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26.1 Introduction

Over the past decades, brain tumor surgery has undergone large changes as medical

technology and surgical experience have grown. A milestone was the introduction

of the microscope and microsurgical techniques by Yasargil [129]. The paradigm of

brain tumor surgery has shifted from removing tumor that is obvious to the human

eye to resection of malignant cells beyond the scope of the microscope and visual

inspection aided by technological innovations. In the treatment of gliomas, an

independent factor for better outcome regarding overall survival (OS) and

progression-free survival (PFS) that can be directly influenced by the neurosurgeon

is the extent of resection (EOR) [7, 58, 65, 96, 115]. It is well known that gliomas

infiltrate surrounding brain parenchyma in a manner that is not perceived by the

human eye even with the aid of the surgical microscope and infiltrated brain often

cannot be differentiated from normal brain tissue based on tactile features.

Therefore, several attempts have been undertaken during the last decades to

develop techniques for better tumor visualization and identification, aiming at higher

EOR. Among them are techniques such as neuronavigation, intraoperative ultra-

sound, intraoperative magnetic resonance imaging (iMRI), and, more recently,

fluorescence-guided surgery (FGS). Especially the latter has taken the process of

intraoperative tissue visualization to another level with the potential of true real-time

imaging of tumor without any interruptions to surgery for identifying tumor.

Recently, other highly precise techniques have been introduced and are being

translated into clinical medicine, promising even more exact delineation of tumor

tissue, such as confocal microscopy, Raman spectroscopy, or targeted fluorescence

opening the frontiers to real-time intraoperative molecular and cellular imaging.

All these tools have improved the ability of the surgeon to identify tumor tissue

and distinguish tumor from normal brain parenchyma. In this chapter, the different

techniques with their applicability in brain tumor surgery and their benefits and

limitations will be discussed.

26.2 Conventional Intraoperative Imaging

Conventional intraoperative imaging techniques like neuronavigation and ultra-

sound are the basis for most cases in brain tumor surgery and have been well

integrated into the operative setting in neurosurgery.

26.2.1 Ultrasound

Intraoperative ultrasound provides an easy, cost-effective, and rapidly available

method for localization of lesions prior to durotomy and residual tumor during

tumor resection. It is a dynamic method that enables visualization of tumor borders

and adjacent normal brain structures and anatomy [76]. It has been shown that use
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of ultrasound has the potential to increase the grade of resection and thus improving

outcome [93]. Ultrasound is more effective with cystic and heterogenous lesions

with different echogenicities from the cortex. Some navigation systems use intra-

operatively acquired data from the ultrasound to update navigational data to avoid

the limitations of brain shift [67]. However, peritumoral edematous tissue also

appears hyperechogenic and can be confused with brain tumor, potentially resulting

in resections being carried into functional brain and thus potentially endangering

the patient’s neurological function [92] (Fig. 26.1a).

26.2.2 Neuronavigation

Neuronavigation has become a ubiquitously available and indispensable tool for the

surgical treatment of brain tumors. Neuronavigation is based on three-dimensional

preoperative radiological imaging data, which is merged with the patient`s anatomy

by registration [104]. The navigation system consists of a reference arm attached to

the head clamp that is fixed to the surgical table. Infrared cameras track the position

of the probe relative to the fixed reference arm and preoperative imaging is shown

on the screen with the real-time intraoperative position of the probe [76]. Imaging

acquired preoperatively, such as CT, MRI, and PET, can be entered into the neu-

ronavigation software and provides the neurosurgeon with intraoperative almost

real-time localization and orientation. Anatomical information and data on the

extent of the tumor and its relation to adjacent structures can be gained from the

system, leading to higher surgical accuracy and precision for the resection of brain

tumors [104].

Furthermore, functional data can be incorporated into the neuronavigation sys-

tem. Functional MRI (fMRI) can help identifying localization of functional brain

regions, e.g., for language and motor functions [138].

Diffusion tensor imaging (DTI) is based on the preferential diffusion of water in

the direction of white matter tracts within the central nervous system [3, 76]. These

data can be added to the navigation system to give detailed information on sub-

cortical fiber tracts, e.g., the corticospinal tract, that could be at risk during tumor

resection [25]. In addition, neuronavigation is very useful for planning the surgical

approach and craniotomy [42].

However, there are distinct limitations using neuronavigation. A major issue is

loss of accuracy due to intraoperative brain shift caused by positioning, application

of mannitol, drainage of cerebral spinal fluid (CSF), and bulk tumor resection, as

navigational systems rely on preoperative imaging. A further limitation is that most

navigational systems display the information used during surgery on a screen

outside the surgical field, forcing the surgeon to draw his attention away from the

surgical field to a screen. However, modern neuronavigational systems enable

injecting navigational information into the display within the operating microscope

(Fig. 26.1b, c).
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26.2.3 Intraoperative MRI (iMRI)

Intraoperative MRI (iMRI) has been introduced in the 1990s [124] and has since

undergone several improvements. iMRI has the propensity for providing images

during surgery and for updating the information on the navigation system to correct

for changes in anatomy due to brain shift [41]. In addition, iMRI can be used to

identify residual tumor and to improve the extent of tumor resection. A randomized

controlled trail evaluating the benefit of iMRI in glioma surgery performed by Senft

et al. demonstrated a gross total resection (GTR) rate of 96% in the iMRI group

versus 68% in the control group, operated with conventional microsurgery [106].

