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Abstract 

The diagnostic potential of PET using the amino acid analogue O-(2-[
18

F]fluoroethyl)-L-

tyrosine ([
18

F]FET) in brain tumor diagnostics has been proven in many studies during the last 

two decades and is still the subject of multiple studies every year. In addition to standard 

magnetic resonance imaging (MRI), positron emission tomography (PET) using [
18

F]FET 

provides important diagnostic data concerning brain tumor delineation, therapy planning, 

treatment monitoring, and improved differentiation between treatment-related changes and 

tumor recurrence. The pharmacokinetics, uptake mechanisms and metabolism have been well 

described in various preclinical studies. The accumulation of [
18

F]FET in most benign lesions 

and healthy brain tissue has been shown to be low, thus providing a high contrast between 

tumor tissue and benign tissue alterations. Based on logistic advantages of F-18 labelling and 

convincing clinical results, [
18

F]FET has widely replaced short lived amino acid tracers such 

as L-[
11

C]methyl-methionine ([
11

C]MET) in many centers across Western Europe. This 

review summarizes the basic knowledge on [
18

F]FET and its contribution to the care of 

patients with brain tumors. In particular, recent studies about specificity, possible pitfalls, and 

the utility of [
18

F]FET PET in tumor grading and prognostication regarding the revised WHO 

classification of brain tumors are addressed.  
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1. Introduction 

In recent years, amino acid PET has become an important constituent in brain tumor 

diagnostics, as it complements conventional MRI, which is considered the gold standard, by 

adding valuable metabolic data to anatomical images [1]. Using conventional MRI only, it 

may be difficult to delineate brain tumors and to distinguish treatment related changes from 

tumor recurrence [2-4]. Consequently, many approaches have been undertaken to find suitable 

PET tracers providing high tumor-to-brain contrast, reliable tumor delineation, and high 

specificity for tumor tissue. In this field, radioactively labelled amino acids have emerged as 

the most powerful tracers and recently, the Response Assessment in Neuro-Oncology 

(RANO) working group has recommended amino acid PET as a valuable tool to improve the 

management of brain tumor patients [5, 6]. Among the recommended amino acid tracers, 

[
18

F]FET has become one of the most widely used in Western Europe. Due to logistical 

advantages, 
18

F-labelled tracers have widely replaced the longer-established L-[
11

C]methyl-

methionine ([
11

C]MET) [7], which requires an on-site cyclotron owing to short half-life of C-

11 of 20 minutes. An advantage of [
18

F]FET over the less frequently used 

3,4‑ dihydroxy‑ 6‑ [
18

F]fluoro-L‑ phenylalanine ([
18

F]FDOPA), is the low accumulation in 

the striatum [1, 8]. [
18

F]FET has been approved for brain tumor diagnostics in Switzerland [9] 

and France and some centers report on more than  10,000 scans so far [10]. Since its 

development in the 1990s, more than 290 original articles and reviews on [
18

F]FET PET 

underline the clinical relevance of this tracer for the diagnosis of brain tumors. Although other 

F-18 labelled amino acid tracers, such as anti-1-amino-3-[
18

F]fluorocyclobutane-1-carboxylic 

acid ([
18

F]FACBC, fluciclovine) [11], are under consideration, the extensive clinical 

experience and well-understood behavior of [
18

F]FET in brain tumors and non-neoplastic 

lesions remains an advantage and must first be gained with other tracers. 
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This review summarizes the basic knowledge about [
18

F]FET and its clinical applications with 

a focus on more recent studies and discusses the future role of [
18

F]FET PET in the context of 

recent developments in neurooncology. 

 

2. Characteristics of [
18

F]FET 

2.1 Radiosynthesis 

So far, the radiosyntheses of [
18

F]FET follows two principle methodologies: via build-up 

synthesis, using a 
18

F-fluoroalkylation procedure, or by direct synthesis, using an 

appropriately protected derivative of tyrosine. Both methods have been optimized for 

implementation in remote-controlled synthesizers fulfilling GMP-conditions.  

