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Abstract
Although rare, glioblastoma is a devastating tumor of the central nervous system characterized by a poor survival and an
extremely dark prognosis, making its diagnosis, treatment, and monitoring highly challenging. Numerous studies have
highlighted extracellular vesicles (EVs) as key players of tumor growth, invasiveness, and resistance, as they carry
oncogenic material. Moreover, EVs have been shown to communicate locally in a paracrine way but also at remote
throughout the organism. Indeed, recent reports demonstrated the presence of brain tumor-derived EVs into body fluids such
as plasma and cerebrospinal fluid. Fluid-associated EVs have indeed been suspected to reflect quantitative and qualitative
information about the status and fate of the tumor and can potentially act as a resource for noninvasive biomarkers that might
assist in diagnosis, treatment, and follow-up of glioblastoma patients. Here, we coined the name vesiclemia to define the
concentration of plasmatic EVs, an intuitive term to be directly transposed in the clinical jargon.

Introduction

Glioblastoma is the most common primary malignant brain
tumors in adults, accounting for ~12% of the central ner-
vous system tumors, and the most aggressive one, making
it a major therapeutic challenge. Occurring in 70% of the
cases between 45 and 70 years old patients, prognosis
remains extremely poor despite standardized, combative
treatment. Indeed, tumor relapse is almost inevitable
7–10 months post therapy, while the median survival is
estimated at 14 months and the 5-year survival rate is about
5% [1]. Few risk factors have been identified and they are
mainly non modifiable, such as gender and rare congenital
disorders, including Li–Fraumeni and Turcot syndromes,
neurofibromatosis type 1–2 and Bourneville tuberous
sclerosis [2]. Among possible environmental triggers, only
ionizing radiations associate with an increased glioma
incidence, especially in pediatric tumors. Other modifiers,
such as electromagnetic waves, head trauma, pesticides,

and nitrosamines are not established risk factors for glio-
blastoma [3]. This explains the ineffectiveness of lifestyle
preventive measures, such as nutritional or physical activity
recommendations, and the absence of personalized or
public screen campaign in averting glioblastoma. Con-
versely, atopic manifestations, like asthma and eczema,
have been noted as protective parameters against glioma
development [4].

The actual first-line reference treatment has been estab-
lished by Stupp et al. and combines resective surgery (if
possible), followed by a 6-week adjuvant radio-
chemotherapy and a 6-month chemotherapy, both based on
standardized doses of temozolomide (TMZ), an alkylating
agent [1]. Despite this harsh therapeutic regime, glio-
blastoma recurrence is almost inevitable. In this context and
given the high degree of vasculature proliferation, anti-
angiogenic therapies have brought hope for relapsing glio-
blastoma. This is illustrated by the largely spread use of
bevacizumab (AVASTIN), a humanized monoclonal anti-
body targeting VEGF (vascular endothelial growth factor)
also administrated in metastatic renal cell carcinoma.
Indeed, this medication offers a 6-month progression-free
survival in around 45% of recurrent glioblastoma patients,
in comparison to 9–16% obtained in historical phase II
studies [5]. Thus, bevacizumab monotherapy has been
recommended for second-line treatment. Ever since, several
phase II clinical trials using bevacizumab monotherapy
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have confirmed its antineoplastic activity in naive recurrent
glioblastoma at the expense, nevertheless, of major toxi-
cities such as venous thromboembolism and cere-
brovascular accident [5, 6]. Finally, the benefice of its
association with other chemotherapeutic agents such as
TMZ, lomustine, irinotecan, or etoposide has not been
clearly demonstrated [5–8]. In this context of therapeutic
impasse, new strategies are currently under evaluation and
include chemotherapy sensitization by hyperbaric oxygen,
radiotherapy innovations through hypofractionation and
brachytherapy, and immunotherapies using immune
checkpoint inhibitors, chimeric antigen receptor T cells, and
brain tumor vaccines [9].

Glioblastoma progression relies on a harmonious chor-
eography between intrinsic deviated signaling and external
cues emanating from the tumor stroma and the stem cell
niches [10, 11]. In this context, extracellular vesicles (EVs)
had changed the paradigm of intercellular communication,
in the immediate ecosystem and at distance.