Especially, in the treatment of low-grade gliomas (LGG) several studies demon-

strated the potential of iMRI, with a 30–60% of return to surgery after initial

resection to address residual tumor identified on iMRI [55, 107, 108].

Despite the increasing use of iMRI, there are disadvantages as this technology

comes with high costs, is time-consuming, and prolongs the duration of surgery and

anesthesia. iMRI cannot be used for patients with ferromagnetic implants. Fur-

thermore, the frequent application of gadolinium might lead to extravasation in the

resection cavity, impeding interpretation of imaging.

26.3 Fluorescence-Guided Brain Surgery

For neurosurgeons, the ability to differentiate abnormal from normal tissues is of

utmost importance in order to perform safe and effective surgery. In this regard,

fluorescence-guided surgery (FGS) has shown to be extremely helpful for visual-

ization and delineation of pathological tissues. In principle, FGS is based on the

administration of optical imaging agents to patients prior or during surgery that are

selectively accumulated in tumor tissues. FGS was first described for neurosurgery

by George E. Moore in 1947, who showed that glioma and meningioma cells could

be better visualized by fluorescence after intravenous application of fluorescein

[70]. This ability of real-time intraoperative detection of tumor tissue has further

developed throughout recent years with the great advantage of intraoperative

visualization of tumor tissue independent from neuronavigation, which is often

affected by brain shift [28]. Besides fluorescein, two further agents have been

introduced into the field of neurosurgery, 5-aminolevulinic acid (5-ALA) [119] and

indocyanine green (ICG) [83].

Fig. 26.1 Techniques for intraoperative imaging. a Ultrasound. The lesion can be seen transdural

and can be clearly distinguished from normal brain structures (red arrow). b MRI: Patient with

fiber tracking (pyramid tract) for intraoperative orientation and planning of surgical approach.

c Setting in the operating room with simultaneous use of ultrasound (red arrow), neuronavigation

with display (blue arrow) and camera (yellow arrow)

b
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26.3.1 5-Aminolevulinic Acid (5-ALA)

5-aminolevulinic acid (5-ALA) is a natural metabolite in the hemoglobin pathway.

5-ALA is metabolized into protoporphyrin IX (PpIX), a strongly fluorescent pre-

cursor of heme. Glioma cells selectively take up 5-ALA, convert this to PpIX,

resulting in tumor cell fluorescence [14, 117]. Fluorescence can be visualized by

coupling the surgical microscope to a xenon light source that is capable of

switching between white and violet-blue light (wavelength: 370-440 nm) and

adding an emission filter in order to visualize the red tumor fluorescence at a peak

of 635 and 704 nm [117]. Besides the visualization of fluorescence, the filters

enable sufficient background discrimination in order to perform major parts of

surgery under conditions suitable for visualizing fluorescence. At present, all

modern surgical microscopes offer adjuncts with the ability to visualize PpIX

fluorescence. 5-ALA (brand name Gliolan® in the EU or Gleolan® in the US) is

administered as an oral solution at a dose of 20 mg/kg body weight 3 h before

induction of anesthesia. Plasma clearance is achieved within 2 h after administra-

tion [118]. Peak fluorescence can be expected after about 6–8 h, with fluorescence

beginning to become visible after about 3 h [48, 117, 120]. Typically, high-grade

gliomas show solid red fluorescence with a slightly pink fluorescence at the tumor

margins, representing the tumor-infiltrating zone [113]. Several studies demonstrate

toxicological safety. At most, 5-ALA leads to transient skin phototoxicity or

temporarily elevated liver enzymes [114, 128].

5-ALA is the most widely studied fluorescent agent worldwide and has been

approved as the only optical imaging agent by both the U.S. Food and Drug

Administration (FDA) and the European Medicines Agency (EMA) for real-time

visualization of malignant tissue during glioma surgery. Next to its clinical appli-

cation in malignant gliomas, several studies confirm benefit for resection in other

primary and metastatic brain tumors, such as meningiomas, brain metastases, and

pediatric brain tumors [19, 24, 38, 46, 71, 141].

26.3.1.1 5-Aminolevulinic Acid in High-Grade Gliomas
High-grade gliomas (HGGs) are the most frequent primary malignant brain tumors

in adults and are known to be highly infiltrative tumors [10]. Glioblastoma is

characterized by a poor prognosis with median survival of 15 months and a 2-year

survival rate of 17.4% [52, 78]. Typically, the solid tumor core is surrounded by

normal brain with invading tumor cells and no histologically distinct border.