The first published synthesis of [
18

F]FET bases on a two-step reaction, however, requiring 

two HPLC purification steps and thus is difficult to automate. As a start [
18

F]fluoroethyl 

tosylate is synthesized by no-carrier-added (n.c.a.) nucleophilic 
18

F-fluorination of 1,2-

bis(tosyloxy)ethane. Subsequently, reversed phase HPLC-purification and on-line fixation of 

the 
18

F-fluoroalkylation reagent is done, which is reacted in the second step with the disodium 

salt of L-tyrosine. The obtained [
18

F]FET is purified by HPLC, followed by solid phase 

extraction and formulation, resulting in a total radiochemical yield (RCY) of 40 % [12]. In 

order to simplify the process 2-bromoethyl triflate is employed as precursor, enabling 

purification of the intermediate [
18

F]fluoroethylbromide by distillation [13]. Alternatively, 

final isolation of [
18

F]FET upon the build-up procedure can be performed by means of several 

cartridge systems saving an HPLC purification step [14].  

The less complex direct synthesis proceeds as a one-pot procedure via n.c.a. nucleophilic 
18

F-

fluorination of O-(2-tosyloxyethyl)-N-trityl-L-tyrosine tert-butylester as precursor, followed 

by deprotection with trifluoroacetic acid in dichloromethane. A combination of a solid phase 

extraction, coupled with a subsequent HPLC-purification, enables an easy automatable 

procedure with a RCY of up to 60%, a radiochemical purity of >98%, and a molar activity of 
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>200 GBq/µmol. The use of ethanol/water (2/98) as HPLC eluent even leads to a ready for 

application solution of [
18

F]FET [15]. Usage of hydrochloric acid for deprotection enables an 

even better automation and GMP-compatibility of the process [16], and again, a tailored set of 

solid phase cartridges allows the purification of [
18

F]FET without HPLC [17, 18].  

Another one-pot alternative was introduced for direct 
18

F-labelling, applying a Ni(II) complex 

of an alkylated (S)-tyrosine Schiff base (Ni-(S)-BPB-(S)-Tyr-OCH2-CH2OTs) as precursor, 

This easy to automate method lead again to a somewhat smaller total RCY of >40 %, but an 

equal radiochemical purity of >99 % (see [19] and references therein). The purification is here 

again performed by solid phase extraction methods without the need of HPLC. The use of the 

nickel-containing precursor as chiral auxiliary provides an enantiomeric excess of 95-96% of 

L-[
18

F]FET, while the first two methods provide a stereochemically pure product. Its use, 

however, seems particularly critical with regard to careful quality evaluation fulfilling given 

GMP requirements.  

In comparison, all three procedures are useful for routine production of [
18

F]FET, but the 

second one appears most efficient, considering ease of performance and radiochemical yield.  

 

2.2 Toxicity and dosimetry 

The toxicity of FET has been tested in mice in doses up to 150 µg/kg body weight i.v. 

(Research and Consulting Company Ltd. Itingen/Switzerland, Project 666887). Neither 

behavioral nor somatic abnormalities were reported and the LD50 is expected to be much 

higher. According to current guidelines [20], the recommended dose for human application is 

185 - 200 MBq of [
18

F]FET, which corresponds – at a specific radioactivity of 200 GBq/µmol 

and a molecular weight of 227 g/mol – to approx. 0.23-28 µg [
18

F]FET per patient, or up to 4 

ng/kg for a 70 kg patient. The clinical use of this tracer in more than 10.000 patients in the last 

20 years revealed no reported advers events and [
18

F]FET is generally considered to be safe 

for human application. The highest radiation dose is observed in the urinary bladder wall with 
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60 µGy/MBq, the effective dose is 16.5 µSv/MBq i.e. 3.3 mSv after injection of 200 MBq 

[
18

F]FET in a 70 kg patient [21]. 

