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ARTICLE
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ABSTRACT
Brain gliomas represent some of the most aggressive tumors encountered by modern medi-
cine and, despite major efforts to optimize early diagnosis and treatment, the prognosis 
remains poor. Due to the complex structure of the brain and the unique mechanical properties 
of the extracellular matrix, gliomas invade and expand into the brain parenchyma, along white 
matter tracts and within perivascular spaces, usually sparing normal vessels. Different methods 
have been developed to study the mechanical properties of gliomas in a wide range of scales, 
from cells and the microscale to tissues and the macroscale. In this review, the current view on 
glioma mechanics is presented and the methods used to determine glioma mechanical 
properties are outlined. Their principles and current state of affairs are discussed.
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Introduction

Brain gliomas are primary intrinsic neuroepithelial 
tumors [1]. They compose a heterogeneous group of 
neoplasms, including astrocytomas (WHO grade I– 
IV), oligodendrogliomas, and ependymomas (WHO 
grade II–III) [2]. Gliomas represent 28% of all central 
nervous system (CNS) neoplasms and 80% of CNS 
malignancies in the USA [3]. Despite their relatively 
low incidence (5.4 cases/100,000 person years in 
Europe [4]), the prognosis is poor with related bur-
dens on patient functionality and the society [5]. This 
certainly justifies the use of multidisciplinary methods 
and approaches to clarify their pathogenesis and 
develop novel diagnostic and therapeutic modalities.

There is an abundance of clinical data supporting 
that the extent of resection is a key prognostic factor 
for patient outcome for brain gliomas [6,7]. Maximal 
resection within functional boundaries is the primary 
treatment goal of modern neurosurgical oncology [8]. 
Intraoperatively, the macroscopic distinction between 
tumor and adjacent brain is based on vision and touch, 
as the consistency of the neoplastic tissue is different 
from the brain, reflecting differences in histology [9– 
11]. Nevertheless, the surgical assessment regarding 
the macroscopic limit of the tumor and the complete-
ness of resection is not as reliable as magnetic reso-
nance imaging (MRI) [12,13]. Therefore, total 
resection of the depicted neoplasm is not commonly 
achieved, when the surgeon depends only on subjec-
tive perception [14–16].

Different techniques have been developed to 
improve the intraoperative visualization of brain glio-
mas such as neuronavigation [17], the administration 
of 5-aminolevulinic acid [18], and intraoperative ima-
ging methods, namely MRI [19] and ultrasonography 
[20]. All these techniques for visual improvement pre-
sent inherent disadvantages and, thus, much room is 
available for the development of new intraoperative 
tumor identification methods. The quantitative char-
acterization and measurement of the mechanical 
properties of tissues are necessary, in order to reliably 
utilize the differences between glioma and brain ‘tex-
ture’, which at present remain empirical, subjective, 
and suboptimal. The aim of this review is to explicate 
the current view on glioma mechanics and its connec-
tion with tumor aggression. Moreover, various quan-
titative approaches for the determination of glioma 
mechanical properties are further analyzed and the 
respective methods used are discussed in terms of 
the principles that they are based upon and their 
potential.

Mechanical interactions in the 
pathophysiology of gliomas

Mechanomics, i.e. the study of the interplay between 
biomechanical and biological processes [21], has 
attracted considerable research attention with regards 
to cancer [22], as the mechanical interactions between 
cancer cells and the extracellular matrix (ECM) are 
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related to cell proliferation and aggressiveness [23], 
cytoskeleton reorganization [24], and ECM remodel-
ing [25] to advance disease progression. Gliomas read-
ily infiltrate the CNS but rarely invade blood vessels. 
They exhibit a radically different invasion pattern than 
most other malignant tumors, partly dictated by the 
distinctive structure of the central nervous system 
ECM [26]. In fact, proteoglycans, hyaluronic acid, 
and tenascins are the prominent constituents of nor-
mal brain ECM, while collagen, fibronectin, vitronec-
tin, and laminin are nearly absent, except for the blood 
vessel basement membrane [27].