Despite the fact that surgery is never curative, given the infiltrating nature of

high-grade gliomas, the benefit of complete resection of contrast-enhancing tumor

regarding overall survival has been shown in several studies, all supporting max-

imal safe resection [7, 58, 65, 96, 115]. Identification and complete resection of

contrast-enhancing tumor only by the unenhanced visual impression or haptic

information is almost impossible to achieve [75].
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5-ALA can aid in the visualization of glioma tissue. The first clinical usage was

reported in 1998 in a cohort of nine high-grade glioma patients, revealing a high

sensitivity of 85% and specificity of 100% for detection of malignant tissue [119].

A phase III randomized controlled multicenter trial revealed that 5-ALA enables

more complete resections of contrast-enhancing tumor (65% of patients assigned to

the 5-ALA group compared with 36% of those assigned to the conventional surgery

white light group, p < 0.001), leading to improved 6-month progression-free sur-

vival (41.0% in the 5-ALA group versus 21.1% in the white light group) [114].

Since this study, 5-ALA has been widely used in resection of high-grade glioma.

The resection rates of 65% initially reported in that study have improved over the

last years due to a gain in experience and the addition of modern intraoperative

monitoring and brain mapping methodology, allowing safe resections even in

eloquent regions. At present, resection rates between 80 and 100% are reported [13,

18]. Strong 5-ALA fluorescence shows a strong correlation with contrast

enhancement on MRI, while marginal, weaker pink fluorescence often exceeds the

contrast-enhancing margins, representing the infiltration zone [121] (Fig. 26.2).

Strong correlations between histological grading, features of malignancy, a higher

Ki-67/MIB-1 index, and the intensity of 5-ALA fluorescence were observed

[37, 90].

26.3.1.2 5-Aminolevulinic Acid in Recurrent High-Grade
Gliomas

In recurrent high-grade gliomas, several small non-randomized patient cohorts

suggest that completeness of resection of contrast-enhancing tumor also results in

better survival [82, 89, 122]. Therefore, 5-ALA-guided resection also seems to be

an attractive approach for recurrent glioma, as corroborated by several studies.

Mean rates of complete resection of 91% have been described using 5-ALA [32]. In

addition, longer OS was associated with 5-ALA FGS in recurrent gliomas com-

pared to patients undergoing repeat surgery without 5-ALA [32]. However, the

utility of 5-ALA might be impacted by post-therapeutic tissue changes such as

gliosis, necrosis, and vascular hyalinization [6, 17, 126], affecting specificity and

sensitivity. Positive fluorescence was reported in the vast majority of recurrent

high-grade gliomas and was regarded a good predictor for the presence of tumor

[32, 45, 73, 133]. However, in contrast to the findings in primary glioma the

absence of fluorescence is not essentially a reliable marker for absence of tumor

[59]. In some cases, no active tumor tissue could be diagnosed despite visible

fluorescence linked to reactive tissue changes or inflammation [45, 133]. In sum-

mary, the use of 5-ALA appears to be feasible in recurrent gliomas, keeping in mind

possible false positive or negative fluorescence and the not yet understood impact of

adjuvant tumor treatment on the degree of fluorescence.
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26.3.1.3 5-Aminolevulinic Acid in Low-Grade Gliomas
There is clear evidence that more extensive resection of low-grade gliomas

(LGG) results in improved outcomes [31, 94, 110]. Consequently, the aim of

surgery is maximal safe tumor resection. A challenge in surgery of LGG is the fact

that these tumors often show only slight differences in texture and consistency

compared to normal brain. LGG often demonstrate histological heterogeneity with

circumscribed areas of malignant transformation (anaplastic foci) [81]. Most LGG

do not reveal visible 5-ALA fluorescence; however, several studies demonstrated

correlations between 5-ALA fluorescence and patchy/faint contrast enhancement on

preoperative MRI, areas with higher metabolic activity in PET and higher prolif-

eration rate [26, 39, 140]. Consequently, the use of 5-ALA enables intraoperative

identification of anaplastic foci, more precise histopathological diagnoses, reducing

the risk of histopathological undergrading and enabling allocation of patients to

proper adjuvant treatment. At present, the use of 5-ALA in suspected LGG is

recommended in case of patchy or faint contrast enhancement on MRI and in case

of 18F-FET-PET hot spots with a standardized uptake value (SUV) greater than 1.9

[39] (Fig. 26.3).

