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Abstract

We present a numerical scheme for solving an inverse problem for parameter estimation in tumor 

growth models for glioblastomas, a form of aggressive primary brain tumor. The growth model is a 

reaction-diffusion partial differential equation (PDE) for the tumor concentration. We use a PDE-

constrained optimization formulation for the inverse problem. The unknown parameters are the 

reaction coefficient (proliferation), the diffusion coefficient (infiltration), and the initial condition 

field for the tumor PDE. Segmentation of Magnetic Resonance Imaging (MRI) scans drive the 

inverse problem where segmented tumor regions serve as partial observations of the tumor 

concentration. Like most cases in clinical practice, we use data from a single time snapshot. 

Moreover, the precise time relative to the initiation of the tumor is unknown, which poses an 

additional difficulty for inversion. We perform a frozen-coefficient spectral analysis and show that 

the inverse problem is severely ill-posed. We introduce a biophysically motivated regularization on 

the structure and magnitude of the tumor initial condition. In particular, we assume that the tumor 

starts at a few locations (enforced with a sparsity constraint on the initial condition of the tumor) 

and that the initial condition magnitude in the maximum norm is equal to one. We solve the 

resulting optimization problem using an inexact quasi-Newton method combined with a 

compressive sampling algorithm for the sparsity constraint. Our implementation uses PETSc and 

AccFFT libraries. We conduct numerical experiments on synthetic and clinical images to highlight 

the improved performance of our solver over a previously existing solver that uses standard two-

norm regularization for the calibration parameters. The existing solver is unable to localize the 

initial condition. Our new solver can localize the initial condition and recover infiltration and 

proliferation. In clinical datasets (for which the ground truth is unknown), our solver results in 

qualitatively different solutions compared to the two-norm regularized solver.
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1. Introduction.

The integration of biophysical macroscopic brain tumor growth models with Magnetic 

Resonance Imaging (MRI) scans is an important tool in clinical cancer research. 

Phenomenological growth models capture phenomena like tumor cell invasion and 

proliferation and can be used to compute patient-specific biomarkers. Such biomarkers can 

potentially facilitate diagnosis (e.g., tumor grading), prognosis (e.g., predicting recurrence 

and survival), and treatment (e.g., pre-operative planning and radiotherapy). Additionally, 

biophysical models can advance our understanding of the disease by using imaging data to 

test model-driven hypotheses on disease progression and treatment. For example, one such 

hypothesis is that the location of tumor initiation relates to distinct tumor mutations and the 

identification of these cancer initiating sites can help further our understanding of the 

disease, thereby paving the way to molecularly-informed models of tumor growth [35, 43, 

44, 76]. The main problem we focus here is whether we can localize the initiation of the 

tumor while simultaneously estimating physics-based parameters that characterize 

infiltration (spreading of the tumor) and proliferation (growth). Ultimately, these parameters 

help in constructing a tumor growth model tailored to a specific individual. Such a predictive 

model can, for example, be used to identify potential sites for tumor recurrence, which has 

significant clinical ramifications [2,61]. The location of tumor initiation can also be used to 

correlate with long-term clinical outcomes such as overall patient survival [1,8,77].

We use a single-species, reaction-diffusion model of tumor growth (described in detail in 

§2.1.1),

∂tc(x, t) = κDc(x, t) + ρℛc(x, t), t ∈ (0, T ] with initial condition c(x, 0),

where c(x, t) is the tumor volume fraction (or concentration, assuming constant density), κ is 

a scalar diffusion parameter, ρ is a scalar reaction (or growth) parameter, D is a diffusion 

operator (with freeflux boundary conditions), and ℛ is an non-linear logistic growth 

operator. This is one of the most common tumor growth models owing to its simplicity (it 

has just two parameters and the initial condition) and good performance in capturing the 

basic characteristics of brain tumor growth observed in MRI scans [64, 69]. The parameters 

of this model are the reaction coefficient ρ (modeling proliferation), the diffusion coefficient 

κ (modeling invasion), and the initial condition c(x, 0). For the inverse problem (described in 

§2.1.2), we assume that we are given partial observations of c(x, T) at some, unknown 

relative to the tumor initiation, time T and we seek to reconstruct κ, ρ, and c(x, 0), which are 
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unknown. The time horizon T is also unknown but a simple calculation (see §2.1) shows that 

among κ, ρ, and T, only two are independent. Hence, we set T = 1 and invert for the 

remaining parameters. Notice that c(x, 0) is a field. In our formulation, we parameterize it as 

a finite sum of radial functions. This re-parameterization is not only for regularization but 

mainly to allow for 0 (or 1) sparsity constraints and can be viewed as a modeling 

assumption.

The data used for the inverse problem are partial observations of the tumor concentration at 
a single time point. This scenario corresponds to the clinical setting in which we seek to 

estimate the tumor grade and aggressiveness from a single-time-point scan (as opposed to 

the case in which we have a series of scans taken at different points in time). Indeed, when a 

patient comes with symptoms, the tumor is typically quite large and treatment (surgery, 

chemotherapy, or radiation) starts immediately. Hence, it is not practical to assume multiple 

time snapshots of the tumor growth because otherwise we would have to model treatment 

(which comes with its own modeling challenges and introduces additional unknown 

parameters). Given this setup, the inverse problem is formulated as a PDE-constrained 

optimization problem. We seek to estimate the model parameters that minimize the 

mismatch between the model-generated tumor and the partially observed tumor 

concentration. This problem is highly ill-posed. Notice that just inverting for the initial 

condition problem is exponentially ill-posed (see §2.2). The inherent nonlinearity in the 

tumor model and the strong ill-posedness of the associated inverse problem make this effort 

a computationally challenging task. In this paper, we discuss this ill-posedeness, and we 

propose a set of algorithms for its numerical solution.

1.1. Contributions.

The main innovation in the paper is the formulation of an 0-constrained inverse problem for 

the initial condition, and two model parameters, the reaction ρ and the diffusion κ. Our 

contributions are summarized below.

• We formulate the inverse problem as a PDE-constrained optimization problem 

(see §2.1) with sparsity constraints. We perform an analysis of the linearized 

operator to demonstrate the ill-posedness and the need for a specific 

regularization (see §2.2). Although an 2 regularization (for all parameters) 

removes the ill-posedness, it does not result in good localization of the initial 

condition and tumor parameters. For this reason, we introduce an l0 sparsity 
constraint to enable sparse1 reconstruction for the initial condition, combined 

with a maximum norm constraint for c(x, 0). This allows us to reconstruct the 

model parameters κ and ρ. This regularization is biophysically motivated.

• We introduce a novel numerical scheme to simultaneously invert for all model 

parameters while preserving the sparse content of the initial tumor condition. We 

employ a quasi-Newton optimization solver along with a reduced-space 

parameterization of the tumor initial condition (see §3). The scheme alternates 

between an 2 regularized solve and an 0 projection. The underlying linear and 

1We denote an initial condition parameterization with only few non-zero coefficients as sparse.
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non-linear solves are based on preconditioned inexact Krylov solves accelerated 

with PETSc and AccFFT libraries that support distributed-memory parallelism 

and enable fast solves for the challenging derivative-based 3D problem.

• We test our scheme on 3D clinical and synthetic datasets. The synthetic datasets 

resemble the complexity in tumor patterns observed in MRI scans and are used 

to verify our algorithm since we know the ground truth. With the clinical images, 

we examine the prediction error and compare with a classical 2 regularization 

scheme. We report results that highlight the performance improvement of our 

solver over existing inversion strategies in estimating c(x, 0), κ, and ρ. We 

further demonstrate the robustness of our solver by testing it on noisy data and 

partial observations. This inversion setup is related to the clinical setting because 

the extent of tumor invasion is not fully observable in MRI scans.

Here, we would like to highlight the differences between this article and our previous works. 

In [19], we use two time-snapshots of data, thereby fixing the time-scale of the problem and 

do not invert for the reaction coefficient. Further, this implementation was in MATLAB. We 

solve the more clinically-relevant problem of single time-snapshot of data in [67], but 

without the sparsity constraint on the localization of tumor initiation. Further, the latter 

attempt does not invert for estimates of the proliferation and infiltration rate ρ, and κ, 

respectively.

1.2 Limitations.

While the reaction-diffusion model can predict the whole tumor region, it does not 

distinguish between the different tumor phenotypes observed in imaging data (such as 

enhancing and necrotic tumor regions). Further, it does not account for any mechanical 

deformations on the ventricles and surrounding healthy tissue due to tumor growth. We have 

developed more complex models that do so [68], but their integration with the inverse 

problem is beyond the scope of this paper. We also do not incorporate DTI (Diffusion Tensor 

Imaging) data, which can (if available) enhance the predictive capabilities of our growth 

models. Further, we do not have direct observations of the tumor concentration, we only 

have the segmentation of the MRI scan into healthy tissue, edema, enhancing tumor, non-

enhancing tumor, and necrotic tumor. In this paper, we ignore these glioma-specific details, 

and assign a volume fraction one to regions of enhancing, non-enhancing, or necrotic tumor. 

Finally, our formulation requires the healthy patient brain scan, which is typically not 

available. The standard approach in medical imaging is to resort to methods such as image 

registration [16] to construct a healthy atlas that resembles the observed healthy structures of 

the patient scans. This can be inaccurate for very large tumors. We are currently working on 

incorporating the ideas presented here with our previous work [67], in which we coupled 

diffeomorphic image registration with tumor inversion for this purpose. We would like to 

note that the focus of this paper is on brain tumors, although our approach is applicable to 

cancer of other organs such as pancreas, breast, prostate, and kidney as well.

1.3 Related work.

Although there has been a lot of work on forward problems for tumor growth, there has been 

less work on inverse problems. The latter has different aspects. The first is the underlying 
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biophysical model. The second is the inverse problem setup, observation operators and the 

existence of scans at multiple points, the noise models, inversion parameters and constraints. 

