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AIM: To develop and validate an individualised radiomicseclinical nomogram for the pre-
diction of the isocitrate dehydrogenase 1 (IDH1) mutation status in primary glioblastoma
multiforme (GBM) based on radiomics features and clinical variables.
MATERIALS AND METHODS: In a retrospective study, preoperative magnetic resonance

imaging (MRI) images were obtained of 122 patients with primary glioblastoma (development
cohort ¼ 101; validation cohort ¼ 21). Radiomics features were extracted from total tumour
based on the post-contrast high-resolution three-dimensional (3D) T1-weighted MRI images.
Radiomics features were selected by using a least absolute shrinkage and selection operator
(LASSO) binomial regression model with nested cross-validation. Then, a radiomicseclinical
nomogram was constructed by combining relevant radiomics features and clinical variables
and subsequently tested by using the independent validation cohort.
RESULTS: A total of 105 features were quantified on the 3D MRI images of each patient, and

eight were selected to construct the radiomics model for predicting IDH1 mutation status.
The mean classification accuracy and mean k value achieved with the model were 88.4�3%
and 0.701�0.08, respectively. The radiomicseclinical nomogram, which combines eight
radiomics features and three clinical variables (patient age, sex and tumour location),
demonstrated good discrimination (C-index 0.934 [95% CI, 0.874 to 0.994]; F1 score 0.78)
and performed well with the validation cohort (C-index 0.963 [95% CI, 0.957 to 0.969]; F1
score 0.91; AUC 0.956).
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CONCLUSIONS: A radiomicseclinical nomogramwas developed and proved to be valuable in
the non-invasive, individualised prediction of the IDH1 mutation status in patients with pri-
mary GBM. The nomogram can be applied using clinical conditions to facilitate preoperative
patient evaluation.

� 2020 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Introduction

Glioblastoma multiforme (GBM) is the most common
malignant tumour of the central nervous system (CNS), and
its prognosis is usually poor.1 Glioblastomas are mainly
divided into isocitrate dehydrogenase (IDH)-wildtype and
IDH-mutated GBM depending on the IDH mutation status.2

The identification of IDH mutations in GBM has provided a
better understanding of tumour biology.3 Patients with
IDH1/2-mutant GBMwere reported to have a longer overall
survival than those with IDH-wildtype GBM (31 versus 15
months).4 The IDH1 mutation is more common than the
IDH2 mutation and may become a key target for therapies.
Early determination of IDH1 mutation status may help the
development of optimal treatment strategies,5 and a non-
invasive approach would be of great value.

It has been shown that radiographic features extracted
from magnetic resonance imaging (MRI) images are asso-
ciated with gene expression signatures and histological
subtypes.6 In patients with IDH1-wildtype glioma, periph-
eral enhancement was related to poor progression-free
survival and poor overall survival7; however, qualitative
assessment of image features can be highly dependent upon
observer experience, limiting the precision, and reproduc-
ibility of the results.8.

Most recently, radiomics approaches have been widely
used to predict molecular markers such as IDH1 and TP53,
as well as 1p/19q codeletion status in gliomas.9e11 Ac-
cording to these studies, radiomics has the potential to
estimate the IDH1 mutation status and improve decision-
making in the management of GBM. Previous radiomics
studies of GBM and the IDH1 mutation have, however,
investigated gliomas of mixed grades and have mostly
used only radiomics features despite the possible useful-
ness of clinical variables such as tumour location and pa-
tient age.12,13

The aim of the present study was to predict IDH1 mu-
tation status non-invasively in newly diagnosed primary
GBM. It was hypothesised that a radiomicseclinical nomo-
gram that incorporated both radiomics features and clinical
information would be effective for this purpose and might
perform better than a radiomics- or clinical feature-only
model. Three-dimensional (3D) T1-weighted MRI was
used to develop and validate the prediction model, as pre-
vious studies have shown that thin-section images can
improve the reproducibility of extracted features and thus
make the model more effective.14e16
omicseclinical nomogram fo
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Materials and methods