Fig. 26.2 5-ALA-guided resection of glioblastoma. a Tumor under white light, delineation

between tumor and normal tissue is almost impossible. b Tumor under violet light, showing a clear

and solid fluorescence in tumor tissue and a vague fluorescence at the border and infiltrating zone.

c Screenshot from neuronavigation, demonstrating the area of the above-taken images. 5-ALA

fluorescence goes beyond the borders of the contrast enhancement on MRI, enabling a higher

extent of resection

Fig. 26.3 a MRI T1+Gd before and after surgery (a and b) with corresponding F18-FET-PET

imaging pre- and postoperatively (c and d). The enhanced metabolism of the tumor can be

visualized using PET imaging. Images are reprinted with permission of the Department of Nuclear

Medicine, University Hospital Münster, Germany

b
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26.3.1.4 5-Aminolevulinic Acid in Other Brain Tumors
In addition to the wide use of 5-ALA for glioma surgery, several studies demon-

strated the utility of 5-ALA as a surgical adjunct for resection of other brain tumors.

In meningioma surgery, 5-ALA fluorescence can help to identify tumor infiltration

of dura, brain, bone, and satellite lesions beyond the tumor bulk allowing to

maximize resection [19, 69, 71, 134, 141] (Fig. 26.4).

Cerebral metastases have a high local recurrence rate even after assumed com-

plete surgical resection, often due to residual tumor tissue [46]. In order to improve

the degree of resection, some groups studied the use of 5-ALA for resection of

cerebral metastases. Altogether, 5-ALA fluorescence has been observed in only half

of all studied cerebral metastases [47, 131]. Studies suggested that 5-ALA does not

allow reliable visualization of residual tumor after resection and so far, there are no

known predictors for positive 5-ALA fluorescence in metastasis [46, 131].

Spinal cord ependymomas frequently show strong 5-ALA fluorescence and this

technique was shown to be useful for differentiating tumor from normal tissue [38].

In the pediatric brain tumor population, promising results have been found

regarding the use of 5-ALA for resection of astrocytomas, glioblastomas,

ependymomas, and medulloblastomas [24, 91, 105, 116].

Fig. 26.4 Usage of 5-ALA in meningioma. After dural opening, 5-ALA-induced fluorescence of

tumor tissue is visible (a, c: white light, b, d: violet light)
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In cases of cerebral lymphoma, application of 5-ALA appears to help in

obtaining representative biopsy samples as most lymphomas show positive 5-ALA

fluorescence [142, 143].

In addition, 5-ALA fluorescence-guided surgery has been described in single

cases for resection of hemangioblastoma [132], subependymomas [5], and germ

cell tumors [127].

5-ALA appears to bear potential for the resection of different non-glial brain

tumors in individual cases; however, only case reports are available so far, with the

difficulty of drawing conclusions at this time. Prospective studies are warranted to

evaluate the benefit and full value of 5-ALA-guided surgery in these tumor entities.

26.3.2 Fluorescein

Fluorescein sodium has been discovered almost 150 years ago and is nowadays

mostly used in ophthalmology for detection of corneal abrasions and for retinal

angiography [85, 98]. A possible utility for neurosurgery was first suggested by

George E. Moore in 1947, showing that glioma and meningioma cells could be

differentially visualized by fluorescence after intravenous application of fluorescein

[70]. Fluorescein is considered as a robust, inexpensive, and safe fluorescent bio-

marker with characteristic yellow-green fluorescence. Its peak absorption spectrum

occurs at 465–490 nm with emission peaks at 500–530 nm. Fluorescein fluores-

cence can also be discriminated under white light [57, 109]. After intravenous

administration, fluorescein is distributed systemically through the bloodstream and

extravasates into regions with increased vascular permeability, abnormal vascula-

ture, and neovascularization [70]. Under normal circumstances, circulating

fluorescein is excluded from normal brain tissue by the blood–brain barrier

(BBB) [100]. In case of disruption of the BBB, for example, in tumors, fluorescein

accumulates in the extracellular space of tumor tissue and can be visualized under

yellow-filtered (560 nm) light [57].

A surgical microscope enabling visualization of fluorescein was introduced for

resection of high-grade glioma [57]. Nowadays, a variety of fluorescent filters are

available, e.g., the YELLOW 560 system (Carl Zeiss) or the FL560 System (Leica

Microscopes).

Fluorescein can also be visualized as a yellow dye under the white light of

surgical microscopes at high concentrations. However, lower concentrations of

fluorescein can be used when using specialized microscopes equipped with

appropriate emission filters. A dose of 3–5 mg/kg body weight is administered

intravenously after induction of anesthesia [22, 29]. Fluorescein is eliminated

renally and mostly free of side effects apart from leading to transient discoloration

of skin and urine after administration. Single cases of anaphylactic shock have been

reported [23].
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26.3.2.1 Critical Points/Problems with the Usage of Fluorescein
Recent studies have confirmed fluorescein staining not to be tumor-cell-specific

[22]. Additionally, fluorescein mainly marks areas with BBB breakdown, which are

somewhat, but no strictly related to tumor tissue. Thus, fluorescein serves as an

excellent marker of edema propagation [111, 112]. There is no real consensus on

timing of administration of fluorescein before surgery and dosage in the current

literature, although this is critical due to the fact that extravasation and distribution

of this agent follow a certain time course regarding plasma fluorescein contents,

perfusion of brain, and finally extravasation. After a half-life of 4 and ½ h,

intravascular fluorescein will slowly subside, resulting in prolonged staining of

normal perfused brain, while being extravasated and traveling with edema through

peritumoral tissue, raising the danger of staining non-tumorous tissue [111]. Con-

sequently, the timing of surgery is critical and duration of craniotomy and prepa-

ration before reaching the lesion have to be considered. A further aspect

confounding applicability of fluorescein is the problem with surgical injury of

normal brain tissue, which will lead to unselective extravasation of fluorescein from

the bloodstream along the cut margins.

