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Abstract: 

 

Treatment planning in radiotherapy distinguishes three target volume concepts: the gross 

tumor volume (GTV), the clinical target volume (CTV), and the planning target volume (PTV). 

Over time, GTV definition and PTV margins have improved through the development of novel 

imaging techniques and better image guidance, respectively. CTV definition is sometimes 

considered the weakest element in the planning process. CTV definition is particularly 

complex since the extension of microscopic disease cannot be seen using currently available 

in-vivo imaging techniques.  Instead, CTV definition has to incorporate knowledge of the 

patterns of tumor progression. While CTV delineation has largely been considered the 

domain of radiation oncologists, this paper, arising from a 2019 ESTRO Physics research 

workshop, discusses the contributions that medical physics and computer science can make 

by developing computational methods to support CTV definition. First, we overview the role 

of image segmentation algorithms, which may in part automate CTV delineation through 

segmentation of lymph node stations or normal tissues representing anatomical boundaries 

of microscopic tumor progression. The recent success of deep convolutional neural networks 

has also enabled learning entire CTV delineations from examples. Second, we discuss the use 

of mathematical models of tumor progression for CTV definition, using as example the 

application of glioma growth models to facilitate GTV-to-CTV expansion for glioblastoma that 

is consistent with neuroanatomy. We further consider statistical machine learning models to 

quantify lymphatic metastatic progression of tumors, which may eventually improve elective 

CTV definition. Lastly, we discuss approaches to incorporate uncertainty in CTV definition into 



treatment plan optimization as well as general limitations of the CTV concept in the case of 

infiltrating tumors without natural boundaries. 

 

  

 

1. Introduction 

 

Treatment planning in radiotherapy distinguishes three target volume concepts: GTV, CTV, 

and PTV. The gross tumor volume (GTV) represents the macroscopic tumor mass, which is 

typically detectable using biomedical imaging techniques such as computed tomography (CT), 

magnetic resonance imaging (MRI), and/or positron emission tomography (PET). The clinical 

target volume (CTV) includes microscopic extensions of the tumor in the surrounding tissue, 

which are not detectable with current in-vivo imaging techniques. The planning target 

volume (PTV) is an extension of the CTV to account for geometric uncertainty in treatment 

planning and delivery [1], [2]. 

 

Over the past decades, radiotherapy has seen substantial improvements in GTV and PTV 

definition. GTV definition has improved through the development of novel imaging 

techniques such as functional MRI and PET imaging. For example, FDG-PET became 

established for target volume definition in lung and head & neck cancer [3]. Modern image 

guidance using cone beam CT and more recently MRI has improved the precision in 

treatment delivery and has led to smaller PTV margins [4]–[8]. CTV volumes have become 

more standardized, e.g. through precise definitions of lymph node stations. Nevertheless, 

target volume definition, and especially CTV definition, is often considered the weakest link in 

modern precision radiotherapy [9], [10]. This becomes apparent in studies assessing the 

variability in target volume definition between institutions [10]–[13], which have for example 

been performed for head and neck cancer. Using the latest technologies such as intensity 

modulation and image guidance, we are thus in the paradoxical situation that we can treat 

lesions with millimeter precision, but the uncertainties about what should be treated can be 

in the order of centimeters.  

 

CTV definition is particularly complex since the extension of microscopic disease is not visible 

using currently available in-vivo imaging techniques. Consequently, CTV delineation does not 

amount to an image segmentation task, i.e. unlike GTV definition, it does not only amount to 

delineating an abnormal appearing mass in CT, MR, or PET images. Instead, CTV definition 

has to incorporate knowledge of the patterns of tumor progression. Future progress in 

biomedical imaging may potentially shift the boundary between visible and invisible, i.e. 

between GTV and CTV. For example, better imaging may increase the sensitivity and 

specificity for detecting small lymph node metastases [14]. However, it is not expected that 

the full extent of microscopic disease will become detectable in-vivo.  

 



While understanding microscopic tumor progression generally requires an interdisciplinary 

effort involving radiation oncologists, radiologists, pathologists and surgeons, there is a role 

for medical physicists and computer scientists in CTV definition. Computational methods can 

contribute to CTV delineation with different scopes:  

 

Automation: Although CTV definition is complex, it is in practice usually based on guidelines. 

