 512 deep learning derived features (DLF, hor-
oard tumor class (eg, metastasis, diffuse gliomas,
grouped based on overlapping morphologic features
rovide representative subtrees of the overall dendro-
ips detected between tumor subtypes based on the
pted from Faust K, Bala S, van Ommeren R, et al. Intel-
rain tumour histomorphologies by deep learning. Nat
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responses to treatment. AI will need to extend
beyond traditional supervised approaches and
develop more humanlike unsupervised ap-
proaches to pattern recognition in histologic im-
age analysis to be a viable and useful tool for
human pathologists.

In this article, we presented and discussed
some of our own experiences with trying to over-
come the challenges facing machine learning by
shifting toward more unsupervised learning tech-
niques and outputs. Although there could be con-
cerns that these tools will lead to the eventual
replacement of human pathologists, we hope the
provided examples highlight that even after these
“intelligent” outputs are generated, these auto-
mated observations require significant human in-
sights to properly vet the findings in the context
of other molecular and clinical information. In an
era in which digital data continue to grow at an
exponential rate, it is likely that these tools will
serve to augment the productivity of pathologists
and allow them to servemore important integrative
roles in both the clinical and investigational com-
ponents of their profession.
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