 

2.3 Pharmacokinetics 

After intravenous injection of [
18

F]FET the blood activity curve shows an initial peak after 1.5 

minutes post injection (p.i.), and reaches a plateau after 20 minutes p.i. with a value of 

approx. 12±3x10
-3

 % injected dose (ID) per ml. This rather high concentration of [
18

F]FET in 

the blood compartment has to be taken into account when evaluating regions near large 

vessels. Whole body PET scans 70 and 200 minutes p.i. revealed similar distribution of 

radioactivity in all organs, with a standardized uptake value (SUV) between 0.5 and 1.6. Only 

the urinary system had higher SUV of up to 2.0 in the kidneys and up to 11.2 in the urinary 

bladder [21]. 

Metabolic analyses revealed a high stability of [
18

F]FET in the plasma. Between 5 to 120 

minutes p.i., the percentage of stable [
18

F]FET in relation to total plasma activity decreased 

from 95±9% to 87±13% ID. Few metabolites are found in plasma and the percentage of stable 

[
18

F]FET in urine is lower, i.e. 61±3 % ID 150 minutes p.i., suggesting that most metabolites 

are rapidly excreted by the kidneys, while overall excretion with a rate of 5.3% ID/h is rather 

low [21]. Furthermore, no significant participation of [
18

F]FET into protein synthesis has been 

found [12, 22, 23], nor is there evidence for the tracer to be part of the catecholamine pathway 

[21] or to be a substrate of tyrosine hydroxylase [24]. 

[
18

F]FET, as its natural analogue L-tyrosine, belongs to the class of large neutral amino acids, 

which are predominantly transported by the system L amino acid transporters (LAT). Today, 

it is assumed that [
18

F]FET transport into the brain is mainly mediated by Na
+
-independent 

LAT1, since LAT2 and Na
+
-dependent transporters are not expressed at the luminal side of 

the blood-brain barrier [25]. This conclusion is based on several in vitro studies using tumor 

cells [22, 23], Xenopus oocytes [26, 27] or other cell lines [28, 29] which express different 
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types of amino acid transporters. [
18

F]FET uptake can be displaced by other amino acids 

transported by the LAT transporter or by 2-aminobicyclo-[2,2,1]heptane-2-carboxylic acid 

(BCH), an inhibitor of the system L transporter. While the main route via LAT1 into the brain 

seems to be elucidated, the studies also point to other uptake mechanisms like the Na
+
-

dependent amino acid transporters B
0,+

 and B
0
, depending on the specific cell line and intra- 

and extracellular amino acid concentrations. This rather complex mechanism might account 

for unexpected findings such as low [
18

F]FET uptake in peripheral tumors despite high LAT1 

expression [30]. 

Kinetic modelling of [
18

F]FET uptake has been applied in few clinical [31, 32] and preclinical 

studies [33, 34], using 1-tissue and 2-tissue compartment models as well as the model-

independent Patlak analysis. So far, no clinical benefit of using kinetic modelling over simpler 

approaches as tumor-to-brain ratios (TBR) has been reported.  

 

3. Clinical applications  

3.1 Methods: Static and dynamic scans 

A detailed description of the methodological aspects of [
18

F]FET PET has been presented in 

an earlier publication [35]. Data evaluation is usually based on static scans from 20-40 

minutes p.i. of [
18

F]FET [20, 36, 37]. The tracer uptake in the tumors and in the normal brain 

is quantified by the SUV by dividing the radioactivity (kBq/ml) in the tissue by the 

radioactivity injected per gram of body weight. Important parameters are the maximum or 

mean tumor-to-brain ratio (TBRmax, TBRmean) and the biological tumor volume (BTV) which 

corresponds to the [
18

F]FET positive tumor by application of a cut-off TBR of more than 1.6 

[38, 39]. Caution has to be taken when patients are under dexamethasone therapy, especially 

during treatment monitoring, as [
18

F]FET uptake in normal brain tissue and thus the TBR and 

the BTV might be influenced [40]. To ensure stable metabolic conditions, fasting for more 

than 4 h prior to the scan is recommended, although preclinical results suggest that only high 
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doses of amino acids in the blood pool alter the [
18