Extracellular vesicles: linchpin tools for cells
communication

Definition and nomenclature

Firstly visualized in 1985 using electron microscopy, EVs
are selective fractions of cytosolic content, expelled in the
extracellular medium and protected within a double lipid
layer [12]. EVs are released virtually by all cells, either

through membrane budding or multivesicular endosome
(MVE) membrane fusion [13, 14] (Fig. 1). These biologic
nanoparticles are highly heterogeneous in size and categor-
ized into two main subtypes: small EVs (sEVs, size <
200 nm) and large EVs (lEVs, size > 200 nm) [15]. Hence,
“exosome” and “microvesicle” terms that initially defined
EVs according to their biogenesis pathway (i.e., exosomes
forming from MVE and microvesicles resulting from
membrane budding) have become obsolete and their use is
no longer recommended [15]. In addition, if confirmation of
EV characteristics cannot be achieved, the term “extra-
cellular particle” is preferable. In agreement, concentration
can be expressed as number of particles in a defined volume.

Molecular composition

EVs are nevertheless enriched with proteins reflecting their
biogenesis (Fig. 1). These include tetraspanins, a wide
family of transmembrane proteins regarded as early endo-
somes markers [16]. Indeed, CD9, CD63, CD81, and CD82
tetraspanins specifically marked EVs. Likewise, EVs
gathered flotillin-1/2 and caveolin-1, both anchored to the
inner lipid rafts, and involved in endocytosis and intracel-
lular vesicular trafficking [17]. Cytosolic proteins impli-
cated in MVE formation such as alix and TSG101 are also
part of the EV protein signature [18]. Finally, heat shock
protein (HSP) families HSP70 and HSP90 accumulated in
EVs [18].

A major step toward EV characterization was the
demonstration of the presence of both coding mRNAs and

Fig. 1 Biogenesis, nomenclature, and specific markers of extra-
cellular vesicles. Extracellular vesicles (EVs) originate from the
budding of the membrane or travel from the intracellular pathway
through the MVE (multivesicular endosome). They are heterogeneous

in size and qualified as small when < 200 nm and large when >
200 nm. They express markers that are enriched depending on their
production routes.
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noncoding RNAs with an experimental potential to deliver
their cargo to recipient cells [19, 20]. Indeed, EVs have
been shown to incorporate miRNAs, whose profile was
similar to the profile of the originating donor cells [19, 20].
Conversely, recent studies established that extracellular
mRNAs are actually tethered mostly outside EVs [21–23].
In addition to miRNAs, EVs contain a large range of var-
ious noncoding RNAs such as tRNA or vault RNA [24]. On
the other hand, lipidomic and glycomic analyses on EVs,
especially sEVs, unveiled a selective enrichment in cho-
lesterol, hexosylceramide, and sphingomyelin, while phos-
phatidylcholine was largely depleted, when compared to
originating cell plasma membrane [25, 26]. Glycolipid
GM3 and glycerophospholipids containing long, saturated
fatty acylchains are equally enriched in EVs [25–27].
Interestingly, glycoconjugates are involved in EV biogen-
esis, in cellular recognition, and in the efficient uptake of
EVs by recipient cells [28]. In this context, particle com-
position might vary, in quality and quantity, in the course of
disease progression and/or in response to therapies and
might inform on the tumor status.

Separation and characterization techniques

Because purity cannot be totally guaranteed with biological
entities, the term “separation” is recommended over “iso-
lation” and “purification” [15]. In 2015, differential ultra-
centrifugation was, by far, the most frequently used EV
separation procedure [29]. Ever since, the panel of separa-
tion methods has become more diversified. This is

illustrated by the growing use of various techniques such as
size exclusion chromatography, density gradient, pre-
cipitation kits or affinity columns. In 2018, the International
Society for Extracellular Vesicles has classified these
methods according to their yield and degree of purity
(Fig. 2). Nevertheless, one has to keep in mind that there is
no optimal separation procedure instead chosen methods
must satisfy recovery, specificity, and the subsequent use
and analysis of the EV fractions. In keeping with this idea,
four steps should be specified for each EV preparation and
assessed through standardized procedures: preprocessing
information, EV abundance, presence of EV-associated
markers, and purity control. In an effort to facilitate the
interpretation of such EV characterization, a knowledgebase
(EV-TRACK) centralizing methodologies and experimental
guidelines for EV study has been launched [30]. Therefore,
methodologies have to be accurate and reproducible when
quantitative and qualitative characterization of EVs ambi-
tions to meet the standard of clinical use.

