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Abstract
Purpose of Review Molecular subtyping in medulloblastoma (MB) has diagnostic and prognostic values which impact therapy.
This paper provides guidance for the clinician caring for pediatric and adult patients with medulloblastoma in the modern era.
Recent Findings Medulloblastoma comprises four molecularly distinct subgroups: wingless activated (WNT), sonic hedgehog
activated (SHH), group 3, and group 4. Risk stratification before and after the discovery of molecular subgroups aims at
minimizing toxicity by reducing radiation and chemotherapy doses in low-risk patients while maintaining favorable overall
survival (OS). The mainstay of newly diagnosed medulloblastoma treatment is surgery, radiation therapy, and chemotherapy,
except for children under 6 years of age, where high-dose chemotherapy with autologous stem cell rescue is used to avoid or
delay radiotherapy, preventing neurocognitive sequelae. Management of recurrent/refractory medulloblastoma remains a chal-
lenge with immunotherapy and small-molecule inhibitors forming the backbone of novel strategies.
Summary Recent innovations in medulloblastoma research allow us to better understand pathogenesis and molecular character-
istics resulting in advanced risk stratification models, new therapeutic approaches, and overall improved survival and quality of
life.

Keywords Medulloblastoma . Molecular subtyping . Genomics . Neurosurgery . Radiation therapy . Chemotherapy . Targeted
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Introduction

In 1925, Harvey Cushing, MD and Percival Bailey, MD
coined the term medulloblastoma after reviewing a series of
cases of central nervous system (CNS) tumors and identifying
a subtype of posterior fossa tumors seen in younger children
[1]. They also recognized that more extensive tumor excision
correlated with longer survival. In the 1950s, the introduction
of craniospinal irradiation (CSI) with a posterior fossa boost
further improved outcome, but at a price: increased risk of
neurocognitive impairment, endocrine disfunction, and sec-
ondary malignancies were commonly seen [2]. In the 1970s,
adjuvant chemotherapywas introduced in an effort to improve

survival, decrease radiation dose, and subsequently reduce
deleterious late effects [3]. While surgery, external beam radi-
ation therapy (in patients over 6 years of age), and chemother-
apy continue to be the mainstay of medulloblastoma treat-
ment, the discovery of molecular subtyping in 2000, led to
the identification of four distinctive subgroups of medullo-
blastoma incorporated into the 2016 WHO classification of
CNS tumors [4]. The advent of newer technologies to further
subclassify tumors has set the stage for novel therapeutic
approaches.

Epidemiology

CNS tumors are the most common form of solid tumors
in children and adolescents [5] and the leading cause of
cancer-related death in this age group [6]. Embryonal
tumors account for 10%, with medulloblastoma being
the most common, representing 63%. In children age
0–19 years, the incidence is 0.39 per 100,000 popula-
tion, and it decreases with age [7]. As with most child-
hood cancers, medulloblastoma is more common in
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males [8], though there may be variability depending
upon MB subtypes as discussed below [9•]. While much
is known about the MB biology including molecular
characteristics and genetic syndromes, to date, the role
of environmental factors is unknown.

Genetic Syndromes

The association between certain hereditary cancer predisposi-
tion syndromes and medulloblastoma is well recognized.
Table 1 summarizes the most important familial cancer pre-
disposition syndromes associated with medulloblastoma. In
2018, Waszak et al. reported that germline mutations
accounted for 6% of medulloblastoma diagnoses [10••]. The
investigation also found that the risk of medulloblastoma is
highest in carriers of SUFU and TP53 mutations and BRCA2
and PALB2 biallelic mutations [10••]. In over half of the cases,
where an underlying genetic predisposition syndrome was
identified after germline testing had been performed, medical
and family histories were unrevealing emphasizing the need
of new guidelines for genetic counseling and testing.
Understanding the molecular characteristics of these tumors
played a significant role in the identification of the medullo-
blastoma subgroups.

Subgroups—Signal Pathways

Pomeroy et al. demonstrated in 2002 that medulloblastomas
are molecularly distinct from other brain tumors [11]. Further
investigation by Taylor et al. defined four distinct molecular
entities: wingless activated (WNT 10%), sonic hedgehog ac-
tivated (SHH 30%), group 3 (20–25%), and group 4 (35–
40%) [12, 13]. It has been shown that the molecular subgroup
is defined at the time of tumor initiation and is not affected by
genetic evolution, therapy, or other factors [14]. Figure 1 sum-
marizes the characteristics of each MB subgroup.