And the third one is the solution algorithm.

Regarding the underlying model, like us, most researchers focus on parameter calibration of 

a handful of model parameters using single-species reaction-diffusion equations 

[11,27,29,34,40,49,62,69,70]. While more complex models describing processes like mass 

effect, angiogenesis and chemotaxis [28,31,59,65,71] exist, they have not been considered 

for calibration due to theoretical and computational challenges. However, several groups, 

including ours, are working to address these challenges.

Regarding the inverse problem setup, in most studies the authors use scans from two or more 

time points and assume that the tumor concentration is fully observed. In that case the 

inverse problem is much more tractable since we need to invert for just κ and ρ. Some 

authors use manual calibration, which is possible for a handful of parameters [11,70]. But 

most research groups resort to derivative-free optimization algorithms including Bayesian 

methods [9,26,39,41,42,47,48,52,78]. In [40], the authors use the traveling wave 

approximation to the reaction-diffusion model to estimate the diffusivity by fixing the 

reaction coefficient and the source seed. They explain that the non-uniqueness of the 

solution renders the inversion of all parameters infeasible for their model. Derivative-based 

optimization methods have been employed in [13,19,30,38,47,49,60,67].

Now we discuss, in some detail, attempts to reconstruct the initial condition of the tumor 

using a single scan. In our previous works [19,67], we employed an L2 regularization 

scheme for c(x, 0) and we inverted for κ assuming known ρ. We used reduced-space parallel 

algorithms allowing for the calibration of highly complex tumor shapes in reasonable time. 

There have been a few studies exploring the identifiability of all parameters and their 

correlation with the tumor source. The traveling wave approximation (using an Eikonal 

equation) from [40], is extended in [63] to estimate a localized initial condition and the 

diffusion coefficient. To our knowledge, this is the only attempt to localize the initial 

condition of the tumor. Its advantage is that it is simple to implement and quite robust since 

it circumvents non-convexity. But it is limited to the specific Eikonal equation for the 

propagation of the tumor front, which is then timereversed to localize the tumor. Unlike our 

scheme, this inversion scheme cannot be used with more realistic biophysical models. In 

[33], the authors use the 3D non-linear model and attempt to identify c(x, 0) by fixing the 

growth rate and the diffusion coefficient to set values. The scheme is essentially an 

unregularized gradient descent and assumes noise-free, full observations of c(x, 1). The 

authors consider only synthetic experiments and assume κ and ρ are the ground truth. In this 

idealistic setup everything works well and one can localize c(x, 0). As we will see, in the 

presence of noise, partial observations, and uncertainty in κ and ρ, such a formulation fails.

Let us also mention that, in general (unrelated to tumor modeling), there is little work on 

sparsity constraints for initial condition inverse problems for reaction-diffusion PDEs. In 

[45], the authors discuss the identification of sparse initial conditions for homogeneous 

parabolic problems from a single final-time observation. While some groups have used 

sparsity promoting approaches to estimate sources in the heat equation in a 1-D and 2-D 
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setting [17,46], there is not much work on sparse localization for the non-linear reaction-

diffusion equations. In conclusion, there is no prior work on a generalizable scheme for 

inverting for a sparse initial condition for the tumor in addition to model parameters.

Regarding numerical methods for inverse problems with sparsity constraints, there is a vast 

amount of work in literature. Most algorithms are based on subspace pursuit [5,15,56,57,74], 

1 convex optimization approaches [4,6,23,36,37], or methods using other non-convex 

relaxations [22,79]. We base our algorithm on the enhanced greedy pursuit strategy 

described in [56], which yields optimal theoretical guarantees on convergence rates for 

quadratic mismatch functions. However, our overall problem is ill-posed (see §2.2) and non-

convex (see §4.2). To our knowledge, fast algorithms with theoretical guarantees for 

problems like ours do not exist.

1.4. Outline.

In §2, we present the forward problem and the mathematical formulation of the parameter 

estimation inverse problem. We explore the invertibility of the unknown parameters of the 

growth model in a simplified 1D setting and introduce new assumptions to solve the 

parameter estimation problem. In §3, we provide details regarding the algorithm and 

numerical schemes used. Finally, we conduct numerical experiments to assess the 

performance of our solver in §4.

2. Methods.

We introduce some notation and subsequently present the forward problem and the 

mathematical formulation of the inverse problem below.

2.1. Formulation.

We have briefly discussed the forward model for the tumor concentration c(x, t). It involves 

two operators, the diffusion operator D and the reaction operator R. In order to define 

theseFor example, operators, we need to take into account the material heterogeneity of the 

brain tissue. tumors do not grow inside the ventricles, so the reaction and diffusion 

coefficients should be set to zero. Also, we need to account for the fact that we do not have 

the precise tissue type, but only probability maps related to the MRI scans. These probability 

maps are obtained by statistical analysis of manual or machine-learning based segmentations 

[24]. So, in our setting, a brain is described by separate probability maps for each brain 

tissue type, namely gray matter, white matter, and cerebrospinal fluid (CSF; which includes 

ventricles). We represent such probability maps as a vector field:

m(x) =
mg(x)
mw(x)
mf(x)

∈ R3, (2.1)

where x = (x, y, z) are the spatial coordinates and mg(x), mw(x) and mf (x) denote the gray 

matter, white matter and CSF probability maps, respectively. These probability maps are 

obtained from binary segmentation labels for each tissue type of a healthy brain MRI scan.2 
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Our data d(x) is derived from actual patient MRI tumor segmentations.3 Figure 2.1 shows an 

example of a healthy brain MRI scan (and its associated segmentation) and a patient brain 

MRI scan (and its associated tumor segmentation). As we discussed the healthy patient brain 

scan is rarely available in practice. There have been many approaches to address this, such as 

using a statistical average of many individual brains or image registration methods to 

approximate the healthy patient brain (see [67] for details). For the most part of this paper, 

we assume that the healthy patient brain segmentation is given. For our test on an actual 

clinical scan, we use an atlas-based segmentation in §4.7.

2.1.1. Forward problem.—The forward problem is a single-species, reaction-diffusion 

partial differential equation [27,29,34,40,49,55,69]. In this model we group all the MRI-

observed tumor phenotypes into a single one. (For gliomas, these phenotypes are typically 

enhancing, non-enhancing, and necrotic. We do not include edema in the tumor although it 

is quite typical to have significant tumor infiltration in the edema region.) As mentioned in 

the introduction, the time horizon (the time since tumor initiation at which we observe the 

tumor concentration) is unknown. However, we can non-dimensionalize the PDE and use a 

normalized time horizon equal to one for tumor growth so that t ∈ [0, 1]. We discuss this 

further below. Let t = t/T  be the normalized time. Then, the PDE can be written as:

∂t c − TκDc − Tρℛc = 0. (2.2)

Denoting κ = κT and ρ = ρT ,we observe that the normalization of time is equivalent to a re-

scaling of the reaction and diffusion coefficients. In the remaining of the paper, we use t, κ, 

ρ instead of t , κ, ρ to represent the re-scaled parameters. This normalization is because we 

cannot possibly invert for the three parameters ρ, κ, and T, since only two are independent. 

So, we set T = 1 and we consider the reconstruction of ρ and κ (in addition to the initial 

condition). The brain scan is re-scaled to be in Ω = [0, 2π]3. The nondimensionalized 

forward problem is given as:

∂tc − κDc − ρℛc = 0 in U = Ω × (0, 1], (2.3)

c(0) = g in Ω, (2.4)

where c = c(x, t) is the tumor volume fraction (or mass concentration assuming constant 

density), c(0) = c(x, 0) is the initial tumor concentration set to g = g(x), D is the diffusion 

operator, k is a scalar diffusion coefficient, p is a scalar growth coefficient, and R is the 

reaction operator. This forward model (initial boundary value problem) has a unique solution 

for finite time horizon.4 We use periodic boundary conditions on ∂Ω In reality, we have no-

flux boundary conditions on the boundary of the skull and CSF boundaries. These no-flux 

conditions are approximated using a penalty method, the details are discussed in [19]. The 

2In a pre-processing step, the binary labels are smoothed and re-scaled to probabilities.
3We assign d(x) = 1 to the voxels that have been identified as tumor. More complex scenarios are possible, for example see [7], which 
uses apparent diffusion coefficient (ADC) values to identify tumor tissue.
4See [73, p. 273], proposition 1.1 and 3.1 for the proof.
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approximation amounts to having very small diffusivity in the ventricles and the image 

space surrounding the brain. We define D to be an inhomogeneous isotropic diffusion 

operator given by

Dc = divkm∇c, (2.5)

where km(x) is defined as:

km(x) = κgmg(x) + κwmw(x), (2.6)

where κg and κw are scalar parameters which enforce inhomogeneity of the diffusion rate in 

the gray matter and white matter, respectively. Similarly, we define the reaction operator ℛ
as:

ℛc = ρmc(1 − c), (2.7)

with ρm(x) defined as:

ρm(x) = ρgmg(x) + ρwmw(x), (2.8)

where ρg and ρw are scalar parameters which control the spatial variability of the growth rate 

in the gray matter and white matter, respectively. The reaction operator is a self-limiting 

logistic growth operator which captures exponential proliferation of tumor cells in areas of 

low concentration and a decline of cell mitosis close to the tumor bulk (c = 1). The tumor 

does not grow or diffuse in the cerebrospinal fluid-filled ventricles (CSF).

2.1.2. Inverse problem.—Our formulation of the inverse problem requires the 

definition of the observation operator, the mismatch function, and the initial condition 

parameterization. Existing MRI technologies (the predominant imaging modality used in 

neuro-oncology) do not provide the ability to directly observe the extent of tumor 

concentration everywhere in the parenchyma. For this reason, we introduce an observation 

operator O(x) that is determined by the clearly observable tumor margin. We also assume 

that in that region the tumor concentration is equal to one. We now present the formulation 

for the inverse problem and explain its components below.