Extracellular vesicles in glioblastoma

Impact of EVs on glioblastoma progression

Numerous studies have unveiled the central role of EVs as
key mediators of intercellular communication in the glio-
blastoma microenvironment. Indeed, the EV secretory
pathway is suspected to be perverted by both tumor and
stromal cells, and might distribute oncogenic material and

Fig. 2 Separation and characterization of extracellular vesicles.
Methods to separate extracellular vesicles (EVs) are classified in three
categories that discriminate the yield and purity: high recovery/low

specificity; intermediate recovery/intermediate specificity; and low
recovery/high specificity. Nanotechnologies are also implemented to
characterize EVs based on their size and physical properties.
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nonphysiological information (Fig. 3). Thereby, EVs have
been suggested to serve as major communication tools from
and toward stem-like tumor cells, differentiated tumor cells,
immune system, and vascular endothelial cells, to support
tumor growth, invasiveness, and survival [31].

EVs from glioblastoma cells were shown to transport
proto-oncogenes, such as EGFR (epidermal growth factor
receptor) and its variant EGFRvIII. They can be further
transferred to neighboring tumor cells and therefore sustain
proliferation through the activation of intracellular kinases,
such as the MAPK and PI3K/Akt pathways [32]. The
immunoglobulin superfamily L1 cell adhesion molecule has
also been detected in glioblastoma cell-derived EVs and
impacts in turn tumor cell migration and invasiveness
in vitro [33]. In addition, annexin A2 (ANXA2), a protein
sustaining tumor migration, has been highlighted as one of
the most abundant proteins in glioblastoma cell-derived
EVs [34, 35]. From a metabolic standpoint, large EVs
deriving from glioblastoma cells are enriched with HSPA5,
a protein from the HSP chaperon family involved in glu-
tamine homeostasis, a well-known mechanism of highly
aggressive cancers such as pancreatic adenocarcinoma or
melanoma [36]. Likewise, ATP5B, the beta-subunit of F1-
ATP synthase accumulated in large EVs, suggesting that
glioblastoma cells can transfer and stimulate oxidative

pathway elements within recipient cells [37]. Under
hypoxic conditions, glioblastoma EVs gather proteins
notably involved in actin cytoskeleton and focal adhesion
regulation, connoting that hypoxia might support an inva-
sive phenotype in neighboring tumor cells through EV
secretion [37].

Glioblastoma malignancy has been further demonstrated
to be sustained through intercellular transfer of spliceoso-
mal proteins incorporated in EVs [38]. Transcriptomic
analyses have unveiled a wide panel of miRNAs carried by
glioblastoma EVs that support proliferation and inhibit
apoptosis in neighboring recipient tumor cells [31]. In
addition to glioblastoma cells as a source for tumor EVs,
endothelial cell-derived EVs sustain tumorigenicity through
CD9 activation of the BMX/STAT3 signaling pathway,
while proliferation is promoted by EV-harbored miR-
1238 secreted by glioma-associated mesenchymal stem
cells (MSCs) [39, 40].

One important step remains how host cells tethered and
incorporated EVs. For instance, glycosylated EVs released
by glioblastoma cells appear to be decorated by CCL18 (C-
C motif chemokine ligand 18), promoting their cellular
internalization via its cognate receptor CCR8 (C-C motif
chemokine receptor 8) [41]. In addition, glioblastoma-
derived EV surface-exposed glycans fine-tune receptor-

Fig. 3 Possible functions of extracellular vesicles within the glio-
blastoma microenvironment. Extracellular vesicles (EVs) are key
mediators of intercellular communication in the glioblastoma ecosys-
tem. Suspected to be hijacked by both tumor and stromal cells, EVs

might carry tumorigenic material from and toward differentiated tumor
cells, glioblastoma stem-like cells (GSCs), vascular endothelial cells,
supportive and immune cells, thus promoting tumor growth, inva-
siveness, and survival.
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mediated targeting of dendritic cells, outlining the EV
glycocalyx composition as a key factor of the cellular
uptake [42].

In summary, EVs turned out to be valuable allies of
glioblastoma cells by supporting their proliferation, inva-
sion, and survival, as they broadcast oncogenic proteins and
miRNAs. Therefore, EVs emerged as promising therapeutic
targets to impair glioblastoma progression, although
numerous EV-mediated interactions remain unknown.