WNT Subgroup

Ten percent of all medulloblastomas belong to the WNT sub-
group and occur in children over 3 years of age with a 1:1M:F
ratio. If diagnosed before age 16 years, prognosis is excellent
[15, 16].

The Wnt/β-catenin pathway plays a central role during
embryonal development, regulating stem cell pluripotency
and driving cell growth and proliferation. Nearly 90% of
WNT medulloblastomas harbor mutations in exon 3 of the
CTNNB1 gene, resulting in reduced cytoplasmic degradation
and nuclear accumulation of the transcription factor co-
activator β-catenin [17••]. Other commonly mutated genes
in the WNT subgroup include DDX3X, SMARCA4, TP53,

Table 1 Cancer predisposition syndromes in medulloblastoma

Mutated gene Cancer
predisposition
syndrome

Clinical features Role of mutated gene Subgroup association

APC Turcot
syndrome

Multiple adenomatous colon polyps,
increased risk of colorectal cancer
and CNS tumors

Negative regulator that controls β-catenin
concentrations

WNT, rarely SHH

PTCH1 Gorlin
syndrome

Developmental abnormalities, bone
cysts, increased risk of basal cell
carcinoma and medulloblastoma

Receptor for sonic hedgehog SHH
SUFU Negative regulator in the

hedgehog/smoothened signaling pathway

TP53 Li Fraumeni
syndrome

Multiple cancer types and primary sites
(breast, sarcomas, brain tumors,
adrenocortical carcinoma) at an early
onset

Tumor suppressor protein regulates genes
involved in cell cycle arrest, apoptosis,
senescence, DNA repair, and changes in
metabolism

SHH

BRCA2/FANCD1 Fanconi
anemia

Developmental abnormalities, bone
marrow failure, predisposition to
medulloblastoma

Double-strand DNA-break repair, vital in
homologous recombination

SHH if compound
heterozygous, groups
3 and 4 if
heterozygous mutation

PALB2 Partner and localizer of BRCA2 SHH, rarely group 3 and
group 4

CREBBP Rubinstein
Taybi
syndrome

Microcephaly, growth deficiency,
dysmorphic features, intellectual
disability, increased risk of brain
tumors

CREB binding protein—co-activator of
transcription factors
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and CSNK2B, which also contribute to tumorigenesis. Gibson
et al. developed a transgenic mouse model of WNTMB using
constitutively active Ctnnb1 and absent p53 expressions [18].
The addition of constitutively active Pik3ca increased tumor
development from 20 to 100% and reduced the latency of
tumor onset in the mice from 6 to 3 months of age [19]. The
10–15% of WNT MB lacking CTNNB1 mutations often har-
bor pathogenic variants of the APC gene [10••]. Another hall-
mark of WNT-driven MB is monosomy 6, found in about
85% of the cases. A small-subset WNT medulloblastomas
acquire subclonal genetic alteration which secondarily acti-
vate the SHH pathway [20]. The prognostic and therapeutic
significance of this finding remains unclear.

SHH Subgroup

The sonic hedgehog pathway regulates cellular differentiation,
organ formation, and post-embryonic tissue regeneration and
repair in multicellular organisms [21]. The key components of
the pathway include the transmembrane receptor Patched1

(PTCH1), the signal transducer Smoothened (SMO), GLI
transcription factors, and Suppressor of fused homolog
(SUFU), which normally suppresses GLI [22]. SHH binds
PTCH1, which releases SMO resulting in the dissociation of
the GLI transcription factors from SUFU. The unbound GLI
translocates to the nucleus turning on gene transcription. [23].

Disruption of this pathway may result in SHH-driven me-
dulloblastoma as follows: loss of function mutations or dele-
tions in PTCH1 (43%) and SUFU (10%), activation of muta-
tions in SMO (9%), or amplifications of GLI1 or GLI2 (9%)
[17••]. Wetmore et al. demonstrated that germline deletion of
PTCH1 generated MB in 15–20% of mice, and the additional
deletion of TP53 produced tumors in 100% [24].