Consequently, further studies are required to evaluate fluorescein in the context

of tumor histology, timing of administration, illumination, tissue perfusion, and

edema. In summary, from the current point of view, the abovementioned con-

founders have to be considered using a fluorophore that does not have a specific

tumor–fluorophore interaction and is rather a marker of BBB integrity.

26.3.2.2 Fluorescein-Guided Surgery for High-Grade Gliomas
With the success of 5-ALA-guided glioma resection regarding the improvement of

the extent of resection, several studies have attempted to evaluate the use of the

more inexpensive agent fluorescein regarding its usefulness in improving EOR in

malignant gliomas [1, 11, 74, 88, 98]. The groups of Schebesch and Acerbi reported

a gross total resection rate of 80% in their series of n = 35 and n = 20, respectively,

high-grade glioma patients using YELLOW 560 filter [1, 100] (Fig. 26.5). Other

studies reported GTR in up to 100% of cases using fluorescein, and additionally

showing that intraoperative fluorescence correlated well with contrast enhancement

on MRI scans [2, 22]. Sensitivity and specificity analyses after administration of

low-dose fluorescein revealed a sensitivity of 94% and a specificity of 90% [1]. In

2011, a phase II trial (FLUOGLIO) started to evaluate the safety and efficacy of

fluorescein-guided glioma surgery, showing that this approach is feasible, safe [2].

However, the current evidence for usage of fluorescein in high-grade gliomas is still

limited to small cohort studies with inherent case selection issues. No further

prospective randomized controlled trials are available that investigate the possible

benefit of fluorescein in terms of survival and EOR.
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Interestingly, the simultaneous usage of fluorescein with 5-ALA has been

investigated for the resection of high-grade glioma. This concept results in better

background discrimination from circulating fluorescein while retaining the selec-

tivity of 5-ALA-induced porphyrins for discriminating tumor [123].

26.3.2.3 Fluorescein-Guided Surgery for Cerebral Metastases
GTR of cerebral metastases is known as an independent predictor of patient sur-

vival [44]. Consequently, intraoperative imaging that helps in increasing EOR is in

focus to improve outcome. The benefit of fluorescein in improving extent of

resection (EOR) has been shown for metastases, yielding 83–100% GTR. In

comparison with traditional white light microscopy, GTR has been reported to be

achieved in 54–74% [29, 35, 80].

26.3.2.4 Fluorescein-Guided Surgery for Other CNS Tumors
As in 5-ALA-guided surgery, more and more reports on fluorescein-guided

resection of other CNS tumors are becoming available. However, so far, there are

only studies with small patient numbers and without standardized protocols for the

administration of fluorescein. Fluorescein has been described as helpful for resec-

tion of convexity meningioma, enabling visualization and differentiation of

meningioma and its dural tail from normal brain and dura [16]. Furthermore,

fluorescein might help to enhance contrast between normal brain structures and

cranial nerves and meningiomas in skull base surgery [15]. Primary central nervous

system (CNS) lymphomas are typically treated with radio- and chemotherapy.

However, a surgical biopsy is usually required. Fluorescein has been shown to help

visualizing lymphomas by delineating malignant tissue from normal brain [29, 99].

Fig. 26.5 Fluorescein-guided resection of malignant glioma. Intraoperative view of a malignant

glioma under white light (a) and after application of fluorescein under YELLOW 560 filter

(b) before corticotomy. Reprinted with permission [35]
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26.3.3 Indocyanine Green (ICG)

Indocyanine green (ICG) is a tricarbocyanine with fluorescence in the near-infrared

range with a peak emission at 780 nm and excitation at 810 nm. ICG was approved

by the Food and Drug Administration (FDA) in 1959, providing information of

liver and cardiocirculatory functions, and later widely used for ophthalmologic

applications [12, 87]. The group of Raabe et al. was the first to describe the use of

ICG for visualization of blood flow in cerebral vessels exposed in the surgical

microscope field, a technique now known as ICG videoangiography [83]. ICG

videoangiography was originally used to provide augmentive information on

cerebrovascular pathologies and especially used for vascular cases (aneurysms and

arteriovenous malformations) [30, 84]. In addition, the utility of ICG to help

understand the angioarchitecture of hypervascular tumors, e.g., in case of heman-

gioblastomas and to identify surrounding vessels has been described. This helps in

understanding the angioarchitecture related to the tumor and hereby increasing the

safety of the procedure. Following the intravenous administration of 0.2–0.5 mg

ICG/kg, NIR light (range 700–850 nm) is used to excite the dye, and a NIR camera

—integrated into the latest generations of surgical microscopes—captures the

emission at 780–950 nm of the molecules flowing through the vessels.