Patient enrolment

The institutional review board approved this retrospec-
tive study and waived the requirement to obtain informed
consent. The study population, comprising patients with
brain tumours who underwent MRI at West China Hospital
of Sichuan University, was recruited by X. Su, with 3 years of
diagnostic experience, between January 2011 andDecember
2017, and an independent validation cohortwas recruited by
W.Wang, with 3 years of experience, between January 2018
and November 2019. The following inclusion criteria were
applied: (1) histopathologically confirmed primary glio-
blastoma according to the current World Health Organiza-
tion (WHO) classification of tumours of the CNS2, (2)
confirmed IDH1 mutation status, (3) available preoperative
MRI images obtained using identical protocols and
comprising pre- and post-contrast T1-weighted
magnetisation-prepared rapid acquisition gradient echo
(MPRAGE) images, fluid attenuated inversion recovery
(FLAIR) images and axial T2-weighted images. A total of 122
newly diagnosed GBM patients met these criteria and
served as the patient population investigated in the present
study (divided into a development cohort of 101 patients
and avalidation cohort of 21 patients). Sixteenpatientswere
excluded due to (1) a lack of preoperative T1-MPRAGE im-
ages (n ¼ 11); (2) no contrast enhancement of the tumours
(n ¼ 3); or (3) motion artefacts on MRI images (n ¼ 2). The
ManneWhitney U-test, chi-squared test, and Fisher’s exact
test were employed to assess differences in clinical vari-
ables, and the statistical significance level was set at 0.05.
MRI acquisition and image post-processing

Images for all patients were obtained in the course of
routine clinical work-up using a Skyra or Trio Tim 3 T or
Avanto 1.5 T MRI system (Siemens Healthier, Erlangen,
Germany) using either an 8-channel head matrix or a 20-
channel coil. The MRI protocol comprises non-enhanced
sagittal and axial T1-weighted, axial T2-weighted and T2-
weighted FLAIR images and post-contrast sagittal 3D T1-
weighted MPRAGE images. The main acquisition parame-
ters for the 3D T1-weighted images were TR¼1,600 ms/
TE¼2.3 ms, 176 sections, section thickness ¼ 1 mm, matrix
size ¼ 256�232 and field of view (FOV) ¼ 217�240 mm.
Identification of the extent of the whole tumour (which
r preoperative prediction of IDH1 mutation in primary glioblastoma
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typically comprised regions of contrast enhancement, non-
contrast enhancement, and necrosis) was mainly based on
inspection of the T1-weighted 3D MPRAGE images.

Region of interest (ROI) delineation

The 3D T1-weighted MPRAGE images of all the patients
were skull stripped using the FSL library to isolate the
brain17. Subsequently, ITK-SNAP Software (version 3.6.0,
http://www.itksnap.org) was used to perform semi-
automatic segmentation of the tumour using the active
contour method. Semi-automatic segmentation reduces
inter-operator variability as well as the time to segment
ROIs. The ROI boundary typically included regions of
contrast enhancement, non-contrast enhancement, and
necrosis/cysts.18 The results of the segmentation were al-
ways checked visually and edited as appropriate by an
experienced neuroradiologist (Electronic Supplementary
Material Fig. S1). Both the operator (X. Su) and the super-
visor (Q. Yue) were blinded to the IDH mutation status as
well as the clinical information.

MRI feature extraction, selection, and nested cross-
validation

For each of the segmented ROI volumes in the 3D T1-
weighted image, seven different categories of features
were extracted using PyRadiomics software (http://
pyradiomics.readthedocs.io) first-order features, shape-
features, grey level co-occurrence matrix (GLCM) features,
grey level run length matrix (GLRLM) features, grey level
size zone matrix (GLSZM) features, neighbouring grey tone
difference matrix (NGTDM) features, and grey level
dependence matrix (GLDM) features.19 Detailed de-
scriptions were provided in a previous publication.20 In the
present study, themajor settings for feature extractionwere
as follows: “resampledPixelSpacing” ¼ (1, 1, 1), “normalise”
¼ true, and “normaliseScale” ¼ 100.