The influence of ECM stiffness on glioma cell inva-
sion has been investigated using cell cultures on brain 
ECM biomimetic scaffolds, providing clues about the 
influence of glioma cell motility by ECM mechanical 
properties. For example, on 2D substrates, stiffer scaf-
folds were found to be associated with more aggressive 
glioma cells [28,29], a fact indicative of the role of 
a rigid substrate to adhere and expedite cell motility. 
However, on 3D substrates, stiffer scaffolds were 
found to be associated with less aggressive glioma 
cells [30], indicating that the dense space-filling ECM 
represents an obstacle for cell migration [31]. To over-
come such obstacles, glioma cells overexpress metal-
loproteinases [32,33] that cleave normal ECM and 
they secrete fibronectin, collagen, vitronectin, tenas-
cin-C [34], laminin [35], and hyaluronic acid [36]. 
This leads to structural degradation, thus affecting 
the mechanical properties of their microenvironment 
and disrupting the mechanical homeostasis of the 
tissue.

Elasticity and related investigation methods

It has become evident that the investigation of the 
mechanical behavior of tissues and their elements, 
cells and ECM, under the influence of internally devel-
oped stress is necessary at both microscale and macro-
scale levels. The simplest theory to consider the 
response of materials under stress is linear elasticity. 
During elastic deformation, energy is temporarily 
stored in the material, to be released during the recov-
ery to the initial state. Conversely, the deformed mate-
rial may follow a dissipative process, whereby energy is 
lost. Such is the case with viscous materials, in which 
the rate of deformation is proportional to the applied 
stress [37,38].

For nano/microstructured materials such as cells 
and tissues, more complex theories for structured lin-
ear and nonlinear continuum media should be used, 
but this is outside the scope of the present review. 
Thus, although cells and tissues are complex inhomo-
geneous materials, their behavior under low stresses 
and strains is usually assumed to be homogeneous and 
linear elastic, in order to facilitate the interpretation of 
the experimental measurements. The two principal 

parameters that characterize linear elastic materials 
are the tension/compression elastic modulus E and 
the shear modulus G. The modulus E measures the 
extension/contraction of an elementary square drawn 
on the material when this is subjected to tensile/com-
pressive forces. The modulus G measures the change 
of the angle when two antiparallel forces are exerted 
on the two opposite sides of the elementary square. 
More precisely, both moduli are defined as the ratio of 
the stress (applied force/unit surface) to the strain 
(length change/initial length) along the deformation 
axis, for stress values within the linear elasticity range 
[37,38]. These elastic properties can be experimentally 
measured with static, dynamic, elastographic, com-
prising ultrasound elastography and magnetic reso-
nance elastography (MRE), and (nano)indentation 
methods, such as nanoindenter and atomic force 
microscope (AFM) [39,40]. In particularly soft and 
sensitive materials, like neoplastic tissues and cells, 
elasticity is commonly investigated using nanoinden-
tation, for in vitro and ex vivo measurements, or elas-
tographic methods, for in vivo measurements 
(Figure 1).

AFM nanoindentation

AFM [41] is a scanning probe microscope, that ’feels’ 
surface topology at the micro/nanoscale by ‘touching’ 
it. In principle, the sample is displaced under the tip of 
a microcantilever (Figure 2a). The cantilever deflec-
tion, due to the contact of the tip with the sample, is 
recorded along with the sample displacement. 
Accordingly, both the depiction of the sample surface 
at the nanoscale and the measurement of the corre-
sponding mechanical properties are feasible. The AFM 
can function in air or a liquid environment. Thus, 
biological samples are usually studied in an 

Figure 1. Comparison between techniques used to determine 
the mechanical properties of gliomas. AFM: atomic force 
microscopy; MRE: magnetic resonance elastography; SWE: 
shear wave elasticity imaging; SSI: supersonic shear imaging; 
QSE: quasistatic strain elastography.
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appropriate buffer that is supposed to approximate 
their natural environment. Due to its nanoscale reso-
lution concerning both forces and displacements, 
AFM has become a widely accepted and powerful 
instrument for the study of biological objects ranging 
from tissues to macromolecules [42].

AFM nanoindentation, in particular, is an estab-
lished technique for the determination of elasticity of 
particularly soft materials, like fresh unfixed tissues 
and living cells [43–48]. It is performed under con-
trolled stress, deformation, indentation depth, and 
deformation rate conditions. Typically, the recorded 
deflection versus displacement curves are transformed 
to force versus indentation depth curves. The latter are 
fitted to a mechanical model, in order to estimate the 
elastic modulus (Figure 2b) [49].