Impact of EVs in the glioblastoma
microenvironment

EVs emerged as communication mean with tumor-
supportive action within the glioblastoma microenviron-
ment (Fig. 3). Tumor EVs have been reported to contribute
to tumor-induced angiogenesis by controlling multiple
functions of vascular endothelial cells. Indeed, EVs trans-
ported pro-angiogenic sustainers including VEGF-A, oper-
ating on endothelial migration and sprouting [43–45]. In
addition, EGFRvIII containing EVs exacerbate both tran-
scription and release of VEGF by glioblastoma cells
[20, 32]. Likewise, under hypoxic conditions, tumor cell-
derived EVs are potent inducers of angiogenesis by mod-
ulating the phenotype of endothelial cells and pericytes, in
human cells and mice models. Indeed, hypoxic EVs mediate
paracrine activation of angiogenesis through the stimulation
of several pro-angiogenic receptors, including EGFR and
VEGFR2, to further promote endothelial cell migration and
tube formation [46]. In keeping with this idea, endothelial
cells conditioned with hypoxic tumor EVs enhance pericyte
migration [46]. Furthermore, EVs isolated from the cere-
brospinal fluid (CSF) of glioblastoma patients stimulate
endothelial cell proliferation in vitro [46]. In addition, EVs
ship molecules involved in vascular permeability increase
by acting on the surrounding endothelial cells [43, 44].

Tumor-associated astrocytes also emerged as protago-
nists of glioblastoma growth notably through EV-mediated
interactions with tumor cells. Indeed, EVs secreted by
glioblastoma cells remodel normal human astrocytes
(NHAs) to acquire an oncogenic phenotype, which might
involve myc activation. In addition, EGFRvIII has been
demonstrated to convert NHAs into glioblastoma cells
in vitro, suggesting that glioblastoma EVs could be at the
origin of astrocytes recruitment and oncogenic shift [47].
Moreover, NHAs challenged with glioblastoma EVs display
enhanced migratory capacity, alongside with aberrant
cytokine secretion, culminating in boosted growth, and
invasion in tumor models. EV-treated NHAs also develop
tumor-like signaling patterns that may drive astrocytes into
tumor-supportive phenotype [48]. Corroborating this, EVs
from glioblastoma cells are enriched with CD147, a gly-
coprotein assisting the release by astrocytes of

metalloproteases involved in extracellular matrix remodel-
ing and therefore facilitating tumor invasiveness [49].

In keeping with the idea of impaired immune response in
glioblastoma, tumor cell-produced EVs might orchestrate
this immunosuppressive atmosphere. Indeed, both tumor-
associated macrophages (TAMs) and microglial cells have
been shown to adopt an immunosuppressive phenotype
when treated with glioblastoma EVs [50, 51]. Likewise,
glioblastoma cell-derived EVs are enriched with PD-L1
(programmed death-ligand 1) that may also contribute to the
elimination of adaptive immunity in the tumor mass [52].
Moreover, glioblastoma-derived EVs contain TGFß, which
acts on cytotoxic lymphocytes to specifically annihilate the
expression of granzyme A/B, perforin, as-L, and IFN-γ,
while plasmatic EVs from patients with glioblastoma are
enriched with cytokines driving pro-tumor T-cell phenotype
[37]. In addition, glioblastoma EVs contribute to hinder the
adaptive immune response through the activation of tumor-
infiltrative myeloid-derived suppressor cells (MDSCs)
inhibiting lymphocyte activity [53]. Furthermore, glio-
blastoma hypoxic EVs stimulate the proliferation of mye-
loid cells by transferring miR-29a and miR-92a, involved in
cell cycle [54].

In summary, the heterogeneity of glioblastoma micro-
environment arbitrates growth and survival. In this context,
EVs represent essential, reciprocal communication tools
between tumor and stromal cells by carrying tumor-
supportive material.

EVs in therapeutic resistance

EVs have been reported to contribute to glioblastoma
treatment failure by driving cells toward a resistant pheno-
type and perverting their environment. In this context,
glioblastoma stem-like cells promote radiochemoresistance
as these cells can cope with therapeutic insults, self-
stimulate their proliferation, upregulate the synthesis of
efflux transporters, and in turn repopulate the tumor mass
[10, 47].