First, 10 classifier models were generated to select the
most valuable image features according to the mean
importance rank. Repeated nested cross-validation (10-
fold), available in the “caret” package (i.e., classification
and regression training) written for R software (Version 3.6,
http://www.r-project.org), was used to avoid overfitting
and to select image features.21 The performance of the
classifier was measured by overall accuracy, sensitivity,
specificity and the k score. Then, a logistic regression model
was built based on the selected features using the least
absolute shrinkage and selection operator (LASSO) binomial
regression model available in the“glmnet” package (i.e.,
elastic net model paths for some generalised linear models)
written using R software, which is suitable for the regres-
sion of high-dimensional data with a relatively small sam-
ple size.22 Furthermore, as described in a previous study, a
radiomics score (RAD-score) was computed for each GBM
patient as a linear combination of selected features
weighted by their respective coefficients.23
Please cite this article as: Su X et al., A radiomicseclinical nomogram fo
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Radiomics and radiomicseclinical nomogram
construction

The radiomicseclinical nomogram developed in this
study, combining radiomics features and clinical variables
(age, sex, and tumour location), was constructed using the
package “rms”, written in R software. The clinical informa-
tion was included to enhance the radiomics nomogram. A
study of prognostic prediction demonstrated that radiomics
nomograms can perform better than clinical nomograms23.
The performances of the clinical nomogram, radiomics
model, and radiomicseclinical nomogram were also
compared in the present study. Harrell’s significant
concordance index (C-index) was used to quantify the dis-
criminability of the radiomicseclinical nomogram using the
package “Hmisc”, written in R software. In the present study,
the C-index was computed using 1,000 bootstrap resam-
ples. A C-index of 1 indicates perfect concordance, and a C-
index of 0.5 indicates concordance no better than chance.24

An overview of the workflow is shown in Fig 1. In addition,
to better evaluate the classification ability of the present
model, the F1 score was also calculated to evaluate the
radiomicseclinical model performance based on a balance
between precision and recall.25

Validation of the radiomics and radiomicseclinical
nomogram

Validation of the model was performed using R software.
In particular, the predictive performance of the selected
features was assessed for the validation cohort by calcu-
lating the accuracy, sensitivity, specificity, area under curve
(AUC) and F1 score using the caret, pROC and Informa-
tionValue packages in R software. Then, the performance of
the radiomicseclinical nomogram was tested for the vali-
dation cohort with the logistic regression formula formed
for the development cohort. Finally, the total score for each
patient and the overall C-index were calculated.
RESULTS

Clinical characteristics

Detailed demographic characteristics of the patients are
presented in Table 1. The development cohort comprised
101 GBM patients, including 74 patients (5e80 years) with
IDH1-wildtype GBM and 27 patients (16e79 years) with
IDH1mutated GBM (see Electronic Supplementary Material
Fig. S2). The independent validation cohort included 21
patients (11e72 years), 15 IDH1-wildtype GBM and six pa-
tients (22e37 years) with IDH1mutated GBM. Although the
mean age of patients with the IDH1 mutation was lower
than that of patients with IDH1-wildtype GBM in the
development cohort (mean age, 50.24 versus 42.29 years,
p ¼ 0.012), this difference was not significant in the vali-
dation cohort (mean age, 44.6 versus 38.5 years, p ¼ 0.36).
r preoperative prediction of IDH1 mutation in primary glioblastoma
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Figure 1 Workflow of the construction of the radiomics nomogram in the current study.
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Most IDH1-mutated tumours occurred in males and were
located in the right hemisphere, although no significant
difference in sex was found between the two groups in
either the development or the validation cohort (p > 0.05,
see details in Table 1).

Radiomics features and classification performance

For each patient, a total of 105 radiomic features were
extracted from the ROI, including 18 first-order features,
Table 1
Clinical characteristics of glioblastoma multiforme patients.

Development cohort (n ¼ 101)

IDH1 wild-type (n ¼ 74) IDH1 mutation (n ¼ 27)

Age (years) 50.24�18.61 42.29�17.44
<18 years 7.71�2.14 16
>18e65 years 54.68�13.07 43.31�16.95
Gender
Male 50 15
Female 24 12
Tumour location in brain
Left 26 8
Right 36 18
Bilateral 12 1

IDH, isocitrate dehydrogenase.
a p<0.05.
b Chi-square test.
c ManneWhitney U-test.
d Fisher’s exact test.