The use of ICG is safe with an incidence of adverse reactions ranging from

0.05% for severe side effects such as hypotension, arrhythmia, anaphylactic shock

to 0.2% for mild or moderate side effects such as nausea, skin eruption, and pruritus

[83].

A growing body of research has led to the utilization of ICG in neuro-oncological

surgery as well. One technique has been referred to as second-window ICG (SWIG),

a procedure in which higher doses up to 5.0 mg/kg are administered to the patient up

to 24 h in advance of surgery with intraoperative imaging [61]. Within the 24 h, ICG

accumulates in the tumor tissue due to enhanced permeability within the tumor and

selective retention effects [125]. It is assumed that ICG binds to serum albumin and

can pass through the disrupted blood–brain barrier. ICG is retained possibly due to a

lack of drainage [61, 125]. However, the exact mechanisms of retention are not

entirely clear.

Unlike 5-ALA-PpIX and fluorescein, which emit fluorescence within the visible

spectrum, ICG’s excitation and emission are in the near-infrared (NIR) region of the

spectrum [137]. These properties enable visualization of ICG fluorophore situated

deeper in the tissue since longer wavelength excitation and emission light undergo

less absorption than shorter wavelength [137]. Therefore, ICG permits visualization

of tumors up to a depth of 2 cm and through the dura, facilitating planning of dural

opening and corticectomy. On the other hand, NIR cameras are necessary and for

the moment ICG fluorescence can only be visualized on the video screen and not

directly within the cavity during surgery.

Studies revealed ICG fluorescence to be detectable in contrast-enhancing glio-

mas and have discussed ICG’s value for the detection of tumor margins. Strong

tumor-to-background fluorescence ratios were found and fluorescence appeared to

correlate with the degree of contrast enhancement on preoperative MRI [61]. So far,
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there are no studies demonstrating a benefit for extent of resection in glioma sur-

gery. Furthermore, ICG is not tumor-specific, incorporating the risk of resection of

normal false positive tissue.

In addition, some authors suggest the usage of second-window ICG in order to

visualize residual tumor and the margins in surgery for metastases and meningioma

[62, 63]. However, the benefit of this intraoperative tool warrants further

investigation.

26.4 Novel Techniques

Despite several advantages and the broad use of wide-field fluorescence imaging

techniques, there are some limitations regarding sensitivity for the detection of

malignant cells. Improvements in FGS are ongoing and further techniques are being

developed to improve brain tumor surgery. Most of these advanced technologies are

in their fledgling stage and are presently subject to intensive research.

26.4.1 Tumor-Targeted Alkylphosphocholine Analogs
for Intraoperative Visualization

A major aim in surgery of malignant brain tumors is complete resection of tumor

cells while sparing healthy brain parenchyma. To this end, cancer-targeted

alkylphosphocholine analogs (APCs) attached to fluorophores are being explored

for intraoperative visualization of tumor cells. APC analogs are small synthetic

phospholipid ether molecules that are taken up by tumor cells through overex-

pressed lipid rafts and undergo prolonged retention due to decreased catabolism

[33, 139]. APC analogs were originally developed for PET imaging and targeted

radiotherapy and appear to have a broad tumor-targeting potential [139]. Two

fluorescent APCs (CLR1501-green fluorescence and CLR1502-near-infrared

fluorescence) have been found to label tumor cells in a glioblastoma xenograft

model with a high cancer cell selectivity [125]. Future step of this technology,

which is translating into clinical use, is the development of a dual-labeled APC

enabling NIR fluorescence with deep tissue penetration and PET imaging with the

same agent. This offers the possibility of synergistic diagnostic detection of tumor

cells and usage at multiple phases of tumor management with regard to tumor

resection, staging, and possible localized radiotherapy. However, up to date, these

are preclinical data and the benefit in the management of brain tumor patients has

yet to be determined [56, 144].
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26.4.2 Confocal Endomicroscopy

A major problem with wide-field fluorescence-guided surgery is the lack of high

resolution and the subjective interpretation of fluorescence intensities, challenging

delineation of normal brain tissue and tumor tissue especially in glioma surgery and

at the tumor margins. Predictions of grade to predict tumor grade from preoperative

imaging in glioma surgery are often uncertain [72]. Therefore, time-consuming

intraoperative frozen sections are regularly performed. However, there are some

shortcomings about frozen-section pathology as it can be non-diagnostic or mis-

leading in some cases [130].