F]FET uptake [41]. It has been reported 

that for  glioma grading based on histology early scans from 5-15 minutes p.i. may be more 

accurate [42]. Further information may be derived from dynamic PET scans for up to 50 

minutes p.i. and analyzing the time-activity-curves (TAC) of brain lesions [43], as high-grade 

tumors often show an early peak and subsequently a decreasing TAC, while low-grade tumors 

classified according the WHO classification of 2007 [44] and non-neoplastic lesions exhibit 

slowly increasing uptake patterns [45-47]. In heterogeneous tumors, selected regions may 

exhibit different curve patterns, indicating locally a higher tumor grade than in the whole 

tumor area [48, 49]. Besides qualitative descriptions of the TAC [46], quantitative parameters 

like time-to-peak (TTP) [50], the slope in the phase from 15-40 minutes p.i. [51, 52] and TBR 

from different phases of the scan [46, 53] may be helpful for comparative assessment. 

Dynamic scans and evaluation, however, are more time consuming and consequently more 

expensive; therefore, the cost-value ratio depends on the specific clinical question. 

 

3.2 Differential diagnosis, grading, and prognostication 

The differential diagnosis of cerebral lesions includes non-neoplastic lesions like 

inflammatory processes, hemorrhage and infarction, as well as primary and secondary brain 

tumors. [
18

F]FET PET has a sensitivity between 82-92% and a specificity between 57-76% to 

distinguish a tumor from a non-neoplastic lesion with a positive predictive value of 98% for 

neoplastic tissue [54-56]. A TBRmean threshold of 1.6 and a TBRmax of 2.1-2.5 provided the 

best results to separate these entities. Nevertheless, histological evaluation after biopsy or 

surgery remains the gold standard to provide an accurate histological and molecular 

characterization of the lesions. 

By merely evaluating the [
18

F]FET uptake, high-grade tumors classified according the WHO 

classification of 2007 [44]are not well distinguishable from low-grade tumors. The sensitivity 

and specificity ranges between 71-80 and 56-85%, respectively [55, 57-59]. One cause is the 
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relatively high uptake in oligodendrogliomas which comprise up to 15-28% of all gliomas 

[55, 58, 59] and which have a better prognosis than other gliomas of the same grade [47, 60]. 

The accuracy for the differentiation between low- and high-grade gliomas classified according 

to the WHO classification of 2007 can be increased by using dynamic parameters of [
18

F]FET 

uptake [42, 61-63]. In more recent studies, the revised WHO classification 2016 has been 

taken into account [64], and the relationship between [
18

F]FET uptake and molecular markers 

such as gene mutation encoding for the isocitrate dehydrogenase enzyme (IDH) has been 

investigated [65-67]. These studies demonstrated a relationship between [
18

F]FET kinetics 

and IDH mutation status which may be helpful to predict these molecular parameters non-

invasively. 

Studies on the prognostic significance of [
18

F]FET PET are controversial. On the one hand, 

there is some evidence for better prognosis in gliomas with low [
18

F]FET uptake [68, 69] on 

the other hand gliomas with a photopenic appearance in [
18

F]FET PET can have an 

unfavorable prognosis [39, 70]. One study identified prognostically relevant information of 

[
18

F]FET kinetics beyond molecular markers [71]. Another approach is to measure uptake 

heterogeneity of amino acids using textural features analyses of tracer distribution, which 

shows potential to improve tumor grading and prognostication [72-74]. Furthermore, the BTV 

of [
18

F]FET uptake at primary diagnosis of gliomas has been reported to be a prognostic 

factor [75-77]. In low grade-gliomas, the kinetic analysis may help to identify areas of 

malignant transformation and thus adds prognostic information [39, 49, 57, 78, 79]. 