Please cite this article as: Su X et al., A radiomicseclinical nomogram fo
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14 shape features, 22 GLCM features, 16 GLRLM features,
16 GLSZM features, 5 NGTDM features, and 14 GLDM
features. By applying the nested cross-validation proced-
ure, these initial 105 features were ranked by their
importance scores for the radiomics prediction model.
First, the 20 most important image features were selected
from 10 classification models according to the importance
rank. Then, the eight most relevant predictors of these
features were selected by the l value in the LASSO model
for construction of the classifier: the first order feature
Validation cohort (n ¼ 21)

p-Value IDH1 wild-type (n ¼ 15) IDH1 mutation (n ¼ 6) p-Value

0.012ac 44.6�10.52 38.5�18.58 0.36c

11 NA
47�16.52 38.5

0.378b 0.336b

8 5
7 1

0.014d 0.203d

8 1
6 5
1 0

r preoperative prediction of IDH1 mutation in primary glioblastoma
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skewness, shape features sphericity and elongation, GLCM
features correlation, cluster shade and inverse difference,
the GLDM feature large dependence high grey level
emphasis (LDHGLE) and the GLRLM feature grey level
non-uniformity (GLN; Electronic Supplementary Material
Table S1, Fig 2). The LASSO coefficient profile showed
that the optimal lambda results could be obtained using
just eight non-zero coefficients (Electronic
Supplementary Material Fig. S3). The classification accu-
racy and k value of the 10 classification models created
using repeated 10-fold cross-validation were 88.4�3% and
0.701�0.08, respectively. The sensitivity and specificity
for the classification were 94.6�6.9% and 73.3�13%,
respectively.

The RAD score based on the eight radiomics features
selected through the LASSO model was calculated using the
following formula:

RAD-score¼e3.519446e2.800307�Elongatione4.638266�
Sphericityþ0.1304058� Skewnessþ0.0000121777�ClusterShadeþ
3.043114�Correlationþ1.645184�Idþ 0.000219206�GLNþ
0.00002877556�LDHGLE

Radiomicseclinical nomogram

The AUC of the clinical nomogram model constructed
with age, sex, and tumour location was 0.76, and the AUC
Figure 2 The eight features that best discriminate IDH1-mutant from ID
gation and sphericity, the GLCM features cluster shade, correlation and Id
LDHGLE.

Please cite this article as: Su X et al., A radiomicseclinical nomogram fo
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of the single RAD-score nomogram model was 0.894;
however, the radiomicseclinical nomogram, combining
the RAD-score and the clinical variables, had a higher AUC
of 0.934. The radiomicseclinical nomogram of the vali-
dation cohort is presented in Fig 3 and represents an
individualised prediction model for the IDH1 mutation
status. The total score for each patient was obtained by
adding the scores of age, sex, tumour location, and RAD-
score, with the latter two having greater weights (Fig 3).
The C-index of the radiomicseclinical nomogram was
0.934 (95% CI, 0.874 to 0.994), which is higher than that of
the nomogram based only on the clinical variables (C-
index 0.76) or only on the RAD-score (C-index 0.894). The
corrected C-index for the development cohort was 0.909
via 1,000 bootstrap resamples. The corrected C-index of
the radiomicseclinical nomogram when used to predict
the IDH1 mutation status in the validation cohort was
0.963 (95% CI, 0.957 to 0.969) (see Electronic
Supplementary Material Fig. S4eS5). The
radiomicseclinical nomogram performed better than the
radiomics-only model with the development cohort
(nomogram C-index 0.931; radiomics-only model C-index
0.858), though not with the validation cohort (C-index
0.879 and 0.96 for the nomogram and radiomics-only
model, respectively). Furthermore, the F1 score of the
radiomicseclinical nomogram was 0.78 with the devel-
opment cohort and 0.91 with the validation cohort (Fig 4).
H1-wildtype glioblastoma patients, i.e., age, the shape features elon-
, the GLRLM feature grey level nonuniformity and the GLDM feature

r preoperative prediction of IDH1 mutation in primary glioblastoma



Figure 3 Nomogram constructed from the radiomics features and clinical variables extracted from the development cohort, including age, sex,
tumour location, and RAD-score. The total points are calculated.