The inverse tumor growth problem is given by the following minimization problem:

minp, κ, ρJ(p, κ, ρ): = 1
2 Oc(1) − d L2(Ω)

2
+ β

2 ϕT p L2(Ω)
2

(2.9a)

subject to the reaction-diffusion forward problem ℱ (p, κ, ρ):

∂tc − κDc − ρℛc = 0 in U = Ω × (0, 1], (2.9b)
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c(0) = ϕT p in Ω . (2.9c)

Here, we have introduced a parameterization for the tumor initial condition c(0) = c(x, 0) as 

φT(x)p, where p is an m-dimensional vector, φi(x) = φi(x −xi) is a radial function centered at 

point xi (one of the grid points after spatial discretization), and ϕ(x) = ϕi(x) i = 1
m , i.e .,

c(x, 0) = ϕT(x)p = ∑
i = 1

m
ϕi(x)pi, p ∈ Rm . (2.10)

This parameterization is mainly a modeling assumption. We assume that the spatial 

distribution of the tumor at its very early stages is given by φi for some i. There is no clear 

understanding on how tumors start, but the general consensus is that it starts at a single cell 

due to some mutation. At this resolution the continuum hypothesis breaks down and it is 

unclear how to couple such a single cell mutation to the PDE model. Instead, we use the 

PDE model after the tumor has grown sufficiently large while remaining localized. We label 

this time as zero and assume that the tumor volume fraction can be approximated well by 

φ(x − xi), where xi is the center of mass of this tumor. However, we allow a small number of 

xi points to be activated. This is to admit more complex shapes for the initial condition and 

also to compensate for the modeling errors in our tumor growth PDE.

The objective function minimizes the mismatch between the simulated tumor at t = 1 and 

data on all observation points using the standard L2 distance measure on square integrable 

functions. We balance this mismatch with an L2 regularization on the inverted initial 

condition with regularization parameter β.

Similar to the works of [19], we observe all tumorous data points with concentration above a 

detection threshold (cd). We define our observation operator O as follows:

O(x) =
1, if d(x) ≥ cd
0, otherwise.

(2.11)

In our synthetic examples, we know the ground truth c. In clinical images, we use the 

segmentation probability maps as a proxy for c. Tab. 2.1 summarizes the notations. Next, we 

discuss the difficulty of inverting for p, κ and ρ simultaneously. To do that, we use a 

simplified analytical model in one dimension.

2.2. Parameter inversion analysis for a simple linear analytical model.

The ill-posedness associated with the instability of the backward heat equation is well-

known [10, 54, 80]. There have been several studies that outline the infeasibility of inverting 

for all parameters of a reaction-diffusion system. In particular, the authors in [40] note the 

non-uniqueness of the solution of the forward model with respect to different parameter 

configurations thereby rendering the inverse problem ill-posed. Here, we bolster this 
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intuitive explanation through an analytical investigation of a simplified model which 

underpins our strategy in circumventing this issue.

We consider a 1D linear reaction-diffusion model with constant coefficients on the domain 

ω = [0, π] with periodic boundary conditions as our growth model. The forward model is 

given by:

∂tc − ρc − κ ∂x
2c = 0 in ω × (0, 1],

∂xc x = 0, π = 0
c(x, 0) − g(x) = 0 in ω .

(2.12)

where c(x, t) = c is the tumor volume concentration, ρ is the reaction coefficient, and κ is the 

diffusion coefficient. Our goal is to invert for g(x), ρ and κ. Notice that, for a moment here, 

we omit the parameterization we introduced in the previous section for c(x, 0) and we just 

try to invert for a field g(x). We can solve Eq. (2.12) analytically using separation of 

variables and we obtain

c(x, t) = ∑
n = 0

∞
gne(ρ − n2κ)tcos(nx), (2.13)

where gn are the spectral cosine coefficients of the initial condition g(x). We truncate this 

infinite sum to N terms, where we assume that the solution is fully resolved for sufficiently 

large N. For our inverse problem, we assume band-limited data given by: 

d(x) = ∑n = 0
N dncos(nx). Now, we can formulate the parameter inversion as the following 

optimization problem for gn n = 0
N , ρ and κ as:

mingn, ρ, KJ: = 1
2 ∑

n = 0

N
gne ρ − n2κ − dn

2
(2.14)

The first order optimality conditions to Eq. (2.14) are:

∂gnJ = 0: gne ρ − n2κ − dn e ρ − n2κ = 0, (2.15a)

∂ρJ = 0: ∑
n = 0

N
gne ρ − n2κ − dn gne ρ − n2κ = 0, (2.15b)

∂xJ = 0: − ∑
n = 0

N
gne ρ − n2κ − dn gnn2e ρ − n2κ = 0. (2.15c)

We observe that all equations are trivially satisfied when:
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gne(ρ − n2κ) − dn = 0. (2.16)

Eq. (2.16) is informative in two ways. First, we see that even if ρ and κ are known, inverting 

for gn is exponentially ill-posed. Indeed, gn = e−ρen2κdn. Any perturbation in dn is amplified 

exponentially in the frequency and thus, in practice, gn cannot be identified for large n. But 

in our case, even small n is problematic when ρ and κ are unknown. We cannot invert for gn, 

ρ and k simultaneously since changing ρ or κ amounts to a scalar scaling of the initial 

condition.

This ill-posedness persists even if we re-parameterize the initial condition as before using m 
degrees of freedom:

g(x) = ∑
i = 0

m
ϕi(x)pi = ϕT(x)p, (2.17)

where φi are some pre-selected basis functions and p ∈ Rm is the (low dimensional) 

coefficient vector. Taking the Fourier decomposition of φi, we have: 

ϕi(x) = ∑n = 0
N ϕincos(nx), with spectral cosine coefficients φin. Now we can write 

g(x) = ∑n = 0
N ϕn

T p cos(nx),, with ϕn = ϕin i = 1
m . Hence, the solution to the forward model is 

given by:

c(x, t) = ∑
n = 0

N
ϕn

T pe ρ − n2κ cos(nx), (2.18)

with the optimization problem as:

minp, ρ, xJ: = 1
2 ∑

n = 0

N
ϕn

T pe ρ − n2κ − dn
2

. (2.19)

Similar to the non-parametric case, it is not possible to invert for the initial condition and ρ 
simultaneously as any perturbation in ρ simply scales the initial condition. In contrast to ρ, a 

perturbation in κ cannot be absorbed into the initial condition anymore due to the frequency 

dependency of the factor e−n2κ.

In order to recover the reaction coefficient, we make the following modeling assumption: 

maxx(g(x)) = 1. Notice that, since c(x, t) and g(x) are volume fractions, their values are 

between zero and one. But here we assert something stronger. We assume that t = 0 

corresponds to the first time the tumor volume concentration reaches 100% in some 

locations. This fixes the scale of the tumor initial condition and allows us to determine a 

reaction coefficient. Our second modeling assumption is to use a Gaussian function for φi(x) 

(see §3 for more details).
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Hence, in summary, we can invert for κ and the initial condition parameterization 

simultaneously, and can recover ρ with an additional modeling assumption.

2.3. Optimality conditions for the full 3D problem.

For the optimization, we additionally impose the bound constraints ρ ≥ 0, κ ≥ 0 and p ≥ 0 by 

definition of the forward problem. Further, we also introduce sparsity constraints on p (see 

§3.3 for a detailed discussion on the motivation behind the introduction of this constraint). 

Hence, our formulation in Eq. (2.9) is now constrained by:

p ≥ 0 in Rm (2.20)

κ ≥ 0 in R (2.21)

ρ ≥ 0 in R (2.22)

max(ϕT p) = 1 in Ω (2.23)

p 0 ≤ s in Rm, (2.24)

where s is the sparsity level, i.e, number of non-zero components. Eq. 2.23 – 2.24 are 

difficult to impose formally (they are both non-convex and non-differentiable). Thus, we 

omit them for the derivation of the optimality conditions, but discuss and consider them later 

on, when presenting the numerical scheme. We introduce the Lagrangian and take variations 

with respect to (c(x, t), α(x, t), p), where α(x, t) is the adjoint variable of c(x, t). This results 

in the following strong form of the first order optimality conditions.

forward ∂tc − κDc − ρℛc = 0 in U, (2.25a)

c(0) − ϕT p = 0 in Ω, (2.25b)

adjoint − ∂tα − κDα − ρ∂c(ℛc)α = 0 in U, (2.25c)

OT(Oc(1) − d) + α(1) = 0 in Ω . (2.25d)

gradient gp = β ∫
Ω

ϕϕTdx p − ∫
Ω

ϕα(0)dx = 0 in Ω, (2.25e)
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gx = ∫
0

1∫
Ω

km (∇c)T ∇α dxdt = 0 in Ω, (2.25f)

gρ = ∫
0

1∫
Ω

ρm( − αc(1 − c))dxdt = 0 in Ω . (2.25g)

The basic solution strategy is to iterate in (p, κ, ρ) variables using a bound constrained 

optimization algorithm in which at each iteration Eq. (2.25a, 2.25b) (forward) and Eq. 

(2.25c, 2.25d) (adjoint) are eliminated. Next, we describe the details of the numerical 

schemes for the forward and inverse problems.

3. Numerical Algorithms.

First, we summarize the numerical scheme for solving for forward and adjoint variables 

given p, ρ and κ. We also give the precise definition of how we choose the number and the 

optimization algorithm and how we impose the sparsity and “max” constraints oncenters of 

the Gaussian basis functions ϕi(x) i = 1′
m , which we use to parameterize c(x, 0). Then, we 

discuss the optimization algorithm and how we impose the sparsity and “max” constraints 

on φT p.