More recent studies identified four SHH MB subtypes,
each with a specific phenotype and different prognosis [12].
For example, SHHα with germline or somatic TP53 muta-
tions occurs in older children and adolescents and predicts
poor outcome. Both SSHβ and SSHγ tumors develop primar-
ily in infants, with SSHγ conferring a better prognosis [25].
Finally, SSHδ, commonly seen in adults, has a prognosis

Fig. 1 Summary of medulloblastoma subgroups adapted from Cavalli et al. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cell
2017;31:75 [12]
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somewhere in the middle and is almost always associated with
somatic TERT promoter mutations [26].

Group 3 Subgroup

Group 3 medulloblastoma, seen primarily in infants and older
children with a male predominance, has a 40–65% OS de-
pending upon the subtype. These patients may present with
disseminated disease, which have a guarded prognosis [13],
especially in the setting of MYC amplification, representing
15–20% of the cases [27]. Other cytogenetic features include
the presence of isochromosome 17q and gain of chromosome
8q [12]. Gene-level mutations are rare, primarily occurring in
SMARCA4, KBTBD4, CTDNEP1, and KMT2D [17••].
Enhancer hijacking is a well described epigenetic phenome-
non, whereby regulatory elements are translocated close to
coding genomic regions, resulting in gene overexpression
and tumor formation. Northcott et al. observed that enhancer
hijacking occurs in one-third of group 3 MB (resulting in
GFI1/GFI1B oncogene activation) and in 17% of group
4 MB as described next [28, 29].

Group 4 Subgroup

Group 4 is most commonly driven by the enhancer-hijacking-
mediated overexpression of PRDM6, strongly associated with
focal tandem duplication of SNCAIP. Mutations in histone-
modifying genes KDM6A, ZMYM3, KMT2C, and KBTBD4
have also been described [17••]. Cytogenetic aberrations are
frequent in this subgroup, with gain of chromosome 7 (40%)
or 17q (> 80%), and deletion of chromosome 8 (40%), 11 (>
30%) or 17p (> 75%), and the most common, isochromosome
17q (80%). High-level amplifications ofMYCN andCDK6 are
also observed [27].

Its prognosis is intermediate: patients with metastasis have
a higher risk of relapse, while those tumors with loss of chro-
mosome 11 or gain of chromosome 17 are associated with
good outcome [30•].

Clinical Presentation

Medulloblastoma typically originates from the posterior fossa,
and most clinical symptoms at presentation result from in-
creased intracranial pressure (ICP) due to obstructive hydro-
cephalus and cerebellar dysfunction. In a study from 2012 by
Brasme et al., the most frequent symptoms leading to a MB
diagnosis were vomiting, headache, ataxia, and neuropsycho-
logical symptoms depending upon age at presentation [31]. In
this report, psychomotor regression was seen early in children
under 3 years of age, while declining school performance
often prompted investigation in older patients. The median
time from symptom onset to definitive diagnosis was 65 days;

however, survival and neurological outcome were indepen-
dent in this report, which predates molecular risk stratification
[31]. Despite medulloblastoma being a rapidly growing tu-
mor, obtaining a final diagnosis can be challenging due to
non-specific symptoms or a completely normal neurological
exam.

Diagnosis

Once symptoms are recognized, neuroimaging is obtained;
typically, a non-contrast head CT scan, which does not require
anesthesia, can be safely performed on critically ill children
and is widely available. In most instances, a hyperdense mass
in the posterior fossa surrounded by vasogenic edema and
hydrocephalus is seen.

Thereafter, confirmatory magnetic resonance imaging
(MRI) is performed to provide further detail and identi-
fy metastases. Tumors are typically hypointense to grey
matter on T1-weighted imaging with heterogenous gad-
olinium enhancement. A recent article by Perreault et al.
demonstrated a correlation between tumor location/
enhancement patterns and molecular subgroups [32•].
Most WNT tumors occurred along the cerebellar
peduncle/cerebellopontine angle, while SHH medullo-
blastoma occurred in the cerebellar hemisphere. Group
3 and group 4 tumors were found in the midline, occu-
pying the fourth ventricle. Group 3 tumors had ill-
defined margins, and group 4 MB did not enhance
(Fig. 2). Differential diagnosis of a posterior fossa mass
includes pilocytic astrocytoma, ependymoma, atypical
teratoid/rhabdoid tumor, exophytic brainstem glioma,
embryonal tumor with multi-layered rosettes, and cho-
roid plexus papilloma. In adults, metastatic disease of
an extracranial primary site should be considered.
Spectroscopy can be helpful in distinguishing high-
from low-grade tumors; tractography may help surgeons
minimize postoperative morbidity [33].