To overcome these limitations, confocal endomicroscopy has been recently

introduced into the field of neurosurgery, a technique that allows standard neu-

ropathological diagnostics as a real-time intraoperative technique [27, 66]. The

system consists of a handheld probe that uses a single optical fiber for illumination

and detection and displays high-resolution images with up to 1000-fold magnifi-

cation to a movable LCD workstation [34]. Tissue contrast is achieved by

administration of fluorescent dyes, e.g., fluorescein [27].

This “optical biopsy” facilitates surgeons to detect tumor remnants at resection

margins with higher accuracy and in especially critical and eloquent regions were

an aggressive maximal extent of resection is not possible and can be probed with

confocal endomicroscopy for measurement of tumor cell densities before resection.

In cases of LGG, which often do not show visible PPIX fluorescence, intraop-

erative confocal endomicroscopy is able to visualize the presence of even small

amounts of fluorescence in tumor cells [97]. Furthermore, visualization of tumor

cells with confocal endomicroscopy has been shown for a variety of brain tumors,

including meningiomas, hemangioblastomas, gliomas, and neurocytomas [95].

Confocal endomicroscopy only enables a small field of view of about 0.5 mm in

diameter and therefore cannot be used to scan the whole tumor area, but can be

utilized at the end of surgery to detect malignant tissue remnants. To interpret the

images, however, knowledge of histopathology or the presence of a neuropathol-

ogist is required [4].

26.4.3 Raman Spectroscopy

All previously mentioned visualization techniques rely on labeling agents that have

limitations regarding sensitivity or specificity for tumor detection. Recently,

label-free techniques have emerged in the field of intraoperative tumor visualization

that depends on the intrinsic biochemical properties of normal versus pathological

tissue to provide image contrast [36, 43, 77].

Raman spectroscopy is one such technique that is based on the findings of C.V.

Raman in 1928 [86]. The Raman Effect refers to the scattering of monochromatic

light. Most photons in the visible spectrum are scattered elastically when interacting

with tissue or a media. However, a small portion of photons absorbs energy or

transfers energy from or to the object being imaged. The transfer in energy results in
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inelastic scattering and is called the Raman Effect. The Raman Effect can be cap-

tured using a sensitive spectrometer. Raman spectroscopy is used to provide

information on the chemical composition of different tissues, e.g., their lipid and

protein ratios, providing a structural fingerprint. Investigations have shown that

Raman spectroscopy is helpful in delineating normal brain parenchyma from tumor

tissue and necrosis [43, 50, 51, 54]. Accuracies of up to 98% for discrimination in

frozen sections have been described [43].

Recently, a Raman spectroscopy handheld probe system for in vivo intraoper-

ative use has been developed [20]. Jermyn et al. were able to distinguish normal

brain from high- and low-grade gliomas invaded brain with high accuracy [40]. The

aim of this method is to analyze the molecular nature of the tissue prior to resection,

with the aim of improving cancer targeting and patient safety [21] (Fig. 26.6).

26.4.4 BLZ-100 Fluorescence-Guided Brain Tumor Surgery

Targeted fluorescence imaging using fluorescent-labeled probes with tumor-specific

molecular targets is the next obvious step toward a higher accuracy for discrimi-

nating tumor-infiltrated tissue from normal brain. The combination of the fluor-

ophore with a tumor-specific peptide enhances specificity for detection of malignant

cells. BLZ-100 (tozuleristide) is such a molecule that consists of a tumor-targeting

peptide, chlorotoxin, coupled to the near-infrared fluorophore ICG [79]. Chloro-

toxin, extracted from the venom of scorpions, specifically binds to gliomas and

tumors of neuroectodermal origin [64]. BLZ-100 is administered intravenously

24 h prior to surgery. As mentioned above, ICG fluorescence can be visualized

using a NIR camera. A high affinity of BLZ-100 toward human gliomas has been

demonstrated [8]. However, further trials are needed to determine the utility of

BLZ-100 in glioma surgery.

26.5 Combination of Different Techniques
for Intraoperative Imaging

The combination of different imaging modalities, e.g., neuronavigation with MRI

and PET with specific biomarkers and FGS, allows the generation of comprehen-

sive information on tumor location, extent, anatomy, metabolism, and function [60,

68].

Newer techniques might help to add additional information on the chemical or

molecular composition of the tissue. Using different modalities helps to overcome

limitations of single techniques, e.g., brain shift, using synergistic effects and uti-

lizing the benefits of several techniques [53, 102, 103].
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26.6 Future Directions

All the developments discussed here aim at better intraoperative visualization in

order to improve accuracy and extent of resection. However, current methods,

which have been established in the clinical routine setting, face individual limita-

tions. Consequently, further research is required to overcome these limitations. For

Fig. 26.6 Raman spectroscopy. a Brightfield image of xenograft glioblastoma in mouse brain

outlining tumor hard boundary (black, dashed line), b, Cyan dashed box indicates region of interest