3.1. Forward solver numerics.

We use a pseudo-spectral Fourier method on a regular mesh for spatial discretization and 

employ 3D fast Fourier transforms to compute all spatial differential operators. We enforce 

our boundary conditions on the surface of the brain and CSF boundaries using a penalty 

approach (see [19, 30]). We use periodic boundary conditions on Ω = [0, 2π]3. We use an 

unconditionally stable, second order Strang operator-splitting method to numerically solve 

the forward and adjoint reaction-diffusion PDEs in Eq. (2.25). The forward equation is split 

into reaction and diffusion terms (for more details, see [19, 28]). We use the Crank-Nicolson 

[14] method for the diffusion term. This is an implicit method and the linear system is 

solved with a matrix-free preconditioned Conjugate Gradient method. We precondition the 

resulting implicit system of equations by solving them with constant coefficients computed 

as the average diffusion coefficient in the domain. The reaction term is solved analytically. 

The main cost of the forward and adjoint solves are fast Fourier transforms to apply 

derivatives and preconditioners.

3.2. Selection of basis functions for the tumor initial condition.

Given a tumor segmentation from an MRI image, we proceed to define the Gaussians, i.e., 

their number m, their centers xi i = 1
m  and the standard deviation σ of each Gaussian. To 

avoid spurious growth and diffusion of cancer cells in the CSF,

we set the Gaussians to zero in this region. In other words, we have:
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ϕi(x) = exp − 1
2σ2 x − xi 2

2 1 mCSF(x) = 0 , (3.1)

where 1 is the indicator function. We construct a candidate set of Gaussians whose locations 

are placed at a subset of a regular grid with spacing δ = 2σ so that we can control the 

conditioning of M : = ∫ΩϕϕTdx .5 We set σ = λhimage, where himage is the resolution of the 

input MRI image and λ is an integer constant. Notice that σ is a modeling parameter. If we 

refine the image resolution or the underlying discretization, σ should remain unchanged.

From this candidate set, we select the Gaussians based on the amount of tumor cells (volume 

fraction) within a radius of one standard deviation around the candidate location xi. We 

choose a candidate Gaussian if the volume of tumor around it exceeds a user-defined 

tolerance τV, i.e.,

∫Bσ xi d(x)dx
∫Bσ xj dx > τV , (3.2)

where Bσ(xi) is a ball of radius σ around xi and d(x) is the tumor data. We show an 

illustration of this method in Fig 3.1. This adaptive approach is fully automatic and is 

effective, for example, in identifying multifocal tumorous regions without any manual 

seeding.

3.3. The 0 constrained inverse problem.

While an L2 penalty is effective in regularizing the inverse problem for ρ, κ and p, it results 

in an initial condition that has an unrealistically large support and raises the question of how 

much we can trust the reconstructed ρ and κ coefficients. In fact, the reconstructed initial 

condition c(x, 0) closely resembles the data d(x) up to a scaling, leading to κ and ρ being 

underestimated (see §4.3 for numerical experiments highlighting this issue). As discussed in 

the introduction, to truly restrict c(x, 0), we need another modeling assumption – that the 

tumor originated in a small number of locations. We call this property the sparsity of the 

initial condition.

Enforcing sparsity.—Enforcing the 0 constraint is an NP-hard problem. The most 

common techniques to circumvent this is to relax the constraint to the 1 norm or to, 

equivalently, pursue greedy strategies (see [75] for a comprehensive review of such 

techniques). We pursue an iterative recovery strategy similar to the algorithm described in 

[56]. The main difficulty in using this algorithm directly is that our formulation involves a 

non-linear and non-convex inverse problem unlike the operators for the mismatch term in 

[56]. This also means we lose any theoretical guarantees of finding a solution. In particular, 

the crucial step of identifying the important components of the signal relies on certain 

properties of the sampling matrix, such as the restricted isometry property, which can be 

used to obtain theoretical convergence guarantees [32,56]. These may no longer hold. For 

our formulation, we use the gradient of the objective calculated using adjoints to identify the 
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important components (similar to the original algorithm described in [56]). Before we 

outline our algorithm to reconstruct all the variables (p, κ and ρ), we describe our strategy to 

enforce the non-convex and non-differentiable max constraint in Eq (2.23) which allows us 

to identify ρ.

Enforcing the max constraint.—While there are methods such as relaxing the max 

constraint to inequalities and using slack variables to handle them or mixed integer 

programming formulations, we do not pursue them here, in interest of algorithmic 

simplicity. Instead, we use the following strategy: (i) We start with an initial guess6 for ρ and 

invert for the parameters (p, κ). The resulting initial condition does not necessarily satisfy 

Eq. (2.23). (ii) Then we re-scale the reconstructed initial condition appropriately to satisfy 

Eq. (2.23). This fixes the scale of the reaction coefficient, as discussed in §2.2. (iii) Finally, 

we invert for the variables (ρ, κ) keeping the (re-scaled) initial condition fixed.

Before describing the complete algorithm, we introduce some notations. We write

supp(p) = {j: pj ≠ 0} (3.3)

for the support of p, and with

p s =
pj, j ∈ S
0, otherwise

, (3.4)

we denote the s restriction of p, where S is the set of indices of the s largest-magnitude 

components of p.

In a first phase, the algorithm simultaneously inverts for p and κ following an iterative 

strategy:

i. Identify significant Gaussians: Compute the gradient using the current 

approximation for p and κ. The largest components of the gradient of p indicate 

the location of important Gaussians and form the new support of p (cf. Pseu. 1, 

line 7).

ii. Merge supports: Merge the new support derived from the gradient with the 

support of the current approximation of p (cf. Pseu. 1, line 8).

iii. Signal estimation: Solve an L2 regularized inverse problem on the restricted 

subspace (defined by the merged support). This results in a new approximation 

for p and κ, (cf. Pseu. 1, line 9).

iv. Signal restriction: Restrict the new approximation to p to the required sparsity 

using Eq. (3.4), (cf. Pseu. 1, line 10).

v. Iterate until stopping criterion is true.

6We discuss our choice for this initial guess in §4.1.
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We terminate the compressive sampling when a maximum number of iterations has been 

reached or the relative change in objective function value is below a user-defined threshold 

τJ. This stopping criterion is typically used in such problems. Other criteria such as 

monitoring the monotonic decrease of the mismatch two-norm have been used in subspace 

pursuit algorithms but are valid only in the linear case with restricted isometry properties. 

Hence, we do not employ these rules.

In a second phase, the signal estimation step is performed once more (cf. Pseu. 1, line 12) in 

the subspace defined by the support of p to get the final approximation (rather than just 

keeping the largest entries). This step is important as the reconstructed initial condition is 

used in the subsequent inversion for ρ: We re-scale the initial condition and solve the tumor 

inversion problem for parameters ρ and κ keeping the initial condition fixed. Next, we 

describe the details of the signal estimation step.

The L2 regularized inverse problem.—An algorithm for solving the L2 regularized 

inverse problem (Eq. (2.9)) for p and κ was presented in [19,67]. Here, we summarize the 

main components for solving the system of optimality conditions in Eq (2.25). We employ a 

quasi-Newton method, L-BFGS [58, p. 135]7 with matrix-free approximations to the inverse 

Hessian and the More-Thuente criterion [´ 53] for line-search8. We enforce the bound 

constraints on our parameters (p, κ, ρ) using projected gradients to approximate the quasi-

Newton Hessian. We terminate our solver when the relative change in the norm of the 

gradient falls below a user-defined threshold τg or when a maximal number of quasi-Newton 

iterations is reached. We discuss the choice for these parameters in §4.1. We compute our 

reference gradient with a zero initial guess for (p0, κ0).

We present a pseudocode for our algorithm in Pseudocode 1.

Pseudocode 1 : Compressive sampling for tumor inversion given sparsity level s and initial 

guess for reaction coefficient ρ0

1:
2:
3:
4:
5:

procprocedure. (
whileκip0←0 ←←000stopping criterion is false
do

Enforcing sparsity for the tumor inverse 
problem Eq (2.9))

6:
7:
8:
9:

iS←←isupp+ 1 (gp|2s)i−1)
Invert forS ← S ∪ supp(p, κ(

)pin subspace S with fixed 
reaction, ρ0

. Identify significant Gaussians. Merge 
supports. Signal estimation using adjoints

10: 11: end whilepi ← (pi)|s . Signal restriction to required sparsity

12: Invert for (p, κ) in supp(pi) with fixed reaction, ρ0 . Signal estimation with final support

13:
14:
15:

pi ← pi/ max(φTpi). Initial condition re-scaling to satisfy
Eq. (2.23)
Invert for (ρ, κ) with fixed initial condition . Biophysical parameter inversion using adjoints
end procedure

7L-BFGS represents a good trade-off between convergence properties and time-to-solution [66].
8The Moré-Thuente line-search criterion satisfies the Wolfe conditions [´ 58, p. 33,143] in every BFGS Newton step which ensures the 
well-posedness of the BFGS update.
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4. Results.

We test the performance of our solver on synthetically generated tumors and clinical 

datasets.

4.1. General setup.

All 3D numerical experiments were executed on the Stampede2 system at the Texas 

Advanced Computing Center (TACC) at The University of Texas at Austin on its dual socket 

Intel Xeon Platinum 8160 (“Skylake”) nodes. Our solver is written in C++. We use MPI for 

parallelism compiled with Intel 17 compiler and 64 MPI tasks on 3 nodes for all our 

simulations. We use PETSc9 for all linear algebra operations, PETSc-TAO for the bound 

constrained L-BFGS optimization solver used in the L2 regularized inverse problem, 

AccFFT10 for the 3D parallel FFTs and PnetCDF for I/O. We use a 2D pencil 

decomposition of our data for 3D distributed FFTs (see [18] for the parallel implementation 

details). For 1D test-cases, we use MATLAB R2018b.