Staging

In 1969, Chang proposed the following staging criteria for
medulloblastoma: 1) M0: no evidence of metastatic disease;
2) M1: positive cerebrospinal fluid (CSF) cytology without
gross tumor visible on MRI; 3) M2: intracranial metastasis;
4): M3: metastasis within the spinal subarachnoid space and;
and 5) M4: disease outside of the neuraxis, most common in
the bone and bone marrow [34].

Ideally, extent of disease evaluation should be per-
formed preoperatively and include pre- and post-contrast
brain and spine MRI and lumbar puncture (LP) only if
the patient is stable without signs or symptoms of increased
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ICP. If deferred, LP should be performed no sooner than
14 days postoperatively to avoid false-positive results, but
prior to the initiation of therapy, preferably 30 days from
diagnosis.

Histopathology

The 2016 edition of the WHO CNS classification recognizes
that both histology and genetic signature are important in

Fig. 2 Characteristic MRI images
of medulloblastoma subgroups
and the histopathological variants
commonly associated with them.
a Characteristic location of WNT
MB in the cerebellopontine angle
region showing e classic
histology. b SHH MB in a
hemispheric location with f
desmoplastic nodular histology. c
Group 3 MB with contrast
enhancement in the midline/
fourth ventricle showing g large
cell/anaplastic features. d Group
4 MB showing no enhancement
in the midline/fourth ventricle,
often associated with h classic
histology
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defining MB subgroups, all of which are grade IV and char-
acterized by small round blue cells usually of cerebellar origin.
Histopathologic variants of MB include: 1) classic with min-
imal or no differentiation; 2) desmoplastic/nodular (DNMB)
which has nodules of differentiated cells with internodular
fibrosis; 3) medulloblastoma with extensive nodularity
(MBEN) with more significant nodularity; and 4) large
cell/anaplastic (LC/A-MB) characterized by bizarre atypical
polymorphic cells, nuclear molding, high mitotic rate, and
apoptotic bodies (Fig. 2) [4]. Classic histology is seen in al-
most all WNT medulloblastomas [35], the majority of Group
3 and 4 tumors [13], and occasionally in SHH-driven tumors
which are largely desmoplastic/nodular [36]. MBEN, typical-
ly seen in very young children with SHH/TP53WT, can be
associated with Gorlin syndrome [37]. LC/A-MB is most of-
ten seen in SHH/TP53 mutant and infant group 3MB [38, 39]
(Fig. 2).

The origin of medulloblastoma cells has long been debated.
Gibson et al. has shown that WNT subgroup tumors derive
from cells in the lower rhombic lip, while cerebellar granule
neuron progenitors (CGNPs) are the probable cell of origin for
SSH medulloblastoma [18]. As of today, it is still uncertain
where group 3 and group 4 tumors originate from.

Risk Stratification

Risk stratification guidelines include age, extent of resection,
presence of metastasis, and histological subtypes. Average-
risk patients are older than 3 years of age and haveM0 disease
with less than 1.5 cm2 of residual tumor after resection. High-
risk children have microscopic or macroscopic metastasis,
more than 1.5 cm2 of mass present after surgery, and/or large
cell anaplastic histology. Children under 3 years of age repre-
sent a distinctive-risk group and require a different treatment
approach, which omits upfront radiation due to the unaccept-
able risk of neurocognitive impairment.

Experts convened at a consensus conference in 2015 in
Heidelberg to refine risk stratification in the context of molec-
ular subtypes [40••]. The low-risk group (> 90% survival)
includes non-metastatic WNT medulloblastoma diagnosed
before age 16 years, and non-metastatic group 4 tumors with
loss of chromosome 11 or gain of chromosome 17. The
standard-risk group (75–90% survival) consists of non-
metastatic SHH medulloblastoma without TP53 mutation or
MYCN amplification; non-metastatic group 4 tumors without
chromosome 11 loss; and non-metastatic, non-MYC-amplified
group 3 tumors. The high-risk group (50–75% survival) in-
cludes metastatic non-infant TP53 wild type and non-
metastaticMYCN-amplified SHHmedulloblastoma, andmet-
astatic group 4 medulloblastoma. The very high–risk group
(< 50% survival) is comprised of TP53-mutated SHH medul-
loblastoma and metastatic group 3 tumors.