TMZ-resistant cells are suspected to confer drug resistant
phenotype to chemosensitive neighboring cells through the
secretion of EVs enriched with mRNAs encoding for
MGMT (O-6-Methylguanine-DNA-methyltransferase)
and APNG (Alkylpurine-DNA-N-glycosylase), two key
enzymes of the DNA damage repair (DDR) machinery [55].
Interestingly, MGMT mRNA has also been detected in EVs
deriving from tumor-associated astrocytes [56]. In keeping
with this idea, tumor EVs have been demonstrated to carry
drug efflux pumps, such as P-GP (permeability glycopro-
tein) and MRP1 (multidrug resistance associated protein 1),
altering thereby TMZ efficacy when incorporated in reci-
pient sensitive cells [57]. EVs emanating from resistant
glioblastoma cells contain miR-1238 directly targeting

Vesiclemia: counting on extracellular vesicles for glioblastoma patients



caveolin, a tumor suppressor inhibiting EGFR autopho-
sphorylation and its downstream signaling pathways
[58, 59]. Likewise, EVs secreted by TMZ-sensitive cells are
reported to sustain resistance, through miR-221, which
targets in turn the pro-apoptotic protein PUMA (P53 upre-
gulated modulator of apoptosis) [60, 61]. In addition,
similar EVs have been demonstrated to contain high con-
centration of lncSBF2-AS1, a competing endogenous RNA
of miR-151-3p implicated in the inhibition of the proto-
oncogene XRCC4 (X-ray repair cross-complementing pro-
tein 4). Corroborating this observation, elevated levels of
lncSBF2-AS1 in plasmatic EVs from glioblastoma patients
were associated with a poor response to TMZ treatment
[62]. On the other hand, tumor-derived EVs are also
implicated in tumor escape to the antiangiogenic antibody
bevacizumab. Indeed, bevacizumab can be internalized
within the endosomal compartment of glioblastoma cells,
further processed and recycled back at the surface of EVs,
thereby suggesting that EVs might be served as bev-
acizumab “shedding tools” [63].

In addition to chemoresistance, EVs have also been
reported to contribute to refractoriness to radiations.
Hypoxic glioblastoma cells secrete EVs carrying miR-301a
promoting radioresistance in sensitive cells by directly tar-
geting TCEAL7 (transcription elongation factor A protein-

like 7), an inhibitor of Wnt/ß-catenin signaling pathway
highly involved in DDR [64]. Furthermore, tumor EVs are
enriched with hypoxia-inducible factor α inducing radio-
resistance within recipient cells through the regulation of
several factors implicated in angiogenesis and endothelial
cell migration, such as VEGF.

Conversely, both radiations and TMZ have been high-
lighted for their major impact on the content of tumor-
derived EVs. Indeed, TMZ-treated glioblastoma stem like
cells (GSCs) were shown to release EVs enriched with
protein cargos dedicated to cell adhesion [65]. Moreover,
radiation-derived EVs have been demonstrated to acquire
resistant/proliferative profile, as their cargos are enriched
with oncogenic proteins involved in major intracellular
pathways [66], but also pro-tumor noncoding RNAs such as
miR-603 sustaining GSC stemness and upregulating DDR
in recipient cells [67]. Thus, while relatively inefficient in
killing GSCs in vitro, radiations and TMZ could addition-
ally promote the dissemination of oncogenic information
within the tumor microenvironment [65].

Together, these data suggest that EVs may execute
radiochemoresistance and disseminate this pernicious phe-
notype within the tumor microenvironment. The character-
ization of EV profile throughout treatments could provide a
promising mean to monitor therapeutic response in real time.

Fig. 4 Use of plasmatic extracellular vesicles in clinics. The
standard-of-care for glioblastoma patients is represented in the upper
panel, including magnetic resonance imagery (MRI), and therapeutic
regime of surgery and radiochemotherapy. Plasma are collected at
critical steps of patient management, stored in appropriate conditions

and extracellular vesicles (EV) are thus separated, characterized, and
qualitatively and quantitatively (vesiclemia) analyzed to serve as
predictive biomarkers and/or companion tools for diagnosis, resis-
tance, and recurrence.
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EVs as biomarkers of glioblastoma

In an effort to improve glioblastoma patient outcomes,
several innovative strategies have been developed to opti-
mize diagnosis and monitoring, among which is the analysis
of EVs into liquid biopsies including plasma, CSF, and
urine. Suspected to reflect unique information about glio-
blastoma expansion, circulating EVs are thought to con-
stitute an important source of biomarkers that might help to
refine diagnosis, treatment, and follow-up (Fig. 4). In this
context, the term “vesiclemia” defines the concentration of
EVs in the plasma, an intuitive name to be directly trans-
posed to the clinical jargon. This biological parameter must
be estimated through standardized procedures while meet-
ing the current recommendations of quality control (c.f. 2.3)
[15]. Vesiclemia might be considered rather as a relative,
comparative, value, for which extracellular particles have
been rigorously separated and measured following similar
methodologies.