Performance measures.—The primary goal of our numerical experiments is to 

demonstrate the ability of the solver to reconstruct the reaction and diffusion coefficients, 

and to reconstruct the initial condition with good localization accuracy. To evaluate the 

errors, we define the following error metrics to quantify our reconstruction:

i. relative error in κ and ρ reconstructions:

eκ = κrec − κ⋆

κ⋆ , eρ = ρrec − ρ⋆

ρ⋆ , (4.1)

where κ★ and ρ★ are the true coefficient values and κrec and ρrec are the 

reconstructed values,

ii. relative error in initial tumor reconstruction:

μ0, L2 =
crec(0) − c⋆(0) L2(Ω)

c⋆(0) L2(Ω)
, (4.2)

where crec(0) is the reconstructed initial condition and c★(0) is the ground truth 

initial condition,

iii. relative error in final tumor reconstruction:

μT , L2 =
crec(1) − c⋆(1) L2(Ω)

c⋆(1) L2(Ω)
, (4.3)

where crec(1) is the reconstructed tumor final concentration and c★(1) is the final 

tumor concentration grown with the ground truth parameters (p★, κ★, ρ★),

9PETSc is an open-source software consisting of a suite of data structures and algorithms for the parallel solution of linear systems 
using MPI.
10AccFFT is an open-source parallel FFT library specifically designed for maximum parallel performance and scalability.
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iv. relative 1 error in initial tumor parameterization:

μp, l1 =
prec − p⋆ l1

p⋆ l1
, (4.4)

with reconstructed parameterization vector prec,

v. relative change in the norm of the gradient to help assess the convergence of our 

numerical scheme:

g
rel

=
g l2
g0 l2

, (4.5)

where g is the gradient at the final iteration and g0is the gradient with respect to 

the initial solution guess.

We evaluate the performance of two solvers, namely the L2 solver and the CS solver. The 

former refers to the L2 (two-norm) regularized solver introduced in our previous work [19, 

67] that does not use any sparsity constraints, while the latter is the compressive sampling 

solver described in Algorithm 1.

Numerical parameters: We list all numerical parameters in Tab. 4.1 and outline any 

parameter change specific to a test-case in its respective section. We now provide a 

justification for our parameter choices:

i. For the selection of Gaussians, we choose a volume fraction τV of 0.99 to ensure 

that only Gaussians occupied completely by tumorous cells within a 

neighbourhood of one standard deviation σ get selected. We consider Gaussians 

with smaller volume fractions as unimportant candidates for the support of the 

tumor initial condition and hence we neglect them11.

ii. We refer to [67] for the L2 tumor regularization parameter β, which was chosen 

based on the data reconstruction quality and an L-curve analysis. For the 

compressive sampling (CS) solver, we set β to zero as the inversion is performed 

for typically 10–20 parameters and we have experimentally found that no 

regularization is necessary.

iii. We pick the relative gradient convergence tolerance τg for all L2 solves (Eq 

(2.9)) to be 1E−5 in order to get sufficient accuracy in the reconstruction.12

iv. We set a maximal number of quasi-Newton iterations as 50 to prevent 

prohibitively large times-to-solution. But in most of our experiments, the target 

tolerance is reached within the given iteration budget. In the rare occasion this 

fails to happen (for example, in test-cases with extremely large tumors), we 

11We verify empirically that our solver is not sensitive to the volume fraction chosen, which is expected.
12We note that our formulation is based on an optimize-then-discretize approach and hence our gradient is only accurate up to 
discretization errors.
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observe that additional quasi-Newton iterations do not lead to significant 

accuracy gains, but they do significantly increase the computational cost.

v. Based on numerical experimentation with different values of reaction and 

diffusion coefficients, we find ρ = 15 to be a good representative reaction 

coefficient to capture quite “large” tumors (∼30. % of white matter volume). 

Hence, we set this to be our initial guess for the reaction coefficient (p0).

vi. The required sparsity level is a question that needs to be addressed empirically 

using a large study using a clinical dataset. Here, we hypothesize 5–10 activated 

sites for tumor initiation and verify numerically that, using this sparsity, we 

capture important activations in all our synthetic test-cases. For clinical studies, 

we plan to use an image-analysis based tool to estimate the focality of the tumor 

and then assign a number of sites per focal region. This is beyond the scope of 

this paper.

vii. In all our experiments, we observe inconsequential changes in sparsity after two 

compressive sampling iterations and hence set it as an upper bound to the 

number of iterations for the 1 sparsity.

We examine different types of test-cases to illustrate the performance of our model. We 

describe the setup of each experiment and the corresponding results in the following sub-

sections.

4.2. 1D constant coefficients test-case.

We start with a simple 1D example to demonstrate that the CS solver outperforms the L2 

solver. We also use this test-case to numerically display the non-convexity of the inverse 

problem.

Setup.—The data d(x) is generated using the non-linear forward model with constant 

reaction and diffusion coefficients. We use a spatial resolution of 256 grid points in Ω = [0, 

2π] and a temporal resolution of 100 time steps within a time horizon of 1. We consider two 

variations for our test-cases:

i. 1D-C1: mono-focal tumor ρ★ = 10 κ★ = 0.05

ii. 1D-C2: multi-focal tumor ρ★ = 10 κ★ = 0.05

We consider more variations for our 3D test-cases to capture the heterogeneity in tumor 

shapes generally observed in clinical data. We report our performance measures, relative 

gradients and solver timings in Tab. 4.2 and present qualitative results of the reconstruction 

in Fig. 4.1.

Observations.—While both solvers are able to fit the data satisfactorily (reconstruction 

errors less than 5%), we observe that the compressive sampling (CS) solver outperforms its 

L2 counterpart in biophysical parameter estimation. This is evident in Fig. 4.1a and Fig. 

4.1c, where the reconstructed initial conditions resemble grown tumors compared to the 

sparse ground truth. This can also be observed in the 1 relative error norms of the initial 

condition parameterization (μp,1) which show about an order of magnitude difference 
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between the two solvers. Here, we would like to emphasize that it is because of the unknown 

reaction coefficient that the L2 solver reconstructs a rich initial condition, and consequently 

a low (and inaccurate) reaction coefficient. Hence, the tumor does not grow much, and 

instead diffuses to fit the data – this is seen in the reconstructed values for the reaction and 

diffusion coefficients. As we shall see, this issue is mitigated a little in 3D, but still persists. 

We also note that the initial conditions might not be perfectly recoverable due to the ill-

conditioned nature of the inverse problem. For instance, the multifocal test-case (1D-C2) 

finds activations in neighbouring Gaussians to the ground truth. This localization problem is 

unavoidable due to ill-conditioning. If the time horizon is so large that the maximum tumor 

concentration is everywhere in the spatial domain, it is impossible to recover any 

information about the initial location of the tumor. So, the larger the tumor (or equivalently, 

the larger the time horizon), the harder it is to localize the initial condition.

Non-convexity.—We numerically show the non-convexity of our objective function. To 

this end, we choose two solution vectors: θ1 and θ2 (where θ1 represents the ground truth 

(of test-case 1D-C2) and θ2, the solution from the L2 solver (for the 1D-C2 test-case)). We 

evaluate the objective function J along the line joining these two solution vectors 

(parameterized bysolution from the L2 solver (for the 1D-C2 test-case)). We evaluate the 

objective function α) as J = J (θ1 + α(θ2 −θ1)). The resultingJ along the curve is given in 

Fig. 4.2a, and clearly non-convex. To minimize discretization errors, we use a spatial 

discretization of 2π/1024 and a time discretization of dt = 0.0025 for this experiment.

Uniqueness.—First, we recall that the inverse reaction-diffusion problem without 

additional modeling constraints (Eq. 2.23, and Eq. 2.24) does not have a unique solution 

(e.g., two solutions are the ground truth (c0
★, ρ★, κ★) used for generation of the data d, and 

the trivial solution (c0 = d, ρ = 0, κ = 0)). Note that both these solutions also satisfy the max 

constraint. Further, the sparsity constraint, by itself, does not result in unique solutions. In 

Fig. 4.2b, we visualize another solution for test-case 1D-C1 which does not satisfy the max 

constraint, but is sparse. This observation is in agreement with our analysis for the simple 

linearized problem (§2.2). Lastly, we cannot formally comment on the uniqueness with the 

inclusion of both these constraints due to the non-convex and non-linear nature of our 

inverse problem.

4.3. Artificial tumor (AT) test-case.

In this test-case, the data d(x) is generated using the non-linear forward model with 

inhomogeneous coefficients to capture the heterogeneity of tumors. These experiments are 

intended as a proof-of-concept of the performance of our solver on 3D synthetic datasets. 

Here, we reiterate that our forward problem is non-dimensional. We refer the reader to our 

previous work [19] for a correspondence between the non-dimensional coefficients and 

physical units.

Setup.—We grow synthetic tumors in the segmentation of a statistical brain atlas [12] MRI 

scan (an atlas obtain by averaging several MR images). The segmentation labels are gray 

matter, white matter, and cerebrospinal fluid-filled ventricles (CSF). We use sparse initial 

conditions to grow the tumor to a significant size resembling clinical observations and invert 
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for all biophysical parameters using the grown tumor at t = 1 as input data to the solver. For 

all our test cases, we assume that the tumor grows and diffuses only in white matter13. For 

this test-case, we observe the data everywhere, i.e., cd = 0. We consider the following 

variations:

i. AT-C1: medium sized, mono-focal tumor ρ★ = 8κ★ = 0.025

ii. AT-C2: large sized, mono-focal tumor ρ★ = 12 κ★ = 0.05

iii. AT-C3: multi-focal tumor, nearby seeds ρ★ = 10 κ★ = 0.025

iv. AT-C4: multi-focal tumor, distant seeds ρ★ = 8κ★ = 0.025

We report our quantitative results (performance measures, convergence, and solver timings) 

in Tab. 4.3 and visualize the reconstruction to qualitatively assess the performance of our 

solvers in Fig. 4.3 - Fig. 4.6. Each figure shows an isometric view of the patient brain with 

3D volumes of the grown tumor data, ground truth, and reconstructed initial condition. We 

additionally visualize the ventricles and sections of healthy tissue to reveal the heterogeneity 

of the brain (and hence the tumor).