The transcriptome of adult medulloblastomas differs con-
siderably from pediatric counterparts, both in tumor biology
and prognostic impact [41]. Therefore, age-specific classifica-
tion is necessary when designing clinical trials for adult
medulloblastoma.

Treatment

Surgery

The first step in the management of medulloblastoma is max-
imal safe surgical resection, which is usually performed by
posterior craniotomy. A recent retrospective analysis of al-
most 800 medulloblastoma patients found a progression-free
survival benefit between gross total and subtotal resection, but
not between gross total and near total resection, which ques-
tions the role of second-look surgeries to remove small resid-
ual tumors (less than 1.5 cm2), especially when the risk of
neurological sequelae is increased [42•]. For increased extent
of resection, the study did not observe significant survival
benefit in WNT, SHH, group 3, or M0 group 4 patients.

While extensive neurosurgical procedures carry inherent
risks, cerebellar mutism syndrome (CMS) is a complication
unique to posterior fossa surgery. One to two days postopera-
tively, patients develop speech impairment, oral apraxia, emo-
tional lability, hypotonia, and ataxia. Neuropsychologic testing
reveals difficulty with executive function, linguistic processing,
visual spatial abilities, and affective modulation [43]. In 2006,
the Children’s Oncology Group (COG) reported an incidence
of 25% in all patients with medulloblastoma; risk factors in-
cluded younger age, larger tumor volume, and midline tumor
location [44]. Tractography reveals disruption of cerebro-
cerebellar pathways [33]. Most recently, Jabarkheel et al. found
that independent of tumor volume and location, subgroup of
MB is predictive of CMS as follows: group 4 tumors (35%),
group 3 (31%),WNT (21%), and SHH (7%) [45]. Patients with
moderate to severe CMS often have long-term neurocognitive
effects, which may be compounded by other effects of treat-
ment for medulloblastoma [46].

Radiation

Because survivors of medulloblastoma treated with radiation
therapy (RT) are often left with neurocognitive, neuroendo-
crine, and auditory sequelae, decreasing radiation dose and
volume while maintaining survival is crucial [47]. Average-
risk patients over 6 years of age receive 23.4-Gy craniospinal
irradiation (CSI), a tumor bed boost to 55.8 Gy, and weekly
vincristine during radiotherapy, beginning roughly 30 days
post-resection [48, 49]. Initiating RT sooner than 3 weeks
pos-operatively, delaying treatment, or attempting to further
reduce the CSI dose to 18 Gy resulted in inferior OS [50, 51],
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while hyperfractionation had no effect [52]. For high-risk pa-
tients, 36-Gy CSI and additional boost to metastatic sites be-
sides the tumor bed are standard. Concomitant carboplatin as a
radiosensitizer did not alter outcomes for this patient popula-
tion [53].

While RT has improved overall survival in MB patients,
dose-dependent late effects primarily related to CSI and seen
typically 5 years post-treatment need to be monitored. The
COG has published long-term follow-up guidelines to aid
the clinicians [54•]. Radiation to the hypothalamic-pituitary
axis, associated with hypothyroidism, growth hormone and
ACTH deficiency, and altered metabolism, may result in obe-
sity and delayed puberty [55, 56].

A systematic review in 2015 by Hanzlik et al. found that
even with reduced-dose RT, pediatric medulloblastoma survi-
vors had lower IQ, memory, and executive function scores
with ongoing decline compared with normal population and
patients receiving only focal radiation [57].

The advent of proton beam RT has significantly improved
both acute and long-term morbidity associated with photons
without reducing OS [58•]. Acute toxicities (fatigue, esopha-
gitis, and nausea) and late effects (neurocognitive and ototox-
icity) are reduced with proton beam RT. However, alopecia
and radiation necrosis may occur more often with proton ra-
diation. [59, 60]. Other late effects including cavernomas, me-
ningiomas, and high-grade second malignancies may also de-
velop following radiation (from either CSI or the boost), but
risk factors, other than familial cancer predisposition syn-
dromes, require further investigation [61, 62].