A disadvantage of AFM nanoindentation, due to its 
versatility, is that the estimated elastic modulus may 
differ between experimental setups. Therefore, the 
conditions imposed on every study have produced an 
assortment of conflicting results. As an example, very 
thin samples or large indentation depth may result in 
overestimation of the elastic modulus, due to the sub-
strate effect, i.e. the influence of the typically hard 
substrate [50]. Additionally, very low indentation 
speeds (<1 μm/s) may lead to viscous dissipation, 
while indenting at very high speed (>10 μm/s) may 
lead to increased forces due to hydrodynamic drag. 
Moreover, tip shape plays a pivotal role in the deter-
mination of elastic modulus. Spherical probes tend to 
apply forces in a uniform way and they are less prone 

to cause sample damage, strain hardening, or substrate 
effect [51]. As a consequence, results of AFM nanoin-
dentation using spherical tips agree with other sensi-
tive at low applied forces techniques, like optical and 
magnetic tweezers [52]. Conversely, sharp tips, 
although better for mapping surfaces, may cause non-
linear elastic or inelastic behavior [53] with more 
prominent viscous effects [54]. In addition, because 
of the higher pressures involved, strain hardening and 
substrate effects cannot be excluded. As a result, the 
elastic modulus tends to be overestimated [52]. 
Furthermore, buffer composition [55], osmolarity, 
and pH [56] also affect the measurements, often lead-
ing to an overestimation of the elastic modulus [57].

Glioma cells and nanoindentation

The elasticity of cancer cells seems to depend, at least 
in part, on their origin. Using AFM nanoindentation, 
it has been noted that breast [58,59], prostate [58], and 
urinary bladder cancer cells [60] were softer than 
normal ones, as they showed lower elastic modulus. 
In contrast, HL60 leukemic cells [61] were stiffer than 
the respective normal ones.

For gliomas, in particular, SNB-19 glioma cells were 
found stiffer than the respective normal cells [62]. In 
contrast, SNB-19 cells that lost a considerable portion 
of their ability to migrate [63] were softer than wild- 
type ones [64].

Glioma tissue and nanoindentation

Upscaling from the cellular to the tissue level, using 
AFM nanoindentation, it has been observed that endo-
metrial cancer tissues were softer than the respective 
normal ones [58]. However, in breast cancer [58,65] 
and hepatocellular cancer [66] the elastic modulus fol-
lowed a bimodal distribution along the tissue surface. 
The lower peak was attributed to cancer cells and the 
higher to the ECM, as elements with different morphol-
ogy and composition differentiate between the behavior 
of neoplastic and normal tissue [58,66,67].

Ciasca et al. [68] compared the elasticity of fresh 
necrotic glioblastoma tissues to that of non-necrotic 
ones using sharp tips in a hyperosmotic buffer [65]. 
Necrotic tissues showed homogeneously low values of 
the elastic modulus, attributed to the action of matrix- 
metalloproteinases and hyaluronidases on the ECM. 
In contrast, the elasticity of non-necrotic tissues was 
found to be highly inhomogeneous with its range 
being rather wide, also exhibiting negative skewness. 
In particular, apart from regions with low values of the 
elastic modulus, much stiffer regions were also found, 
attributed to the overproduction of hyaluronic acid 
and microvascular proliferation. White matter from 
one patient has also been shown to exhibit inhomoge-
neous elasticity, without the very high values of the 

Figure 2. An AFM cantilever with a spherical tip (arrow) from 
below (a). General principles of AFM nanoindentation with 
a tip of radius R (b). The deflection d and the displacement 
z are recorded, to estimate the force F, the indentation δ, and 
the elastic modulus.
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elastic modulus observed on non-necrotic tissues. 
Even though the sample size was small, the white 
matter was generally observed to be stiffer than necro-
tic tissues and softer than non-necrotic ones.

Miroshnikova et al. [69] studied the relation of 
brain glioma elasticity with IDH1 mutation status 
using spherical tips on fresh frozen tissues. IDH1 
R132 H mutations were associated with softer tissues, 
while increased tumor grade was associated with stiffer 
ones.

Elastography

While AFM nanoindentation determines elasticity at 
the nano/microscale, elastography determines elasti-
city at the macroscale. The latter encompasses various 
imaging techniques, namely MRE and ultrasound 
elastography, that map tissue elasticity in vivo. In 
principle, the examined tissue undergoes 
a mechanical disturbance and the elastic properties 
are estimated from the recorded tissue response [70].