These guidelines can in part be followed through automated workflows to streamline the 

planning process and reduce the time required for manual contouring. Examples include 

automatic segmentation of lymph node stations for nodal CTV delineation, and automatic 

segmentation of normal tissues that are anatomical barriers to microscopic tumor 

progression such as the dura and ventricles in the case of gliomas. 

 

Consistency: Computational methods for CTV delineation may yield more consistent target 

volumes, even if they are based on the same rules as current clinical guidelines, reducing 

human induced variability. An example is GTV-to-CTV expansion for glioblastoma, where it 

can be difficult to consistently account for 3D neuroanatomy in manual delineation, e.g. 

respecting the falx as anatomical barrier while accounting for contralateral tumor 

progression through the corpus callosum.  

 

Improvement: The ultimate goal is to improve CTV definition through computational methods 

in the sense that a better trade-off is achieved between minimizing the risk of undertreating 

microscopic disease versus unnecessary exposure of normal tissues. In that sense, 

improvement implies some change in target volume definition compared to current practice. 

For example, this could be based on novel statistical or mechanistic models of locoregional 

tumor progression or based on improved patterns of failure analysis. An example could be 

personalization of elective nodal CTVs based on an individual patient's risk of microscopic 

involvement of lymph node stations.  

 

This paper discusses the role of medical physics, computer science, mathematics and related 

disciplines for supporting CTV definition through computation methods. The paper results 

from a 2019 ESTRO physics workshop and its content is based on the work presented and 

discussed by the authors. However, closely related work from the literature has been 

included. The main goal of the paper is to illustrate how a variety of methodologies including 

image segmentation algorithms, deep learning, reaction diffusion equations, shortest path 

algorithms, or bayesian networks can be used to address different aspects of CTV definition. 

We hope that this paper inspires further work within the medical physics community on the 

important but arguably understudied topic of CTV definition. Section 2 provides a short 

summary of the foundations and general principles of CTV definition. Section 3 defines the 

role of automatic image segmentation algorithms for CTV definition. Section 4 discusses work 

on the use of mathematical models of tumor progression. Finally, Section 5 considers 

limitations of a binary CTV concept with a fixed prescription dose in the context of infiltrative 



tumors without boundary and in the context of uncertainty in tumor extension. Initial 

approaches to incorporate these aspects into treatment plan optimization for intensity-

modulated radiotherapy techniques are discussed.  

 

 

2. Basic concepts of CTV definition 

 

The concept of the CTV was introduced by the International Commission on Radiation Units 

and Measurements (ICRU) in its report 50 published in 1993 [15]. It was defined as the 

volume encompassing the visible and/or palpable tumor, i.e. the GTV, and the volume of 

surrounding normal tissues suspected of sub-clinical microscopic tumor infiltration with a 

given probability of occurrence considered relevant for therapy. Generally, tumor infiltration 

to surrounding tissues is a characteristic of malignant tumors. Per definition, benign tumors 

do not bear any risk of local or regional microscopic infiltration; there is thus no CTV 

associated with these tumors. For malignant tumors, one can generally distinguish two 

components of the CTV. 

 

1. The primary tumor CTV (CTV-T), which contains tissues surrounding the primary 

tumor GTV (GTV-T) that are at risk of sub-clinical microscopic tumor infiltration. 

2. The regional lymph node CTV (CTV-N), which contains parts of the regional lymph 

drainage region that is at risk of harboring occult lymph node metastases. 

 

While the primary tumor CTV is applicable to all treatment sites, there is no lymphatic 

drainage of brain tumors. Thus, no regional nodal CTV is defined for brain tumors such as 

glioma, meningioma, or brain metastases. Many other tumors including head and neck 

squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), and breast cancer 

spread through the lymphatic system and form metastases in regional lymph nodes [3].  

 

In the case of definitive radiotherapy, the primary tumor CTV contains the primary tumor 

GTV. If applicable, the nodal CTV contains the nodal GTV (GTV-N), i.e. macroscopic lymph 

node metastases usually detected through PET-CT imaging. For adjuvant radiotherapy 

following surgical resection of the primary tumor and/or nodal regions, the CTV often 

contains the surgical cavity plus unresected tissues at risk of microscopic tumor infiltration. 