Figure 4 The ROC curve and precision-recall curve of the validation cohort.
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Discussion

The main contribution to the radiomicseclinical nomo-
gram was the analysis of 3D T1-weighted MRI images ob-
tained with contrast enhancement for 110 patients with
newly diagnosed GBM. For each ROI, 105 quantitative image
features were extracted. The final model contained eight
imaging features, and a nomogramwas created using these
features together with clinical data to predict IDH1 muta-
tion status, which showed excellent performance (C-index
¼ 0.963).

The benefit to patient management at the early stage of
the disease and in follow-up of the non-invasive prediction
of the IDH mutation status of glioma using MRI has been
demonstrated in several previous studies.9,10,14 A recent
study reported the prediction of the IDH1 mutation status
in GBM based on 31 features from preoperative multi-
parametric MRI images,12 but they did not take radiomics
features into consideration nor did they incorporate clinical
features into the model. Another radiomics study on the
IDH1 mutation in low-grade glioma also showed that a
stratifying strategy helped to predict the IDH1 mutation
status; unfortunately, however, the relatively small patient
population (only 57 patients) and the absence of a valida-
tion cohort reduced its power.13 In the present study, the
LASSO algorithm with nested cross-validation, which has
been used in other radiomics research,23 was used to
overcome the over-sampling problem and efficiently reduce
the dimensionality of the radiomics features. During the
construction of the classification models, the average clas-
sification accuracy and k value achieved with repeated 10-
fold cross-validation were 88.4�3% and 0.701�0.08,
respectively, which reflected the effectiveness of the feature
selection procedure. Furthermore, as the radiomics features
extracted from MRI images depend on the image resolu-
tion,26 analysis of 3D high-resolution MRI images is pref-
erable.16 For this reason, the radiomics features used in the
present study were extracted from images with an isotropic
resolution of 1 mm that were acquired using the same MRI
system. Robust tumour segmentationwas also a critical step
in the workflow to produce the radiomicseclinical model.
The semi-automatic segmentation algorithm saves time
and has been shown to have higher reproducibility than
manual segmentation27 and to even be helpful for the
planning of gamma knife treatments of brain lesions.28

Although the automatic segmentation method was
explored in the Brain Tumour Segmentation Challenge
(BRATS), the performance of the model was not always
robust for different BRATS databases.29 Further enhance-
ments in image contrast will potentially increase repro-
ducibility and expand clinical usefulness.30 Previously, it
had been reported that IDH mutations are likely to be
related to less contrast enhancement on MRI.31 The model
obtained from contrast imaging could add helpful infor-
mation for predicting IDH1 mutation status. Thus, the
methodology of this study is robust in terms of feature se-
lection. Based on the use of advanced analysis techniques
and strict quality-assurance procedures, individualised
Please cite this article as: Su X et al., A radiomicseclinical nomogram fo
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prediction of the IDH1 mutation status was achieved in
GBM patients.