Ultrasound elastography of gliomas

Ultrasound elastography records the tissue response 
using an ultrasound system. Its application in neuro-
surgery is limited by the impermeability of the skull to 
ultrasound. However, it shows the advantage of easy 
integration with intraoperative B-mode ultrasound 
during glioma surgery. An assortment of techniques 
has been developed in this direction, both qualitative, 
measuring relative differences in elasticity between the 
examined tissues, and quantitative, measuring abso-
lute elastic or shear modulus values. The recorded 
parameter is either the axial strain induced by the 
mechanical disturbance or the propagation velocity 
of an induced shear wave [71].

Quasistatic strain elastography (QSE) [72], a strain 
imaging technique, has been extensively studied for 
the diagnosis of neoplastic [73,74] and non-neoplastic 
diseases [75–77]. In principle, manual compression 
causes different strains on the examined tissues, with 
stiffer tissues undergoing smaller strains. When 
applied to the brain, tissue pulsations under the static 
ultrasound probe can also serve as a source of mechan-
ical distortion without the need of external compres-
sion [78]. Using this technique on 16 gliomas, tumor 
tissue was found stiffer than the brain on average [79], 
while glioma tissue and brain could be distinguished 
more efficiently than using B-mode [80]. Moreover, 
Chakraborty et al. [81] verified the ability of QSE to 
recognize tumor heterogeneity, in agreement with 
surgical opinion on tissue rigidity. Recently, Prada 
et al. [82] observed that low-grade glioma tissue was 
stiffer than the brain in six of the seven (86%) cases 
examined, while high-grade glioma tissue was softer 
than the brain in 35 of the 38 (92%) cases studied. 

Tumor margin was sharper using QSE rather than 
B-mode in six of the seven (86%) low-grade gliomas 
and 28 of the 38 (74%) high-grade gliomas. Even 
though QSE is qualitative, as the stress is non- 
uniform and unknown, efforts to achieve semi- 
quantitative results based on the pixel intensities of 
the recorded images have been made [83]. Using such 
semi-quantitative analyses, Cepeda et al. [84] found 
that high-grade glioma tissue is softer than low-grade 
glioma tissue, although not significantly, whereas 
glioma tissue is softer than brain tissue on average. 
Both low and high-grade glioma groups showed sub-
stantial differences in elasticity across patients. In 
another strain imaging technique, i.e. vibrography 
[85], low-frequency axial vibrations are induced by 
the ultrasound transducer, while the quasistatic tissue 
strain is recorded. Although qualitative, it achieves low 
computational costs and improved image quality. 
Vibrography suggested that the elasticity of gliomas 
may show substantial variation across tumor grades 
and types [86], while the technique has also been used 
at several stages of the operation to control tumor 
resection [87].

Shear wave velocity measurement and/or imaging 
techniques are inherently quantitative. In shear wave 
elasticity (SWE) imaging [88], the ultrasound trans-
ducer applies an acoustic radiation force; i.e. 
a focused ultrasound beam onto the tissue to induce 
shear waves. Shear wave propagation parameters are 
recorded to estimate the elastic or shear modulus. 
Supersonic shear imaging (SSI) [89] is an improve-
ment of SWE, whereby successive pulses of acoustic 
radiation force cause the motion of a shear wave 
source perpendicularly to the tissue surface at 
a supersonic speed. The propagation velocity of the 
induced shear waves is recorded using ultrafast plane 
wave imaging and used for the estimation of the 
proportional to the squared velocity elastic/shear 
modulus. Chan et al. [90] using SSI on 11 brain 
tumors, including 2 astrocytomas, concluded that 
good agreement exists between the results of elasto-
graphy and surgeon’s assessment on tissue elasticity. 
In particular, the contrast in elastic modulus between 
tumor and brain tissue was sharper in tumors stiffer 
than the brain. In tumors softer than the brain, the 
contrast was better at the macroscopic margin of the 
tumor, while average tumor and brain tissue elasticity 
overlapped substantially. On extending this study to 
34 cases, including 12 gliomas, they clearly showed 
the superiority of SSI to surgeon’s opinion, as the 
former was comparable to MRI and B-mode for the 
delineation of residual tumor [91]. Finally, Chauvet 
et al. [92] using SSI found a significantly different 
elastic modulus between low-grade gliomas and brain 
tissue, as well as between low and high-grade glio-
mas, but not between high-grade gliomas and brain 
tissue.