 

There are mainly three sources of data that inform CTV definition. First, histopathological 

examination of tissue after resection. Such data usually require surgical resection of the 

tumor and the surrounding tissue and is therefore difficult to obtain for tumor sites treated 

definitively with radiotherapy. Second, imaging data for cohorts of patients. Even though 

imaging data does not show the extent of microscopic tumor for any individual patient, it 

does inform about the general patterns of tumor progression. Third, patterns of failure 



analysis, i.e. analysis of the location of tumor recurrences. One role of computational 

methods is to provide improved quantitative analysis of these data. 

 

2.1. Primary tumor CTV 

 

Distinct tumor sites differ strongly regarding their characteristics of infiltrating surrounding 

tissues. First, tumor sites differ by how far they infiltrate normal tissues beyond the visible 

GTV, ranging from a few mm to several cm. Second, tumor sites differ in their spatial 

complexity of microscopic spread. While some tumors show approximately isotropic 

infiltration around the GTV, others show preferred directions of progression and 

consequently anisotropic GTV-to-CTV expansion. Microscopic spread may be constrained by 

tissues that represent anatomical barriers for migrating tumor cells. In addition, tumors may 

spread anisotropically because tumor cells preferentially migrate within the tissue they arise 

from, or because this tissue has an inherently anisotropic structure. Gliomas are an example 

for the latter. For such sites, manual contouring of the CTV may be challenging and time-

consuming and they are thus an interesting target for developing computational methods 

(see section 4.1). A short summary of tumor infiltration patterns of different tumors is 

provided in section S2.1 in the supplementary materials.  

 

2.2. Regional lymph node CTV 

 

The delineation of the CTV-N is based on the concept of lymph node stations, also referred to 

as lymph node levels in the case of HNSCC. Lymph node stations are anatomically defined 

regions of the lymph drainage system, containing the tissue surrounding lymph vessels and 

lymph nodes. For example, Gregoire et al. [16] provide an atlas with exact definitions of 

lymph node levels in the neck based on anatomical landmarks visible on CT imaging. 

Definition of nodal target volumes for head and neck cancer is illustrated in Figure 1. Similar 

atlases exist for other cancer sites [17] including breast cancer [18] and pelvic tumors [19].  

 



 
 

Figure 1: Illustration of target volume definition for head & neck cancer. Primary tumor GTV-T 

(red) and primary tumor CTV-T (purple). Suspicious enlarged lymph nodes that are assumed to 

harbor metastases are contoured in yellow (GTV-N). In addition, the CT image shows normal 

appearing lymph nodes, which may however harbor occult metastases. The nodal CTV-N is 

contoured in blue, containing (on this axial slice) levels Ib, II, and V ipsilaterally and levels Ib 

and II contralaterally. 

 

The concept of lymph node stations subdivides the lymph drainage system into standardized 

volumes but does not yet define the CTV. The CTV-N is usually defined as a subset of lymph 

node stations, i.e. requires a decision which lymph node stations to include in the CTV-N. For 

some treatment sites such as NSCLC, the clinical practice moves towards only including those 

lymph node stations into the CTV-N that contain proven metastases. For other sites such as 

HNSCC, the CTV-N also contains lymph node levels that are not grossly involved, which is 

referred to as elective lymph node irradiation. Recommendations have been published on 

the selection and delineation of nodal target CTV for various primary tumor sites [16], [18], 

[20]–[24].  

 



The risk of regional lymph node infiltration depends on the location and the histopathology 

of primary tumors. Section 4.2 discusses recent work to further personalize risk estimation of 

microscopic lymph node involvement based on the individual patient’s state of lymphatic 

progression. In addition, lymphoscintigraphy has been proposed as an additional diagnostic 

imaging modality to assess the patient’s state of nodal progression. This concept has been 

validated for the surgical management of regional lymph nodes in oral cavity HNSCC, 

melanoma, breast, prostate, and gynecological tumors, but it needs further validation studies 

for target volume selection in radiotherapy [25]–[30]. Moreover, the question to what level 

of radiation dose elective nodal target volumes must be treated warrants further 

investigation. For HNSCC, the elective CTV is usually treated to  a uniform dose of 

approximately 50 Gy in 2 Gy fractions. Van den Bosch et al [31] investigate the possibility of 

dose de-escalation to unsuspicious lymph node levels.  