Among the selected radiomics features, the first-order
features describe the distribution of voxel intensities
within the region of interest, and skewness reflects the
asymmetry of the distribution of these values.32 In partic-
ular, the tail was extended towards the positive directions in
the IDH1-wildtype GBM group, which indicated that the
mean grey level skewed to a higher value (Fig 2). Shape
features describe the three-dimensional size and shape of
the ROI,19 in which sphericity is a measure of how close the
shape of the tumour is to a sphere and elongation is asso-
ciated with the length of the tumour diameter. From these
shape features, it can be seen that IDH1-mutant tumours
have a greater shape elongation than IDH1-wildtype tu-
mours (Fig 2b), which indicates that they are less spherical.
The GLCM feature of correlation shows the linear de-
pendency of the grey-level values on their respective voxels.
A higher value of correlation and inverse difference (Id) is
associated with homogeneity,33 which in this study likely
means less variability in the IDH1-mutant group. Moreover,
cluster shade is sensitive to tumour heterogeneity, which
could help predict distant metastasis in lung adenocarci-
noma.34 A higher value in the IDH1-mutant group implies
greater asymmetry about the tumour. The GLN feature of
GLRLM is a measure of the similarity of grey-level intensity
values in the MRI image, and the higher value in the IDH1-
mutant group indicates a lower similarity in intensity
values (Fig 2). A previous study of gastrointestinal stromal
tumours showed that normalised GLN values were linked to
tumour mutations.35 Finally, the GLDM feature referred to
as LDHGLE is a measure of the joint distribution of large
dependences with higher grey-level values, and a greater
value means that higher grey-level voxels were adjacent to
each other19 and less inhomogeneous to the tumour.36 In
summary, the radiomics features relating to shape, het-
erogeneity, and signal intensity contributed most to the
predictive model; in previous radiomics studies, these same
features were applied to predict the IDH genotype in diffuse
gliomas with high accuracy.10 The present study gives the
impression that compared with those of IDH1-wildtype
GBM, IDH1-mutant GBM tumours are less spherical (due
to greater shape elongation) but more homogeneous (due
to less necrosis/fewer cystic changes or haemorrhage) with
lower mean signal intensity (due to less contrast
enhancement).37

The final radiomicseclinical nomogram produced in the
present study was derived from eight radiomics features
and three clinical variables, namely, age, sex, and tumour
location. A previous clinical study showed that the age
distribution, male/female ratio and tumour location were
different in patients with IDH1-wildtype and IDH1 muta-
tion status.4 The present radiomicseclinical nomogram
showed excellent performance in predicting the IDH1 mu-
tation status (C-index ¼ 0.934), outperforming the model
based only on radiomics features (C-index ¼ 0.894) or only
on clinical features (C-index¼0.76) with the development
cohort. In addition, the high F1 score obtained with the
r preoperative prediction of IDH1 mutation in primary glioblastoma
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validation cohort indicated good performance of the
radiomicseclinical nomogram. Nomograms have been
widely used for risk stratification and prediction of other
diseases23,38e41 and have been found to outperform expert
clinicians in predicting outcome.39,42 A nomogram is a vi-
sual representation of a statistical model and allows for
different weightings of various factors.38 With regard to the
clinical variables included in the radiomicseclinical nomo-
gram in the present study, sex had slightly more influence
than age and tumour location. The proportion of male pa-
tients was larger than that of female patients in the IDH1-
mutant group in the present study. This finding is consis-
tent with a previous study in which the male/female ratio
was higher among primary GBM patients with the IDH1
mutation than among those without the IDH1 mutation
(though p > 0.05).43 In addition, the absence of the IDH
mutation has also been reported to be related to tumour
location in low-grade gliomas (LGGs).44 In the present
study, IDH1-mutated GBM was found to be preferentially
located in the right hemisphere. Regarding age, Parsons
et al. (2008) previously reported that IDH1 mutations
occurred in a large fraction of young patients with GBM,3

which is consistent with the present study. The fact that
age and location have low weight in predicting IDH1 mu-
tations may be related to the relatively small sample size.

The present study has several limitations. First, a rela-
tively small number of IDH1-mutated GBM patients were
included in the study. This is due to the low frequency of the
IDH1 mutation in primary glioblastomas (8.8%)43 as well as
the strict eligibility requirements for both MRI parameters
and genetic data. Although nested cross-validation provides
an almost unbiased estimate of the true error, a future study
with a larger cohort is still needed to further improve the
performance of the algorithm. Furthermore, although the
present study revealed the highly predictive value of
contrast-enhanced MRI images, other imaging methods
could also be incorporated to enhance the prediction power
for IDH1 mutation status.

In conclusion, a radiomicseclinical model based on
clinical variables and radiomics features derived from post-
contrast high-resolution 3D T1-weighted MRI images was
constructed. The nomogram can predict the IDH1 mutation
status non-invasively in newly diagnosed primary GBM,
and it outperformed a model based only on radiomics fea-
tures or clinical information. This kind of model can benefit
clinical practice from the start of disease management.
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