 

3.3 Treatment planning 

The ability of [
18

F]FET to delineate the BTV and to identify metabolically active parts beyond 

the enhancement of MRI contrast agents (Fig. 1) provides advantages for tumor treatment 

planning compared with conventional MRI. The potential of [
18

F]FET to detect the tumor 

extent in malignant gliomas and even in non-enhancing gliomas without BBB leakage has 
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been demonstrated in several studies [38, 56, 80, 81]. Furthermore, a sensitivity of 72-79% 

has been reported for detecting a local maximum for biopsy guidance in gliomas [56, 82], 

which may be helpful to minimize false-negative results. Tissue samples from the most active 

tumor parts obtained by biopsies are crucial for histological and molecular characterization of 

the tumors and hence for determining the best treatment options. Optimized planning for 

radiation therapy is provided by improved tumor delineation using [
18

F]FET PET, though no 

prolonged survival compared to standard MRI-based planning has been reported so far [83, 

84]. A prospective phase II clinical trial with recurrent glioblastoma patients is currently 

ongoing [85]. Biopsy controlled studies have provided evidence that [
18

F]FET PET depicts 

the solid and metabolically active tumor mass more reliable than conventional MRI [38, 48, 

80, 86, 87].  

Studies using [
18

F]FET report a higher sensitivity than MRI alone for the detection of residual 

tumor after resection and PET has been recommended additionally to MRI for postoperative 

assessment [88-90]. An experimental study demonstrated a slightly increased [
18

F]FET 

accumulation at the rim of the resection cavity, which could be attributed to reactive 

astrocytosis [91]  However, the accumulation was lower than in tumor tissue and decreased 

significantly after 2 weeks. Therefore, it was recommended to assess residual tumor after 

surgery after a time interval of 2 weeks.  

 

3.4 Diagnosis of tumor recurrence and treatment monitoring 

The most frequent indication for the use of [
18

F]FET PET in neuro-oncology is the 

differentiation between tumor progression on the one hand and treatment-related changes on 

the other hand. Contrast enhancement in MRI is frequently observed after radiotherapy and/or 

chemotherapy owing to treatment related changes. During the first 12 weeks after 

chemoradiation of malignant gliomas with temozolomide, progressive contrast-enhancing 

lesions are frequently observed on MRI, which are not related to tumor progression, but 
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remain stable or regress during further follow-up. This phenomenon is observed in 15-30% of 

patients with malignant gliomas and is referred as pseudoprogression.  [92-94]. [
18

F]FET PET 

has been shown to differentiate pseudoprogression from recurrence with an accuracy of up to 

90% [95-97]. In the course of the disease further treatment-related changes such as 

radionecrosis may occur even up to years after radiotherapy [98]. A number of studies have 

examined the significance of [
18

F]FET PET for differentiating tumor recurrence from 

treatment-related changes in glioma patients. The diagnostic accuracy of these examinations 

varies between 80% and 90% and is therefore clearly superior to conventional MRI [99-105]. 

Similar results of up to 88% have been reported for the differentiation of recurrent brain 

metastasis from radiation necrosis using dynamic [
18

F]FET PET [51, 106-108]. In this 

context, the evaluation of textural parameters derived from static [
18

F]FET PET appears to be 

promising as well [109].  

Another diagnostic problem is the so-called pseudoresponse, which is frequently observed in 

MRI during anti-angiogenic therapy due to rapid restoration of the BBB [110]. Anti-

angiogenic drugs can rapidly decrease contrast enhancement after initiation of treatment, 

producing an apparent response with persistent non-enhancing tumor. [
18

F]FET PET has been 

shown to discriminate responders from non-responders much earlier than MRI alone [111-

115]. 

In the assessment of early treatment response, reduction of [
18

F]FET uptake has been reported 

to be a good prognostic factor after postoperative chemoradiation [116, 117]. A reduction of 

10% uptake, referred to as [
18

F]FET PET responders, correlated with a significantly longer 

progression-free survival compared to stable or increasing tracer uptake after therapy. Similar 

results have been reported for other approaches like radioimmunotherapy and convection-

enhanced delivery of paclitaxel [118, 119]. In a recently published review the previous 

applications of [
18

F]FET PET in therapy monitoring have been described in detail. [120] . 
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4. Pitfalls 

 [
18

F]FET uptake in benign brain lesions is usually low and does not exceed tracer uptake in 

malignant gliomas [56]. Preclinical studies confirm generally low uptake of [
18

F]FET  in 

inflammatory lesions, abscesses, ischemia, and hematoma. Slightly increased uptake is 

observed in reactive gliosis which usually can be well distinguished from tumor uptake [121-