(ROI). Scale bar, 2 mm. b Phase contrast micrograph of BCARS ROIs with boxes and associated

subfigure labels. Scale bar, 200 lm. c Pseudocolor BCARS image of tumor and normal brain

tissue highlighting nuclei (blue), lipid content (red), and red blood cells (green). d BCARS image

and axial scan highlighting nuclei (blue) and lipid content (red). e BCARS image highlighting

nuclei (blue), lipid content (red), and CH3-stretch–CH2-stretch (green). NB: normal brain; T: tumor

cells; RBC: red blood cells; L: lipid bodies; WM: white matter. f Single-pixel spectra. g Spectrally

segmented image of internuclear (blue) and extranuclear (red) tumoral spaces. h Histogram

analysis of phenylalanine content. i Mean spectra from within tumor mass. c–e and g, Scale bars,

20 lm. Reproduced with permission [9]
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methods exploiting induced tissue fluorescence, quantitative as opposed to quali-

tative assessments require more scrutiny. At the moment, the decision of whether

tissue is “fluorescent” relies on the subjective impression and assessment of the

surgeon. Several attempts to measure and quantify fluorescence have been under-

taken. One promising technology given quantitative information is fluorescence

spectrography. Small handheld devices for intraoperative spectroscopy are available

that enable determining the actual PpIX concentration in tumor tissue using 5-ALA

FGS, even when no fluorescence is visible under the microscope [49, 121, 136].

Using this method, objective measurements of tissue fluorescence can be achieved.

In addition, invisible PpIX accumulation, e.g., in patients with LGG, that would

have gone unnoticed by the surgeon’s visual perception alone can be detected using

spectroscopy. A 100-fold increase of sensitivity of fluorescence detection in LGG

using handheld spectroscopy has been shown [135].

Furthermore, more specific labeling of tumor cells is under investigation, e.g.,

targeted fluorescence imaging. Innovations of neurosurgical microscopes will

improve the view of the surgical field using all the mentioned visualization tools,

detecting additional optical features in tumor tissue [137].

Multimodality in the applied imaging techniques and development of new

techniques will provide comprehensive information derived from different sources

regarding biological, metabolic, anatomical, and functional properties of tissue

(Table 26.1). Neurosurgeons are beginning to integrate imaging concepts into their

daily routine for brain tumor surgery, aiming at better extent of resection while

lowering the risk of removal of functional non-tumor tissue.

Table 26.1 Overview on the current techniques for intraoperative tumor visualization with their

advantages and disadvantages, modified from [101]

Technique Advantages Disadvantages

5-ALA • Selectively absorbed by tumor

cells and is converted into

fluorescent PPIX

• Low toxicity, high safety

• Intraoperative real-time feedback

• Brain shift does not interfere with

this technique

• Full integration into the surgical

microscope

• View of the full surgical field

• Use without interruption to the

surgical workflow

• Reliable correlation with

preoperative contrast

enhancement on MRI

• Correlation with histopathology

• Metabolic labeling

• Low background illumination,

loss of normal optical

information

– Alternating between white light

and fluorescence mode

• Imaging surface tool, depth can

limit visualization

• Requires special microscope

• Expensive

• Bleaching effect

• Time dependency

• Subjective interpretation of

fluorescence intensities

(continued)
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Table 26.1 (continued)

Technique Advantages Disadvantages

Fluorescein • Robust and inexpensive

• Can be visualized by the naked

eye (using higher concentrations)

• Low toxicity, high safety

• Intraoperative real-time feedback

• Brain shift does not interfere with

this technique

• Full integration into the surgical

microscope

• View of the full surgical field

• Use without interruption to the

surgical workflow

• Not tumor-cell-specific

– Marker of BBB breakdown

• Unselective extravasation during

surgery

• Time dependency

• Subjective interpretation of

fluorescence intensities

• Passive labeling

Indocyanine

green (ICG)

• Excitation and emission in the

near-infrared region

– Enables visualization of

fluorescence situated deeper in

the tissue

• Less scatter of emitted light

• Low tissue autofluorescence

• Low toxicity, high safety

• Intraoperative real-time feedback

• Brain shift does not interfere with

this technique

• Full integration into the surgical

microscope

• View of the full surgical field

• Use without interruption to the

surgical workflow

• Requires special cameras and

instrumentation to visualize

fluorescence

• Not tumor-specific

• Accumulates due to an enhanced

permeability of the BBB

• Time dependency

• Subjective interpretation of

fluorescence intensities

• Passive labeling

Neuronavigation • Ubiquitous

• Several imaging modalities can

be entered into the software,

providing information on

– Anatomy

– Localization and orientation

(almost real time)

– Extent of tumor

– Function (fMRI)

– Fiber tracts (DTI)

– Metabolic (PET)

• Planning of surgical

approach/craniotomy

• Use without interruption to the

surgical workflow

• Loss of accuracy due to

intraoperative brain shift caused

by positioning, application of

mannitol, and drainage of

cerebral spinal fluid (CSF)

• Information used during surgery

is displayed on a screen outside

the surgical field—interruptions

to surgical workflow
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