Chemotherapy

Chemotherapy was first added to medulloblastoma treatment
in the 1970s, significantly improving both progression-free
survival (PFS) and OS rates, allowing reduction of CSI dose
for average-risk patients [63]. All studies investigating opti-
mal time for chemotherapy concluded that surgery-radiation-
chemotherapy sequence is favored over “sandwich chemo-
therapy,” or pre-radiation chemotherapy only [64–67].
Alkylators [68] represent the backbone of maintenance che-
motherapy, and currently, the “Packer regimen” (vincristine
and cisplatin plus either lomustine or cyclophosphamide) is
the standard of care for standard-risk patients [48]. For pa-
tients with high-risk disease, maintenance chemotherapy in-
cludes higher cumulative dose cyclophosphamide [69]. The
incorporation of high-dose chemotherapy with autologous
stem cell transplantation (thiotepa-containing regimens) did
not improve outcomes for high-risk patients but was associat-
ed with significant neuro- and hepatotoxicity [70, 71]. Acute
and long-term side effects of chemotherapy are well de-
scribed. While both pediatric and adult MB protocols tradi-
tionally include vincristine, adults may develop neuropathy
sooner, with more severity, requiring dose reduction or

complete omission of the drug [72]. Patients receiving
alkylating agents are at risk of developing secondary malig-
nancies; the cumulative 10-year incidence of treatment-related
tumors was 4.2% on the standard-risk COG protocol A9961
[73]. Grade 3 or 4 ototoxicity due to both radiotherapy and the
use of cisplatin affects 20–25% of the patients [48].

Infant Medulloblastoma

The Head Start group of protocols have shown that chemo-
therapy improves survival while avoiding or delaying radio-
therapy to preserve the intellect of young children [74, 75]. In
2005, Rutkowski et al. showed that the addition of intrathecal
methotrexate improved survival in infants with desmoplastic
variants of MB [76]. Several subsequent studies confirmed
that infants with DNMB and MBEN have outcomes around
80% [74, 77, 78]. A recently closed COG study included
systemic high-dose methotrexate during induction plus three
cycles of thiotepa and carboplatin followed by stem cell res-
cue in children less than 3 years of age. Incorporating molec-
ular subgroups as part of risk stratification (as in the Head
Start 4 protocol) is being investigated.

Adult Medulloblastoma

Medulloblastoma accounts for less than 1% of adult intracra-
nial tumors [79]. Seventy percent of cases are classified as
SHH (desmoplastic/nodular or extensive nodularity histolo-
gy), followed by group 4 and WNT, each around 15%, and
rarely group 3 [39]. WNT is the most favorable subtype, with
an 80% 5-year OS, slightly lower than 90% observed in chil-
dren younger than 16 years [16•]. This difference is largely
unexplained due to the rarity of the tumor and the heteroge-
neity of the treatment. Craniospinal irradiation with a boost to
the tumor bed is considered the standard of care, and while
maintenance chemotherapy is feasible, its role has not yet
been investigated in a prospective randomized study [80–82].

Refractory and Recurrent Disease

Refractory and recurrent medulloblastomas are responsible
for 95% of medulloblastoma-associated death [83]. Aside
from the very young patients who can be salvaged with radi-
ation therapy following a treatment with a chemotherapy-only
approach, survival after relapsed medulloblastoma is grim
[84]. The combination of temozolomide and irinotecan has
been utilized in the relapsed medulloblastoma setting due to
its favorable toxicity profile and the feasibility in heavily pre-
treated patients, and showed a 30% response rate with a me-
dian survival of 16 months [85, 86]. The most recent COG
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Table 2 Ongoing clinical trials for newly diagnosed medulloblastoma and ongoing clinical trials for relapsed/progressive medulloblastoma

ClinicalTrials.
gov Identifier

Phase Treatment MB subgroup (if applicable) Sponsor

Ongoing clinical trials for newly diagnosed medulloblastoma
NCT01878617 II Clinical andmolecular risk-directed therapy for newly

diagnosed MB
WNT: 3 treatment arms
SHH: 2 treatment arms
Non-WNT/non-SHH: 3 treatment arms

St. Jude Children’s Research
Hospital

NCT02875314 IV HeadStart4: newly diagnosed children (< 10 years
old) with medulloblastoma

Non-WNT/non-SHH Nationwide Children’s
Hospital

NCT02724579 II ACNS 1422: reduced CSI and chemotherapy in
younger patients with newly diagnosed
WNT-driven medulloblastoma

WNT Children’s Oncology Group

NCT02066220 II/III SIOP PNET 5 medulloblastoma WNT Universitatsklinikum
Hamburg-Eppendorf