124]. Only in rare cases high [
18

F]FET uptake has been reported in abscesses, demyelination 

and other active inflammatory processes as well as postischemic lesions and cortical 

malformations [55, 125, 126]. Furthermore, a recent study [127] reported about a subgroup of 

seizure patients with high gyral [
18

F]FET uptake in epileptic foci, mimicking tumor tissue. In 

those patients, upregulation of LAT1/2 in neurons rather than reactive astrogliosis was found 

to be the reason for the elevated uptake. A recent study in two different rat models of seizures 

and a group of patient with different kinds of epilepsy, showed no increased [
18

F]FET uptake 

post- and interictally. The authors concluded that [
18

F]FET uptake due to seizure activity is a 

very rare phenomenon and not a major pitfall in brain tumor diagnostics (Stegmayr et al., 

manuscript submitted). Taken together, unspecific [
18

F]FET uptake in non-neoplastic lesions 

is not frequent, but has to be considered in clinical routine. 

 

5. Cost effectiveness 

As described in the previous chapters, the additive diagnostic value of [
18

F]FET PET 

compared to conventional MRI has been demonstrated in numerous studies. The effect of 

additional [
18

F]FET PET on patient-relevant parameters like survival or increased quality of 

life, however, is difficult to assess since these endpoints are influenced by a wide range of 

factors and long-lasting prospective studies with large numbers of patients are needed to 

answer these questions. Alternatively, some studies have addressed the cost effectiveness of 

[
18

F]FET PET using model-based approaches addressing the number needed to diagnose in 

order to avoid wrong diagnosis. In one study comparing [
18

F]FET PET and MRI to MRI alone 
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in selecting the biopsy site for the diagnosis of gliomas resulted in a cost-effectiveness ratio of 

€ 6,405 from the perspective of the German statutory health insurance [128]. Again 

considering the German statutory health insurance a cost-effectiveness ratio of € 5,725 year 

was calculated in a study evaluating [
18

F]FET PET in addition to MRI in patients with 

recurrent high-grade glioma under anti-angiogenic treatment [129]. A calculation concerning 

the cost-efficiency ratios for progression-free and overall survival in glioblastoma patients 

after surgery and before temozolomide maintenance treatment based on cost calculations from 

the perspective of the National Institute for Health and Disability Insurance in Belgium, 

resulted in  a cost-effectiveness ratio of  € 1,357.38 per life-year for every identified non-

responder [130]. Hence, [
18

F]FET PET seems to be well justified not only for clinical 

accuracy but also with respect to reducing costs. 

 

5. Conclusion  

The potential of [
18

F]FET PET in modern brain tumor diagnostics has been well documented 

in multiple studies in the last two decades. The production of the tracer is very efficient and so 

far, no side effects have been observed in tens of thousands of applications. The improved 

delineation of tumor extent allows a more accurate treatment planning and the high accuracy 

in the differentiation of tumor progression from treatment-related changes is very helpful to 

tailor an optimal treatment strategy for each individual patient. Besides amino acid PET, 

advanced MRI sequences are applied in many centers to overcome the shortcomings of 

conventional anatomical MR imaging. The fact that [
18

F]FET PET is widely used in those 

centers that have  access to the full spectrum of advanced MRI methods emphasizes the value 

of the method beyond these alternative MRI methods. The costs of [
18

F]FET PET appear 

justified in terms of clinical benefit, especially since newer therapeutic approaches are very 

cost-intensive and reliable diagnostics are required in order to be able to use them in a 

targeted manner.   
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Figure 1: Patient with an unclear non-enhancing lesion in the left temporal lobe. The true 

extent of the tumor and the metabolically most active tumor parts for biopsy guidance are 

difficult to identify in the contrast-enhanced T1-weighted (A) and in T2-weighted MRI (B) 

but clearly depicted in [
18

F]-FET- PET (C). Neuropathological evaluation of tissue obtained 

by biopsy revealed the diagnosis of glioblastoma. 
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