 

 

3. The role of automatic image segmentation  

 

Along with image registration, segmentation of medical images has been one of the key 

problems in medical image processing for several decades. In the context of radiotherapy 

treatment planning, image segmentation has mainly focused on organs at risk and on the 

GTV. These image segmentation tasks have been addressed with a variety of traditional 

techniques such as atlas-based segmentation or region-based methods. Such methods have 

been available in commercial treatment planning systems for a long time. Recently, use of 

neural networks, specifically deep convolutional neural networks (CNNs), have shown 

tremendous promise in the domain of image processing and automatic segmentation [32], 

with high accuracy and reduced processing time when compared with previously widely used 

atlas-based segmentation methods [33], [34].   

 

Segmentation of the GTV is supported in commercial treatment planning systems via 

relatively simple traditional techniques such as thresholding and region growing methods. 

Fully automatic GTV segmentation had limited use in clinical practice so far, but had attracted 

significant research attention [35]–[38], which is also reflected in numerous challenges 

organized at Medical image computing and computed assisted intervention (MICCAI) 

conferences. Studies have investigated various clinical sites and combinations of imaging 

modalities, and performance is generally acceptable but with some systematic issues (such as 

inflammation related PET signal causing false positives, difficulty in detection of very small 

targets), and severe outliers for complex targets, which is illustrated in figure 2. This is for 

instance illustrated in the 2019 MICCAI Structure Segmentation Challenge where head and 

neck cancer and lung cancer GTVs were detected in PET-CT scans (http://www.structseg-

challenge.org/#/).  

 

http://www.structseg-challenge.org/#/
http://www.structseg-challenge.org/#/


 
Figure 2: Three patient examples of GTV segmentation in oropharyngeal cancer using a 3D U-

net network [34], based on different combinations of imaging modalities. Top row: A large 

lymph node target is well identified by all combinations of imaging modalities. Middle row: 

The primary target is only identified when PET is included, but not with CT-MR only. Bottom 

row: All imaging combinations with PET erroneously identify (part of) a primary target at the 

left side base of tongue, which is excluded by the CT-MR combination. Images courtesy of 

Jintao Ren, Jasper Nijkamp and Stine Korreman, Aarhus University. 

 

Unlike the GTV, the CTV does not appear abnormal on medical images, i.e. CTV delineation 

does not amount to segmenting an abnormal mass on volumetric images. Nevertheless, 

there is a substantial role for image segmentation algorithms for semi-automation or full 

automation of the CTV contouring process. In many cases, the boundary of the CTV is defined 

by normal anatomy. Consequently, auto-segmentation of normal anatomy can contribute to 

the CTV delineation task. This can be illustrated based on several examples. 

 

● For some treatment sites, the CTV represents or includes an entire organ. The main 

example for that is localized prostate cancer where the CTV is the prostate gland and 

possibly the seminal vesicles.  Thus, in the absence of extra-capsular spread, 

automatic segmentation of the prostate means automatic CTV definition. 



● For cancers with lymphatic progression, the elective nodal CTV is defined via lymph 

node stations. Automatically segmenting these well-defined anatomical regions thus 

automates one part of the CTV delineation process.  

● For many tumor sites, the CTV of the primary tumor is bounded by normal tissues 

that represent anatomical boundaries for the microscopic progression of tumor cells. 

Automatic segmentation of these tissues allows for automatic correction of CTVs for 

anatomical barriers, e.g. automatic cropping after an isotropic GTV-to-CTV expansion.   

 

Deep CNNs can be thought of as a method that facilitates learning image segmentations from 

examples. This is in contrast to traditional methods such as region growing or graph cut 

methods that are purely based on image intensity gradients. In that regard, deep CNNs lend 

themselves to CTV definition better than traditional algorithms. Deep CNN can in principle 

learn CTV delineations from a large enough training imaging dataset with manually 

contoured CTVs. Initial work is outlined below in Section 3.4.  

 

 

3.1. Automatic segmentation of primary tumor CTV via whole organs 

 

Atlas-based segmentation of prostate and pelvic lymph nodes was investigated in [39] and 

deemed to be clinically feasible, improving both efficiency and consistency. Deep learning-

based auto-segmentation is a fairly new technique, it has been available in commercial 

contouring software since 2018. Deep learning has been successful for segmenting organs at 

risk and shows promising results for CTV delineation for prostate cancer. Auto-segmentation 

of the prostate from CT images with deep learning was studied in [40], with results 

comparable to that of manually created contours. Segmentation of prostate and seminal 

vesicles on MR images was studied in [41] and deemed promising for accelerating MRI-based 

treatment planning. 