NCT02025881 I/II Study of sequential high-dose chemotherapy in
children with high-risk MB (HR MB-5)

N/A Gustave Roussy, Cancer
Campus, Grand Paris

NCT01857453 II Dose decrease for RT associated with chemotherapy
for treatment of standard-risk adult
medulloblastoma

N/A Central Hospital, Nancy,
France

Ongoing clinical trials for relapsed/progressive medulloblastoma
NCT01356290 II Metronomic and targeted anti-angiogenesis therapy

(MEMMAT)
N/A Medical University of

Vienna
NCT03904862 I/II CX-4945 (silmitasertib), casein kinase II inhibitor SHH Pediatric Brain Tumor

Consortium
NCT03936465 I BMS-986158 bromodomain (BRD) and

extra-terminal domain (BET) inhibitor
MYC or MYCN amplification or translocation,

or high copy number gain, BRD3 or BRD4
translocation

Dana-Farber Cancer Institute

NCT02359565 I Pembrolizumab N/A National Cancer Institute
NCT03173950 II Nivolumab N/A National Cancer Institute
NCT03389802 I APX055M monoclonal antibody binding to CD40 N/A Pediatric Brain Tumor

Consortium
NCT00089245 I Intrathecal radiolabeled monoclonal antibody against

B7-H3 (I-8H9–omburtamab)
N/A Y-mAbs Therapeutics

NCT03911388 I G207–oncolytic herpes simplex virus 1 N/A University of Alabama at
Birmingham

NCT02962167 I MV-NIS–modified measles virus N/A Sabine Muller, MD, PhD
NCT03043391 I PVSRIPO–oncolytic poliovirus N/A Istari Oncology, Inc.
NCT03299309 I PEP-CMV–cytomegalovirus-specific peptide vaccine N/A Gary Archer, PhD
NCT03500991 I HER2-specific CAR T cell locoregional

immunotherapy
N/A Seattle Children’s Hospital

NCT03638167 I EGFR806-specific CAR T cell locoregional
immunotherapy

N/A Seattle Children’s Hospital

NCT03387020 I Ribociclib (cyclin D1/CDK4 and CDK6 inhibitor and
everolimus

N/A Pediatric Brain Tumor
Consortium

NCT03434262 I Ribociclib and gemcitabine Groups 3 and 4 MB St. Jude Children’s Research
HospitalRibociclib and trametinib WNT and SHH MB

Ribociclib and sonidegib SHH
NCT03598244 I Volitinib–c-Met inhibitor N/A National Cancer Institute
NCT02095132 I/II Adavosertib (MK-1775)–WEE1 inhibitor and

irinotecan
N/A National Cancer Institute

NCT03213678 II Samotolisib (LY3023414)–PI3K/mTOR inhibitor
Pediatric MATCH Treatment Trial

TSC or PI3K/mTOR mutations National Cancer Institute

NCT03213665 II Tazemetostat–EZH2 inhibitor EZH2, SMARCA4, or SMARCB1 mutation National Cancer Institute
NCT03233204 II Olaparib–Pediatric MATCH Treatment Trial Defect in DNA damage repair pathway National Cancer Institute
NCT04023669 I Prexasertib (LY2606368)–CHK1/2 inhibitor and

cyclophosphamide
SHH, groups 3 and 4, indeterminate MB St. Jude Children’s Research

Hospital
Prexasertib (LY2606368)–CHK1/2 inhibitor and

gemcitabine
Groups 3 and 4 MB

NCT02644291 I Mebendazole N/A Sidney Kimmel
Comprehensive Cancer
Center at Johns Hopkins
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phase II trial is investigating the synergistic effect of
bevacizumab when added to temozolomide and irinotecan
(ACNS 0821), with preliminary results showing a median
event-free survival (EFS) of 9 months vs. 6 months and a
median OS of 19 months vs. 16 months when compared with
the standard arm [87].

New Approaches

The recent refinement of risk stratification provides an
opportunity to personalize therapy, while the use of
targeted therapy allows dose reduction of cytotoxic che-
motherapy, resulting in the mitigation of treatment-related
toxicity and maintaining favorable OS. Table 2 summa-
rizes ongoing trials for both newly diagnosed and
recurrent/progressive medulloblastomas.

Phoenix et al. has shown thatWNTmedulloblastomas con-
tain aberrant vascular networks and disrupted blood-brain-
barrier (BBB), which allow for increased concentrations of
systemic chemotherapy; de-escalation of therapy in low-risk
patients is tested in multiple clinical trials [88].