Observations.—We observe that for the medium sized tumor (AT-C1) the reconstruction 

is nearly perfect for the CS solver while the L2 solver produces a lower performance, 

particularly in the inversion of the reaction coefficient. This is primarily due to the rich 

initial conditions produced by the L2 solver which impedes its ability to predict the correct 

reaction scaling using our method. We note that if the reaction scaling is known beforehand, 

the L2 solver can potentially have better performance (see [20,67] for similar synthetic 

experiments). This problem is magnified for larger tumors (AT-C2 and AT-C3) where the 

predicted reaction coefficient shows about 66% and 54% relative error in the L2 solver for 

the two test-cases respectively (as compared to around 15% and 1% error with sparsity 

constraints). The reconstruction in diffusivity also suffers similarly without enforcing 

sparsity. The final test-case shows a multi-focal tumor with two far apart proliferation sites. 

While both the solvers produce disjoint initial conditions for the tumor, the CS solver does 

better in reconstructing the model parameters: 2% versus 37% relative error in diffusivity 

and 9% versus 50% relative error in reaction coefficient. Both solvers show similar 

performance in their ability to fit the data (as measured by the relative error in final tumor 

reconstruction). Hence, our synthetic observations show consistent improvement in target 

parameter estimation for all test-cases with sparse initial conditions, without sacrificing the 

final tumor reconstruction quality.

4.4. Artificial tumor with observation operator test-case.

As mentioned before, an observation operator is necessary since the full extent of tumor 

invasion is not detectable using existing imaging technologies. The purpose of this 

experiment is to investigate the effect of the observation operator O on the model parameter 

reconstruction abilities of the solver. In particular, we would like to see if partial 

observations significantly deteriorate the reconstruction quality.

13We set kg = ρ g = 0 and kw = ρw = 1 in (2.8), (2.6) to enforce this.
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Setup.—We assess the performance and sensitivity of our solver by choosing different 

values for the detection threshold cd ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, which defines the 

observation points according to Eq. (2.11). We define the parameter nd to quantify the 

number of voxels observed with each threshold value. We choose the synthetic test-case AT-
C2 as a suitable representation of a large and significantly invasive (aggressive) tumor (large 

parameter values: ρ★ = 12, κ★ = 5E−2). We report all our performance metrics for the 

different observation thresholds in Tab. 4.4. We emphasize that the final tumor 

reconstruction error is with respect to the fully grown tumor with the ground truth model 

parameters and not the data restricted to the observation points. This definition is more 

useful in helping us understand if the model is reconstructing the full extent of the tumor, 

including the areas which are typically invisible in imaging data.

Observations.—The most important observation is that the solver is able to approximately 

establish the extent of tumor invasion up to a detection threshold of cd = 0.3. This is 

reflected in the performance metrics that do not register significant drops over these 

threshold values. The final tumor reconstruction error shows perturbations of up to 4% till 

this detection threshold. The values for the inverted model parameters also do not exhibit 

appreciable degradation and roughly remain around the ground truth coefficients – 9.80 to 

11.10 for the reaction coefficient and 3.89E−2 to 6E−2 for the diffusion coefficient. Larger 

detection thresholds (from cd = 0.4 onwards) lead to worsening reconstruction errors and 

significant deterioration in target parameter estimation. This is expected since there is 

insufficient data for any reliable inversion, especially since this tumor has substantial 

diffusion resulting in considerable loss of data when choosing higher values for the detection 

threshold. Finally, while there is no consensus regarding the value of cd in literature 

(generally values around 0.2 – 0.4 have been used [40,72]), this value can easily be modified 

in our formulation once more specific information becomes available.

4.5. Artificial tumor with varying spatial resolution test-case.

The ground truth for parameter estimation should ideally be independent of the numerical 

discretization used. Since we use a pseudo-spectral discretization scheme which demands 

smooth functions (to avoid aliasing errors), a mesh-dependent numerical diffusion is 

introduced in our formulation. The purpose of this test-case is to assess the degree of 

information loss due to spatial discretization and to understand the extent of reliability of our 

inverted parameters with mesh size.

Setup: We consider the synthetic test-case AT-C2 as a suitable representation of a large and 

invasive tumor. Since there is no analytical solution to the forward problem, we grow a 

synthetic tumor in a high spatial resolution of 5123 and assume this to be the “true” tumor. 

We sub-sample this tumor to resolutions 1283 and 2563 and use the resulting tumors as data 

for inversion in the respective spatial discretizations. The initial radial basis σ is kept 

constant across all grids (set to the spacing of the 1283 grid). We consider the following test 

cases:

i. C1: ρ★ = 12 κ★ = 0

ii. C2: ρ★ = 12 κ★ = 5E—4
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iii. C3: ρ★ = 12 κ★ = 5E—3

iv. C4: ρ★ = 12 κ★ = 5E—2

We use different orders of magnitude for the diffusion coefficient to gauge the extent of 

numerical diffusion, relative to actual physical diffusion. We report our performance 

measures in Tab. 4.5.

Observations: We observe that we cannot recover diffusion coefficients smaller than 

around 1E−3 using a spatial resolution of 1283. This can be seen in the values for κrec 

(diffusivity reconstruction) which fail to recover any smaller values (test-case C1; C2). As a 

result, the values for ρrec (reconstructed reaction magnitude) also improve for test-cases with 

higher ground truth diffusivity values as the effect of mesh-dependent diffusion is reduced. 

The higher resolution mesh (2563) is able to recover diffusion coefficient values up to an 

order of magnitude of 1E−5. Consequently, we observe larger differences for the ρrec values 

between the two resolutions as the ground truth diffusivity drops. The higher resolution 

inversion does a better job in estimating the diffusivity (due to lower mesh-diffusion errors) 

and hence can estimate the reaction coefficient reasonably where the lower resolution 

inversion performs poorly. Hence, our estimated parameters are well founded only if they 

are not in the range of mesh-induced numerical diffusion. One way to circumvent this error 

is to perform grid continuation where we invert for parameters in successively higher mesh 

resolutions using the sparsity and inverted parameters from the coarser meshes as an initial 

guess and settle on a resolution as the results of the inversion stagnate.

4.6. Artificial tumor with noise test-case.

The purpose of this test-case is to examine the robustness of our inversion against noise in 

the data. Instead of using high frequency uncorrelated noise (white noise), we are interested 

in observing the effects of a more realistic low-frequency noise model.

Setup.—We approximate the source of noise by modifying the low-frequency spectrum of 

our data. We add a uniform random noise scaled by the inverse squared frequency to the 

respective frequency components of the data. Then, we take the inverse Fourier transform of 

this noisy spectrum to obtain our noise-corrupted data. We use AccFFT to compute our 

frequency spectrum and IFFTs in a distributed manner. We choose our ground truth 

parameters from the artificial tumor test-case AT-C2 since this test-case features the largest 

invasive synthetic tumor making the inversion most ill-conditioned. We add various levels of 

noise (as measured by the relative error in the true data and noise-corrupted data) and report 

our findings in Tab. 4.6.

Observations.—We observe that our model does not exhibit any significant sensitivity for 

this noise model. We consider the small changes in performance and convergence metrics 

between the different noise levels inconsequential and attribute them to the inherent 

randomness in generating the data.
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4.7. Real tumor (RT) test-case.

The purpose of this test-case is to evaluate our solver on real patient brains diagnosed with 

glioblastoma. While we have no knowledge of the ground truth model parameters for real 

data, this experiment attempts to demonstrate the similarity in reconstruction trends 

observed in the artificial tumor test-cases (as designed above) and a clinical dataset.

Setup: Since we do not have access to the healthy patient brain, we cannot resort to direct 

inversion of model parameters. There have been many approaches in literature (see [20, 67] 

for a comprehensive review) to approximate the healthy brain through methods such as 

diffeomorphic image registration and registration-tumor coupled optimization formulations. 

While such techniques are necessary to capture the healthy patient brain, we do not pursue 

them since this test-case is intended to primarily serve as an illustration. Instead, we simply 

replace all tumor segmented voxels in the patient image with white matter and invert only 

for the diffusivity and reaction in the white matter. We note that by doing so we have lost 

any information concerning the inhomogeneity of our model coefficients in white and gray 

matter. We use MRI scans from the BraTS dataset [50]. These images are annotated with 

voxel-wise segmentation of tumor acquired through manual delineation performed by expert 

radiologists. For the healthy tissue segmentation, we refer to [21] where the brain is further 

segmented into gray matter, white matter and cerebrospinal fluid-filled ventricles through 

diffeomorphic image registration with healthy atlases. Since our model incorporates only a 

single species of tumor cells, we combine the enhancing and necrotic tumor sub-classes into 

one tumor class (also known as the tumor core) and use this as our tumorous species. We 

report the inverted values for our model coefficients, data reconstruction error, and 

convergence metrics in Tab. 4.7. We visualize our reconstruction in Fig. 4.7.

Observations: We observe sparse initial condition reconstruction with the CS solver and 

consequently larger diffusion and reaction coefficients for the tumor model. This is in 

accordance with our observations in the synthetic tumor test-cases. Both solvers produce 

roughly equivalent reconstruction errors for the final tumor condition which is around 16–

19%. We note that if our primary goal is to reduce this mismatch we might fare better with 

more complex initial conditions which resemble fully grown tumors. At the extreme 

scenario, pure interpolation of the data with radial basis, i.e., setting all model coefficients to 

zero, would lead to a significantly better mismatch. However, this incurs the severe penalty 

of losing all information about the biophysical model at hand. Since the focus of this work is 

on the latter, we accept higher reconstruction errors as long as we can identify the target 

model parameters reliably. This is ultimately more useful for tumor growth understanding 

and prediction. We emphasize that approaches like a coupled image registration and tumor 

inversion formulation are necessary for access to a more informative healthy patient (see 

[67] for more details). Our plan is to conduct a systematic study of the solver considering 

hundreds of cases. However, such a study is beyond the scope of this paper and requires a 

separate treatment.
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5. Conclusions.