4 A. TSITLAKIDIS ET AL.



Magnetic resonance elastography of gliomas

Similar to ultrasound elastography, MRE [93] utilizes 
MRI to record the physical response of the examined 
tissue to shear waves induced by an actuator, in order 
to estimate the elasticity of the examined tissue. In 
contrast to ultrasound elastography and AFM nanoin-
dentation, it can be used preoperatively, thus allowing 
for an early determination of the tumor elasticity.

Four studies have investigated glioma elasticity 
using MRE on patients so far. Simon et al. [94] and 
Reiss-Zimmermann et al. [95] studied gliomas along 
with other brain tumors, Pepin et al. [96] studied 
only gliomas, and Streitberger et al. [97] studied 
only glioblastomas. Tumor on average was found 
softer than the brain, either significantly [96,97] or 
non-significantly [95]. Moreover, tumor was softer 
than the brain in all (10/10 cases [94]) or the 
majority of gliomas (17/22 [97], 10/14 [95], and 
16/18 cases [96]). Similarly, MRE on animals trans-
planted with glioma cells found that neoplastic tis-
sue was also softer than brain tissue [98]. However, 
in a minority of patients with glioma (5/22 [97], 4/ 
14 [95], and 2/18 cases [96]) tumor was stiffer than 
the brain. Considerable intra-tumor heterogeneity 
was found in glioblastoma patients [97].

Increased grade was associated with decreased 
stiffness, significantly [94,96] or non-significantly 
[95]. Pepin et al. [96] further found that IDH1 
mutant tumors were stiffer than IDH1 wild-type 
ones. These results are in contrast to those of 
Miroshnikova et al. [69], who found that increased 
tumor grade was associated with increased stiffness 
and IDH1 mutant tumors were softer than IDH1 
wild-type tumors. However, it should be pointed 
out that MRE studies explore brain glioma elasticity 
at the macroscopic scale, while Miroshnikova et al. 
investigated it at the micro/nanoscale [96]. Moreover, 
MRE averages over the entire region of interest, 
inevitably taking into account necrotic tissues as 
well, which are in general softer than non-necrotic 
tumor or even normal appearing white matter [68]. 
Conversely, AFM nanoindentation can be performed 
on preselected regions, so as to avoid necroses. In 
this connection, it should also be noted that the 
status of the rarer IDH1/2 mutations, similar in 
their biochemical, oncologic, and histopathologic 
consequences to IDH1 R132 C, was not investigated 
by either study [69,96], thus resulting in an increase 
of error margins.

Perspectives

Study of glioma elasticity is an emerging research field 
with new possibilities of further elucidating glioma-
genesis and guiding clinical practice. Among others, it 
is expected to contribute to the development of models 

for the oncogenesis and the behavior of gliomas 
[99,100], the evolution of cancer cells population 
[101], the role of the mechanical properties at the 
tissue and the cellular level, and the interpretation of 
the in vivo (MRE, intraoperative ultrasonography) and 
ex vivo measurements of the mechanical properties 
(indentation, shear, tensile test, compression). 
Clinically, it could contribute to the simulation and 
the design of neurosurgical operations, the production 
of experimental data to feed new models for real-time 
imaging [102] necessary for the neuronavigation, and 
the development of haptic devices for the implemen-
tation of robotics in neuro-oncologic surgery [103– 
105]. Challenges, like in situ measurement of the 
mechanical properties with nanoindentation, 
although not currently lying within the capabilities of 
the present technology, could further shed light on the 
bio-chemo-mechanical properties of gliomas and their 
role in disease progression or therapeutic treatments.

Conclusions

The ever-expanding field of neuro-oncology has come 
to encompass a plethora of interdisciplinary research 
approaches in the study of gliomas. Mechanomics and 
biomechanics offer a novel view on the pathophysiology 
of gliomas. Along with genomics, epigenomics, tran-
scriptomics, proteomics, and metabolomics, they seem 
to have the potential to further advance our knowledge 
on the underlying mechanisms of oncogenesis, tumor 
invasion, and disease progression. Although there are 
still many open questions, research techniques are con-
tinuously optimized, giving initial promising results. 
Concurrently, clinical methods, like elastography, 
become gradually available to the practitioner, thus 
proving another useful tool for the treatment of gliomas.
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