The vesiclemia has been demonstrated to be higher in
patients with glioblastoma in comparison to healthy
donors, patients with brain metastasis, and extra-axial brain
tumors [65, 68]. Moreover, vesiclemia was found to
decrease after resective surgery and to bounce back upon
recurrence, connoting that EVs concentration may repre-
sent a new parameter for glioblastoma diagnosis and
monitoring [68]. However, EVs from biological fluids
constitute a heterogenous population of particles, sug-
gesting that a more resolutive separation of the different
EV subpopulations could ease their characterization and
quantification, and further help the identification of specific
biomarkers of cancer progression [69, 70]. In addition to
fluctuations in vesiclemia, reciprocally, EV cargo may also
represent on its own a platform for noninvasive bio-
markers. Indeed, proteomic analysis of plasmatic EVs
using sequential window acquisition of all theoretical
fragment ion spectra mass spectrometry demonstrated that
circulating EV protein profiles cluster according to both
histological and molecular subtypes, while grouping with
aggressiveness markers in patients with recurrent tumors
[71]. In addition, plasmatic EVs containing EGFRvIII have
been detected in around a third of glioblastoma patients
(7/25) but not in any tested healthy donors [20]. Likewise,
syndecan-1 (SDC1) has been identified as a plasmatic EV
constituent whose expression might discriminate between
glioblastoma and low-grade astrocytoma, with high sensi-
tivity and specificity. Interestingly, the levels of SDC1 in
plasmatic EVs were also correlated with SDC1 expression
in matched patient tumors and decreased postoperatively
depending on the extent of the surgery [72]. Furthermore,
the levels of oncogenic miRNAs in plasmatic EVs were
found upregulated in patients with glioblastoma, as com-
pared to healthy donors, and were significantly reduced

after tumor resection [73]. In keeping with this idea, a
panel of plasmatic EV miRNAs (namely miR182-5p, miR-
328-3p, miR-339-5p, miR-340-5p, miR-485-3p, miR-486-
5p, and miR-543) have been proposed for noninvasive
glioblastoma diagnosis. Indeed, six iterations of these
miRNAs could distinguish glioblastoma patients from
healthy subjects with an elevated accuracy rate [74].
Likewise, the amount of long noncoding RNA lncRNA
HOTAIR (Hox transcript antisense intergenic RNA) is
significantly elevated in plasmatic EVs from glioblastoma
patients and correlated with the corresponding tumor
HOTAIR levels [75]. In the same manner, oncogenic
miRNA signature in CSF-borne EVs has been unmasked in
patients with glioblastoma in comparison to the tumor-free
group [76, 77]. Moreover, IDH-1 mutant (IDH1-R132H)
transcripts have been detected in EVs isolated from the
CSF of IDH-1 mutant glioblastoma patients, thereby sug-
gesting that circulating EVs may also assist in the mole-
cular classification.

In addition of tumor diagnosis, fluid-associated EVs are
thought to represent prognosis and predictive biomarkers.
The presence of EGFRvIII in plasmatic EVs correlated with
a lower overall survival (21 months), as compared to
patients with no detectable EGFRvIII (28 months) [78].
Moreover, the concentration of plasmatic EV-harbored
annexin V increased upon TMZ chemotherapy, and corro-
borated with early tumor recurrence and poor survival rate
[79]. Plasmatic EVs have been further demonstrated enri-
ched with miR-301a upon relapse [80]. Likewise, the pat-
tern of expression of miRNAs in CSF-derived EVs
correlated with tumor recurrence and even radio-
chemotherapy failure [76, 77].

Concluding remarks

Fluid-associated and circulating EVs embody a valuable
source of information and biological materials from evol-
ving tumor and may be exploited for diagnosis and ther-
anostic purposes in glioblastoma. However, most of the
studies exploring plasmatic EVs rely on rather small num-
ber of patients, often missing longitudinal samples, making
thus larger cohorts required to strengthen outcomes. In
addition, global EV composition of the body fluids may
differ due to numerous, external non-tumor factors such as
alimentation, physical activity, pathological disorders, and
medication. Thereby, standardized protocols and procedure
for sampling, storage, and analysis must be developed, with
the aim of achieving reproducibility and robustness com-
patible with clinical routine. The longitudinal analysis of
both vesiclemia and plasmatic EV cargo might emerge as
promising companion tests for the monitoring of glio-
blastoma patients.
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