 

 

3.2. Automatic segmentation of nodal CTVs via lymph node stations 

 

Atlas-based segmentation of lymph node levels for head and neck was studied in [42] and it 

was reported that it could cut the segmentation time to one third, even though manual 

corrections were needed. In [43], atlas-based segmentation of whole breast and nodal 

regions for rectal cancer was investigated. Segmentation of the whole breast and one of the 

three nodal regions for rectal cancer showed potential for accelerating contouring in clinical 

practice. A type of model-based auto-segmentation for thoracic lymph node levels was 

investigated in [44] with promising preliminary results, but with a need of further 

development. 

  



Deep learning-based segmentation of  standardized nodal regions has not been studied 

much. These regions are often defined by vessels, muscles, and bones surrounding the nodal 

region and have a more complicated shape and boundary compared to organs.  There is 

some evidence that deep learning works well also for nodal regions. In [45], deep learning 

was used for auto-segmentation of CTV for nasopharyngeal cancer on planning CT images 

and high accuracy was reported. Given the success of deep learning for solving a large range 

of image analysis problems it will be interesting to see if it is suited for segmentation of nodal 

regions.  

  

 

3.3. Segmentation of anatomical barriers of tumor infiltration  

 

For many treatment sites, the primary tumor CTV is derived from the primary tumor GTV via 

a margin extension. However, these extensions often have to be corrected for anatomical 

barriers of tumor invasion. For example, in lung cancer, CTV-T expansions are limited to the 

lung tissue while the pleura and structures in the mediastinum such as vessels and airways 

are excluded from the CTV-T. Automatic segmentation of these structures allows for 

automatic correction of GTV-to-CTV expansions for anatomical barriers. In the case of lung 

cancer, this can simply be done by an initial isotropic expansion of the GTV-T, from which the 

regions that overlap with barriers are removed. 

 

Similarly, glioblastoma are known to primarily spread within white matter while the ventricles 

and the dura with its extensions falx cerebri and tentorium cerebelli represent barriers for 

tumor cell spread. The work in [46] considers automatic GTV-to-CTV expansion for 

glioblastoma. In their approach, deep learning was used for auto-segmentation of anatomical 

barriers, which is illustrated in Figure 3a-c. These segmentations can subsequently be used to 

create GTV-to-CTV expansion that respect these barriers and allow for CTV definition that is 

consistent with neuroanatomy (see Section 4.1). 

  



 
 

Figure 3. Example of auto-segmentation of the brain structures relevant for CTV delineation 

(dark red contours) in comparison with manual delineation (colored shaded structures). Two 

axial slices, a) and b), and one coronal slice, c), show the falx cerebri (orange), ventricles 

(blue), brain sinuses (cyan), corpus callosum (green), tentorium cerebelli (yellow), cerebellum 

(brown), and brainstem (dark green). Panel d) shows the CTV (magenta) defined as a 

constrained expansion of the GTV (red) by 2 cm obtained via a shortest path algorithm. Panel 

e) shows the tumor cell density obtained by solving the Fisher-Kolmogorov equation 

numerically. Unlike in panel d, reduced diffusion in grey matter was assumed.  

 

3.4. Learning CTV delineations from examples 

 

The segmentation problems discussed above in section 3.1. to 3.3. amount to segmentation 

of normal anatomy rather than tumors, which can exploit the similarity between patients. 

Generally, fully automatic segmentation of the entire CTV presents itself as a more 

challenging problem. This is because the CTV will depend on the location of the GTV, which 

varies from patient to patient. But at the same time, the boundary of the CTV is not 



determined by abnormal image intensities.  Nevertheless, deep learning approaches were 

recently developed to automatically delineate CTV for nasopharyngeal [47] and rectal [48] 

breast [49], esophageal [50], and high-level-risk and all-level-risk CTV for oropharyngeal 

cancer [51], [52]. Results from these early studies suggested that automatic delineation of 

CTVs was feasible, but yet not ready for clinical use. 