We presented an inverse problem formulation for the simultaneous estimation of all 

parameters in a commonly used reaction-diffusion model, namely the reaction coefficient, 

diffusion coefficient, and the spatial distribution of the tumor initial condition. The data that 

drive the inversion come from MRI scans, in particular the segmentation of tumor regions. 

We motivated the need for the sparse localization of the initial tumor in order to reliably 

reconstruct the other parameters. Additionally, this constraint is biophysically motivated and 

hence can be of clinical relevance in understanding the origin of the tumor and its role in the 

subsequent evolution of the disease. We presented results demonstrating the performance of 

our solver in reconstructing the ground truth model parameters, even for large and complex 

synthetic tumors. The results also highlight significant improvement in reconstruction 

quality with the use of sparsity constraints. We observe similar reconstruction trends in real 

patient data, thus providing a proof-of-concept of applicability in clinical practice. Finally, 

we employed novel reduced-space optimization algorithms and compressive sampling to 

solve our non-linear inverse problem and have tested its robustness against partial data 

observations and noise. Our software is implemented in a scalable manner enabling realistic 

time-to-solutions, a significant factor for applications in a diagnostic setting. While 

limitations like the necessity of more complex growth models exist, we envision this work as 

an important stepping stone towards the personalization of tumor growth models.

Our next step is to conduct a comprehensive evaluation of the model using a large number of 

clinical images. Our goal with such a study will be to correlate the model parameters with 

clinical outcome, for example survival. There are several ways that this work can be 

extended. Even if multiple time-snapshot scans exist, the presence of partial observations 

still poses difficulties. The same framework we discussed here can be used, but with 

multiple scans the problems of inverting for ρ and κ and the tumor initiation can be possibly 

decoupled. A more significant challenge is incorporating more complex biophysical models, 

while still having a single scan. All these directions are ongoing work in our group.
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Fig. 2.1: 
Imaging data which show an axial slice of (a) healthy T1 MRI scan, (b) segmentation of the 

healthy brain into white matter (white), gray matter (light gray), and cerebrospinal fluid-

filled ventricles (dark gray), (c) patient T1 MRI scan diagnosed with glioblastoma, and (d) 

segmentation of the patient tumor sub-structures into enhancing tumor (white), necrotic 

tumor (dark gray), and edema (light gray). The patient scan and segmentation are taken from 

the 2018 Multimodal Brain Tumor Segmentation challenge training dataset [3], while the 

healthy brain scan and segmentation are obtained from the GLISTR dataset [25]. In our 

formulation, we assume the tumor core (enhancing and necrotic tumor) to be the tumor 

segmentation.
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Fig. 3.1: 
A 2D illustration of the selection of Gaussian basis functions given the tumor segmentation 

boundary (figure modified from [66]). A candidate Gaussian set (light gray shaded circles) is 

constructed by seeding the entire domain with Gaussians with fixed variance σ = h in this 

example. The Gaussians are centered at regular grid points xi and are spaced at δ = 2σ. If the 

volume fraction of tumor cells within any candidate Gaussian exceeds a user-defined 

threshold τV, the candidate is selected (light blue shaded circles).
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Fig. 4.1: 
Qualitative results for 1D constant coefficients test-case: The images show the tumor initial 

condition reconstruction using the two approaches. The L2 solver predicts a complex initial 

condition and hence fails to reconstruct the biophysical parameters accurately. Enforcing 

sparsity helps in localizing the initial condition and hence enjoys significant performance 

improvements in parameter reconstruction. Despite these differences, we note that both 

solvers provide excellent reconstruction of the tumor data (see Tab. 4.2 for the performance 

measures).
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Fig. 4.2: 
(a) Objective function of the inverse problem (2.9), evaluated along a line of two feasible 
solution vectors (α is a scalar parameterizing the line via linear interpolation between the 
two solutions (marked in red)). We consider the ground truth (c0

★, ρ★, κ★) used for 
generation of the data d (left point), and the L2 solver solution for test-case 1D-C2 (right 
point) as solution vectors. (b) The sparsity constraint does not result in a unique solution. 
Here, we visualize an additional sparse solution to test-case 1D-C1. This solution predicts a 
higher reaction and diffusion coefficient of ρ = 1.13E1, κ = 5.29E−2, with smaller scaling of 
the initial condition. The error in reconstruction is μT,L2 = 5.99E−4.
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Fig. 4.3: 
(a) Description of the visualized brain sub-structures: The figure on the left shows an 
isometric view of the brain with different tumorous and healthy tissue sub-structures. The 
figure on the right zooms in on the tumor region and describes each structure. (b, c) 
Qualitative results for the artificial tumor test-case AT-C1 (a mono-focal, mostly 
proliferative tumor) with growth parameters ρ★ = 8, κ★ = 0.025. The images show the tumor 
data (gray wireframe), ground truth tumor initial condition (green volume), reconstructed 
tumor initial condition (magenta volume), ventricles (cyan volume), and a section of the 
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patient brain geometry. We observe exact reconstruction for smaller tumors with sparsity 
constraints. The L2 solver fails to obtain the same reconstruction due to its inability to 
determine the correct reaction coefficient. We refer the reader to Tab. 4.3 for the quality of 
final tumor reconstruction.
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Fig. 4.4: 
Qualitative results for the artificial tumor test-case AT-C2 (a mono-focal tumor that has 
grown more and is infiltrative) with growth parameters ρ★ = 12, κ★ = 0.05. The images 
show the tumor data (gray wireframe), ground truth tumor initial condition (green volume), 
reconstructed tumor initial condition (magenta volume), ventricles (cyan volume), and a 
section of the patient brain geometry. As with smaller tumors, the L2 solver predicts an 
initial condition reconstruction that has a large support and lacks localization capabilities. 
Hence, the solver is unable to determine the reaction coefficient accurately. While sparsity 
constraints help in localizing the initial condition, an exact initial condition reconstruction is 
difficult due to the ill-conditioned inverse problem.
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Fig. 4.5: 
Qualitative results for the artificial tumor test-case AT-C3 (a multi-focal tumor) with 

growth parameters ρ★= 10, κ★ = 0.025. The images show the tumor data (gray wireframe), 

ground truth tumor initial condition (green volume), reconstructed tumor initial condition 

(magenta volume), ventricles (cyan volume), and a section of the patient brain geometry. 

The CS solver activates one of the Gaussians exactly, while assigning smaller activations 

(not pictured) around the second ground truth Gaussian (similar to the 1D analogous test-

case 1D-C2).
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Fig. 4.6: 
Qualitative results for the artificial tumor test-case AT-C4 (multi-focal tumor) with growth 

parameters ρ★ = 8, κ★ = 0.025. The images show the tumor data (gray wireframe), ground 

truth tumor initial condition (green volume), reconstructed tumor initial condition (magenta 

volume), ventricles (cyan volume), and a section of the patient brain geometry. Both solvers 

are able to identify multi-focal initial conditions with the CS solver enforcing more sparsity 

and hence obtaining better biophysical inverted parameters. As before, due to the ill-

conditioning of the inverse problem, the exact locations of tumor initiation are not recovered.
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Fig. 4.7: 
Qualitative results for a real tumor taken from the BraTS’18 TCIA dataset. The images 

show the tumor core (enhancing and necrotic tumor cells) indicated as a gray wireframe with 

the reconstructed initial condition (magenta volume) and parts of the patient brain geometry. 

We observe similar trends as the synthetic tumor test-cases with sparse tumor initial 

conditions for the CS solver which predicts higher diffusion and reaction coefficients to fit 

the tumor data.
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Table 2.1:

Notationfortheinversetumorproblem formulation.

Description Notation

spatial coordinates x = (x, y, z)

time t

healthy tissue probability maps (see Eq. (2.1)) m(x)

patient tumor from imaging (see Eq. (2.9a)) d(x)

initial tumor concentration (see Eq. (2.9c)) c(x,0)

simulated tumor concentration at time t (see Eq. (2.9b)) c(x, t)

reaction operator (see Eq. (2.7)) ℛ
scalar reaction coefficient (see Eq. (2.8)) ρ

diffusion operator (see Eq. (2.5)) D
scalar diffusion coefficient (see Eq. (2.6)) K

parameterization basis functions (see Eq. (2.10)) ϕ(x) = ϕi(x) i = 1
m

parameterization coefficients in Rm (see Eq. (2.10)) p

observation operator (see Eq. (2.11)) O(x)

tumor concentration detection threshold (see Eq. (2.11)) cd

regularization parameter (see Eq. (2.9a)) β
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Table 4.1:

Numerical parameters and their values used for tumor inversion.

Parameter Value

spatial discretization for synthetic tumors 1283

volume fraction for Gaussian basis selection, τV 0.99

standard deviation of Gaussian basis functions, σ 2π/64

relative gradient tolerance, τg 1E−5

relative objective tolerance, τJ 1E−5

maximum quasi-Newton iterations 50

maximum compressive sampling iterations 2

sparsity level, s 10

regularization parameter, β 1E−4

initial guess for reaction coefficient, ρ0 15

Inverse Probl. Author manuscript; available in PMC 2021 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SUBRAMANIAN et al. Page 43

Table 4.2:

Quantitative results for the 1D constant coefficients test-case using the two-norm regularized solver (L2) and 

the compressive sampling (CS) solver. The ground truth forward solver parameters are indicated by ‘ ★’ and 

their respective reconstructed coefficient values by ‘rec’. We use a spatial discretization of 2π/256 with 256 

grid points and a time discretization of 0.01 with 100 time steps. We consider the ground truth for the model 

constants as ρ★ = 10, κ★ = 0.05 to ensure a large tumor (larger tumors correspond to larger time horizons 

which make inverting for initial conditions hard). We report the relative error in inverted coefficient values (eκ, 

eρ), the relative error in final tumor reconstruction (μT,L2), the relative error in the reconstructed initial 

condition (μ0,L2), the relative error in the parameterization of the initial condition (μp,l1), the relative change 

in the gradient (∥g∥rel) and solver timings (Tinv) in seconds.