In adult SHH medulloblastoma inhibiting SMO and
blocking downstream signaling (e.g., vismodegib) can be a
successful strategy, as these tumors frequently (80%) harbor
PTCH1 or SMOmutations. Of note, the use of these inhibitors
is associated with disrupted bone homeostasis, limiting its use
in skeletally immature patients. A current St. Jude upfront MB
trial adds vismodegib as maintenance therapy for skeletally
mature patients with SHH MB. Some tumors, however, pres-
ent with inherent resistance to SMO inhibitors by harboring
either certain SMO mutations, which impair drug binding or
genetic alterations in the downstream effectors SUFU or Gli
[89]. Alternatively, prolonged exposure to smoothened inhib-
itors may result in acquired resistance by reactivation of the
hedgehog pathway. To overcome these limitations,
silmitasertib, a casein kinase 2 inhibitor which blocks signal-
ing at the most terminal component Gli, is currently in a phase
I/II trial for patients over 3 years with recurrent/relapsed SHH
medulloblastoma.

The aforementioned St. Jude trial includes strata for group
3 and group 4 intermediate- and high-risk medulloblastoma
patients, adding pemetrexed and gemcitabine to the standard
therapy. Based upon promising preclinical data, trials
targeting the PI3K, mTOR, cyclin-dependent kinase (CDK),
or BET bromodomain pathways are ongoing for recurrent
and/or refractory group 3 MB [90–92].

Immunotherapy and small-molecule inhibitors form the
backbone of novel strategies for many refractory tumors.
The programmed cell death protein 1 (PD1) inhibitors
pembrolizumab and nivolumab, successful at treating lung
and breast cancer CNSmetastases, are now being investigated
in the treatment of refractory primary CNS tumors. Their

therapeutic benefit in this population must be balanced with
immune-related adverse events including encephalitis, menin-
gitis, and myelitis [93]. Antibodies against the molecules of
the co-stimulatory pathways represent the next generation of
immune checkpoint inhibitors. APX005M, a monoclonal an-
tibody against CD40, is currently in a phase I trial. Kramer
et al. recently reported that intrathecal B7-H3, another im-
mune checkpoint protein expressed in embryonal tumors,
was well tolerated in patients with leptomeningeal disease
including a subset of MB patients and possibly demonstrating
improved outcome in the relapsed/refractory setting [94, 95].

Oncolytic viral therapy, whereby viruses selectively inhibit
malignant cells by producing a robust immune response, is
another promising strategy for recurrent/progressive MB
[96]. These viruses, including the herpes simplex virus variant
G207, a modified measles virus (MV-NIS), and the polio/
rhinovirus recombinant PVSRIPO require local delivery and
are under investigation in phase I trials. Cytomegalovirus
(CMV) proteins, often selectively expressed in brain tumors,
have been the target of numerous vaccine trials over the past
several years. A PEP-CMV vaccine trial in pediatric patients
with recurrent MB is underway [97].

Chimeric antigen receptor (CAR) T cells, an emerging
therapeutic approach, has been particularly challenging for
CNS tumors due to limitations in identifying tumor-specific
antigens. Forty percent of medulloblastomas express human
epidermal growth factor 2 (HER2), a poor prognostic indica-
tor [98]. Patients aged 1–26 years may be eligible for a current
trial, in which CAR T cells expressing various epidermal
growth factor receptor (EGFR) antigens are infused
locoregionally. Finally, because natural killer (NK) cells can
recognize and eliminate cancer cells without antigen specific-
ity, it became the focus of an ongoing study using intrathecal
autologous NK cells [99].

Small molecular inhibitors are also being used to treat
relapsed/refractory medulloblastoma, regardless of molecular
subtypes. Several clinical trials currently use these agents in-
cluding CDK4/6, c-Met, Wee1, PI3K/mTOR, EZH2, or
CHK1/2, either as monotherapy or in combination with con-
ventional chemotherapy.

Conclusion

Recent innovations in medulloblastoma research allowed
us to better understand pathogenesis and molecular
characteristics, resulting in advanced-risk stratification
models, new therapeutic approaches, and overall im-
proved survivals while preserving quality of life. Large
multicenter, international trials, especially in adults with
MB, are needed to further understand the biology and
improve both short- and long-term outcomes.
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