 

Cardenas et al [53] developed a deep learning approach which was designed to mimic the 

clinical contouring practice for head and neck cancer CTV delineation. This work used the 

patient’s CT image as an input to a CNN but also the segmentation of the GTV as an 

additional input. The model is trained on a dataset of manually contoured head & neck 

cancer patients that represent institutional clinical practice using high-, intermediate-, and 

low-risk CTVs. When ground-truth and auto-segmentations were evaluated using overlap and 

distance metrics, it was found that these results were within the measured inter-observer 

variability. A subsequent physician review of automatically delineated CTVs on an 

independent test set suggested that 97% of CTVs (31/32 cases) were clinically acceptable 

with minor or no edits required (acceptable as is (n=17), minor/stylistic edits (n=14)) [54]. To 

address the limitation that “one person’s target volume is not everyone’s target volume” 

[55], Cardenas et al [54] developed a convolutional neural network to automatically segment 

individual lymph node target volumes by grouping commonly used head and neck lymph 

node levels (i.e. level II-IV or Ib-V). Physician review of these target volumes showed that 93% 

of automatically delineated lymph node level target volumes were scored as “acceptable as 

is”, with the remaining 7% being scored as requiring minor/stylistic edits that were 

considered to not impact patient outcome. This model could potentially allow a radiation 

oncologist to design target coverage based on individual clinical practice guidelines. 

Prospective evaluation will help determine the clinical utility of these models.  

 

 

4. The use of mathematical models of tumor progression for CTV definition 

 

While automatic segmentation of medical images plays an important role in automating CTV 

delineation as described in section 3, the problem of defining the CTV generally goes beyond 

image segmentation. In that regard, mathematical models for tumor progression can be 

applied. In this section, we demonstrate this based on two treatment sites, which have been 

subject to prior publications. 

 

1. CTV definition for gliomas, where mathematical tumor growth models can be used to 

describe the geometrically complex infiltration of the primary tumor into the adjacent 

normal appearing brain tissue. This may allow for automatic GTV-to-CTV expansion 

that is consistent with neuroanatomy. 

2. Elective CTV definition for head & neck cancer, where statistical models of lymphatic 

progression can support the decision which lymph node levels to include in the nodal 



elective CTV - a medical decision that goes beyond the technical problem of 

delineating lymph node levels.  

 

4.1. GTV-to-CTV expansion for gliomas 

Glioma’s complex spatial growth patterns led to the development of mathematical models 

aiming at reproducing them. There are several classes of models reported in the literature 

that can be broadly divided into two categories: the analytical or continuum models, 

referring to macroscopic models for the tumour growth, and the discrete or stochastic 

models, focussing on the extension and the cellular interplay at microscopic level. They have 

different underlying principles and degrees of complexity and are usually presented in 

conjunction with in silico simulations of the target and models for radiation treatment 

response but their clinical impact has so far been very limited [56]. One of the most 

frequently used mathematical approaches for describing the growth of gliomas at 

macroscopic level is based on a reaction-diffusion equation of Fisher–Kolmogorov type [57], 

[58] and accounts for the proliferation of glioma cells and the invasion in neighbouring 

healthy brain tissues.  

 
𝜕

𝜕𝑡
𝑐(𝑟, 𝑡) = ∇ ∙ (D(𝑟)∇c(𝑟, 𝑡)) + 𝜌𝑐(𝑟, 𝑡) (1 −

𝑐(𝑟,𝑡)

𝑐max ) 

The growth of gliomas is modelled by a partial differential equation for the variation of the 

tumor cell density 𝑐(𝑟, 𝑡) in space 𝑟 and time 𝑡. The diffusion coefficient D(𝑟) describes the 

motility of glioma cells through tissue while the second term represents logistic growth of 

glioma cells [58], [59]. The result of this approach is a time-dependent anisotropic glioma 

growth model. It may account for the limited motility of the glioma cells through grey matter 

by assuming a lower diffusion coefficient, and may model preferential invasion along the 

white matter fibers by incorporating DTI into the construction of D(𝑟). Anatomical barriers 

may be modeled as no-flux boundary conditions.  

Figure 3e shows a tumor cell distribution obtained from numerically solving the Fisher-

Kolmogorov equation for a glioblastoma located close to the corpus callosum. Falx and 

ventricles are considered as boundaries for tumor infiltration while accounting for spread of 

tumor cells into the contralateral hemisphere via the corpus callosum. Reduced cell 

diffusion in grey matter was assumed, leading to lower tumor cell density near major sulci 

such as the lateral sulcus. 