Test case Solver k* p* Krec eK prec eP μT,L2 μ0,L2 μp,<1 ||g||rel Tinv [s]

1D-C1
L2 5E-2 1E1 1.03E-2 7.95E-1 1.05E0 8.69E-1 1.22E-3 3.95E0 1.43E1 6.69E-4 7.02E0

CS 5E-2 1E1 4.76E-2 4.77E-2 9.41E0 5.89E-2 1.91E-4 6.49E-1 2.10E0 3.14E-6 9.05E0

1D-C2
L2 5E-2 1E1 1.71E-2 6.58E-1 1.20E0 8.50E-1 1.57E-3 3.84E0 1.19E1 4.34E-5 8.13E0

CS 5E-2 1E1 5.07E-2 1.33E-2 1.09E1 9.41E-2 5.09E-2 8.80E-1 1.64E0 2.94E-6 1.17E1
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Table 4.3:

Quantitative results for the artificial tumor test-case in which we compare the L2 solver and the CSsolver. 

The ground truth forward solver parameters are indicated by ‘ ★’ and their respective reconstructed values by 

‘rec’. We also report the relative error in the inverted coefficient values (eκ, eρ), the relative error in the final 

tumor reconstruction (μT,L2), the relative error in the reconstructed initial condition (μ0,L2), the relative error in 

the parameterization of the initial condition (μp, 1), the relative change in the gradient (∥g∥rel) and solver 

timings (Tinv) in seconds. All simulations were run using 64 MPI tasks on 3 nodes of the Skylake partition of 

the Stampede2 system at TACC.

Test case Solver κ* ρ* κrec eK ρrec ep μT,L2 μ0,L2 μp,l1 ‖g‖rel Tinv [s]

AT-C1

L2 2.50E-2 8E0 2.32E-2 7.17E-2 4.08E0 4.90E-1 3.13E-1 2.92E0 9.13E0 4.02E-3 2.31E2

CS 2.50E-2 8E0 2.50E-2 9.52E-4 8.01E0 6.99E-4 2.71E-4 1.24E-4 2.50E-2 1.75E-7 8.42E2

AT-C2
L2 5E-2 1.20E1 2.13E-2 5.73E-1 4.13E0 6.56E-1 1.58E-1 5.66E0 2.35E1 7.39E-3 2.38E2

CS 5E-2 1.20E1 3.89E-2 2.23E-1 1.02E1 1.47E-1 1.72E-1 1.26E0 2.25E0 9.36E-6 6.43E2

AT-C3
L2 2.50E-2 1E1 1.36E-2 4.57E-1 4.62E0 5.38E-1 1.84E-1 3.55E0 1.09E1 3.16E-4 3.21E2

CS 2.50E-2 1E1 2.67E-2 6.84E-2 9.91E0 8.60E-3 1.40E-1 6.92E-1 5.35E-1 2.08E-6 9.47E2

AT-C4
L2 2.50E-2 8E0 1.57E-2 3.73E-1 3.95E0 5.06E-1 2.34E-1 2.42E0 8.23E0 2.64E-3 2.31E2

CS 2.50E-2 8E0 2.57E-2 2.64E-2 7.31E0 8.66E-2 2.92E-1 1.13E0 2.01E0 5.31E-6 1.41E3
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Table 4.4:

Quantitative results for different observation thresholds, cd ∈ 0, 0.1, 0.2, 0.3, 0.4, 0.5 . We choose the ground 

truth model parameters from the synthetic test-case AT-C2 since they produce a large tumor. We report the 

performance metrics for model parameter inversion (eK,ep), the relative error in the final tumor reconstruction 

μT , L2 , the relative error in the reconstructed initial condition μ0, L2  the relative error in the parameterization 

of the initial condition μp, l1 , the relative change in the gradient (||g||rel) and solver timings (Tinv) in seconds. 

All ground truth values are indicated by ‘*’ and the inverted quantities with ‘rec’. We note that for cd = 0 all 

voxels are observed and the results are replicated from Tab. 4.3. The number of voxels observed is denoted by 

nd.

cd nd K* P* Krec ek prec eP μT,L2 μT,02 μT,p1 llgl|rel Tinv [s]

0 _ 5E-2 1.20E1 3.89E-2 2.23E-1 1.02E1 1.47E-1 1.72E-1 1.26E0 2.25E0 9.36E-6 6.43E2

0.10 2.54E4 5E-2 1.20E1 5.03E-2 6.30E-3 9.80E0 1.83E-1 1.56E-1 1.20E0 2.10E0 1.00E-6 1.17E3

0.20 2.00E4 5E-2 1.20E1 4.35E-2 1.37E-2 11.10E0 7.46E-2 1.94E-1 1.20E0 2.05E0 9.71E-6 7.71E2

0.30 1.67E4 5E-2 1.20E1 6.00E-2 2.01E-1 9.95E0 1.71E-1 1.98E-1 1.20E0 2.09E0 6.87E-6 1.17E3

0.40 1.41E4 5E-2 1.20E1 7.11E-2 4.23E-1 9.90E0 1.75E-1 3.20E-1 1.27E0 3.42E0 3.17E-6 1.18E3

0.50 1.20E4 5E-2 1.20E1 8.17E-2 6.34E-1 8.84E0 2.63E-1 3.17E-1 1.33E0 2.70E0 2.09E-6 9.59E2
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Table 4.5:

Quantitative results for varying spatial resolution. We report the performance metrics for model parameter 

inversion (eκ, eρ), the relative error in the final tumor reconstruction (μT,L2), the relative error in the 

reconstructed initial condition (μ0,L2), the relative error in the parameterization of the initial condition (μp, 1), 

the relative change in the gradient (∥g∥rel). All ground truth values are indicated by ‘ ★’ and the inverted 

quantities with ‘rec’. For the higher resolution (2563), we use 128 MPI tasks on 6 nodes. We do not report the 

relative error for inverted diffusivity in test-case C1since the ground truth is zero.

Test-case Spatial resolution k* p* Krec eK prec ep μT,L2 P0,L2 Pp,<j llgl|rel

C1
2563 0 1.20E1 1.88E-3 - 7.28E0 3.93E-1 3.60E-1 1.30E0 1.64E0 3.81E-6

1283 0 1.20E1 9.21E-6 - 1.07E1 1.07E-1 1.54E-1 1.49E-1 8.39E-2 1.68E-6

C2
2563 5E-4 1.20E1 7.76E-4 5.53E-1 9.77E0 1.86E-1 1.68E-1 4.11E-1 5.01E-1 4.64E-6

1283 5E-4 1.20E1 3.68E-3 6.35E0 7.19E0 4.01E-1 3.85E-1 1.77E0 2.46E0 1.85E-6

C3
2563 5E-3 1.20E1 3.54E-3 2.93E-1 8.61E0 2.83E-1 1.42E-1 1.48E0 3.21E0 4.05E-6

1283 5E-3 1.20E1 3.84E-3 2.32E-1 8.52E0 2.90E-1 2.23E-1 1.34E0 1.95E0 8.30E-6

C4
2563 5E-2 1.20E1 4.37E-2 1.27E-1 9.80E0 1.83E-1 1.79E-1 1.45E0 2.53E0 7.51E-6

1283 5E-2 1.20E1 3.02E-2 3.95E-1 1.09E1 9.20E-2 2.69E-1 1.60E0 2.21E0 4.96E-6
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Table 4.6:

Quantitative results for different low frequency noise levels. We choose the ground truth model parameters 

from the synthetic test-case AT-C2. We report the performance metrics for model parameter inversion (eK,ep), 

the relative error in the final tumor reconstruction μT , L2 , the relative error in the reconstructed initial 

condition μ0, L2 , the relative error in the parameterization of the initial condition μp, l1 , the relative change 

in the gradient g rel and solver timings Tinv  in seconds. All ground truth values are indicated by ‘*’ and the 

inverted quantities with ‘rec’.

Noise level K* P* Krec ek prec eP ¥t,L2 ¥0,L2 ¥p,l1 llgl|rel Tinv [s]

0% 5E-2 1.20E1 3.89E-2 2.23E-1 1.02E1 1.47E-1 1.72E-1 1.26E0 2.25E0 9.36E-6 6.43E2

1% 5E-2 1.20E1 3.70E-2 2.59E-1 1.03E1 1.42E-1 1.87E-1 1.20E0 2.10E0 3.56E-3 9.96E2

5% 5E-2 1.20E1 3.74E-2 2.53E-1 1.09E1 8.97E-2 1.72E-1 1.20E0 2.09E0 7.92E-6 7.88E2

10% 5E-2 1.20E1 4.07E-2 1.86E-1 1.09E1 9.26E-2 1.73E-1 1.20E0 2.06E0 3.11E-4 1.09E3
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Table 4.7:

Quantitative results for a real patient imagetaken from the BraTS dataset [51]. Since it is impossible to know 

the ground truth parameter values, we only report the inverted model coefficient values indicated by ‘rec’ and 

the final tumor reconstruction error with respect to the data (μT,L2). We additionally report the relative gradient 

change (∥g∥rel) and solver timings (Tinv) in seconds.

Brain ID Solver Krec prec ¥t,l2 llgllrel | Tinv [s]

BRATS-TCIA
L2 6.99E-3 4.36E0 1.56E-1 2.89E-4 3.20E2

CS 3.03E-2 9.77E0 1.86E-1 6.46E-6 7.57E2
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