While the temporal dimension allows for modelling disease progression over time, its 

relevance for the definition of the CTV is rather limited. In the context of radiotherapy 

planning, one is interested in the anisotropic infiltration of the glioma cells in the normal 

tissue outside the observable border of the lesion visible on imaging, thus on the extent of 

the target at the time of radiotherapy treatment planning. Mathematically, the temporal 

component can be eliminated by assuming that, at the time of treatment planning, the 



solution of the Fisher-Kolmogorov equation has reached its asymptotic solution. 

Asymptotically, the temporal evolution of the tumor cell density is described by a traveling 

wave front that moves outward from the GTV into the normal appearing brain tissue. The 

propagation of the tumor front can then be described through Eikonal differential equations. 

In order to relate the model to the patient images, the key assumption is that the boundary 

of GTV can be regarded as an isoline of the tumor cell density [60]. To obtain an estimate of 

the tumor cell density at the time of radiotherapy planning, the Eikonal equations can be 

solved numerical through fast marching methods [60]–[63]. Subsequently, the CTV can be 

defined as an isoline of the tumor cell density [60], [64].  

The use of fast marching methods gives rise to an alternative interpretation of the tumor 

growth model. For every voxel in the brain, the Eikonal equation effectively defines  a 

geodesic distance from the GTV contour. Here, geodesic distance means that, unlike a simple 

euclidean distance between voxels, a distance measure is defined that incorporates detours 

around anatomical barriers that tumor cells have to take when migrating from the GTV to a 

point in the brain.  

 

This interpretation relates the work on the Fisher-Kolmogorov glioma growth model to the 

work presented by Shusharina et al [46]. The authors implemented the Dijkstra’s network 

path algorithm [65], [66], a search for the shortest path on the voxel connectivity graph 

generated from a voxel grid. For a given voxel outside of the GTV, the effective distance is 

calculated as the sum of path length increments for the connected path from the GTV 

surface to that voxel. The graph edges are assigned weights corresponding to the resistance 

to tumor spread.  The effective distance is defined as the shortest possible path. Unlike the 

biologically inspired Fisher-Kolmogorov model, the work by Shusharina et al is motivated 

geometrically and aims at automating the current clinical guidelines for GTV-to-CTV 

expansion, both approaches effectively lead to a very similar approach to CTV definition. 

Figure 3d shows the GTV-to-CTV expansion for the previously discussed glioblastoma case 

obtained via the shortest path algorithm. 

 

Interestingly, the recent work on GTV-to-CTV expansion using shortest path algorithms have 

similarities to an early attempt to automating CTV delineation that has been presented in 

[67].  On each image slice, the GTV contour was represented by a polygon and expanded. The 

expansion was further constrained by an external “envelope” and “obstacles” to be avoided 

in a simple geometrical manner.  This pioneering work, however, did not result in a 

widespread clinical application or software implementation. 

 

 

4.2. Elective CTV definition for head & neck cancer 

 



Elective CTV definition for head & neck cancer is based on the concept of lymph node levels 

as described in section 2. Automatic segmentation of lymph node levels as described in 

section 3 is therefore one component in supporting CTV definition through computational 

methods. However, the question which levels should be included in the elective nodal CTV is 

not addressed by automatic segmentation algorithms. To that end, statistical models of 

lymphatic tumor progression have been developed that quantitatively describe the 

probability of the tumor to spread along the lymphatic network. Such a model can be used to 

calculate the probability that lymph node levels harbor occult metastases, which may in turn 

guide the decision which levels to include in the elective CTV. A probability of 5-10% of 

microscopic involvement is a commonly considered threshold for including lymph node levels 

into the elective CTV. 

 

Current guidelines on elective CTV definition are mainly based on the prevalence of lymph 

node metastases, i.e. the percentage of patients with a given primary tumor location who are 

diagnosed with lymph node metastases in the different lymph node levels [20]. However, the 

prevalence of lymph node metastases in a population of patients does not quantify the risk of 

microscopic disease in an individual patient. First, the risk of microscopic involvement in a 

level does not only depend on the probability of the tumor to spread to that level, but also 

on the sensitivity and specificity of the available imaging modalities. Second, the prevalence 

does not quantify how much the risk of microscopic involvement in one level depends on the 

presence of macroscopic metastases observed in other levels. For example, one would 

expect the risk of microscopic involvement in level IV to be higher for a patient who harbors 

macroscopic metastases in levels II and III compared to a patient with metastases only in 

level II. However, such a personalization of microscopic risk estimation based on a patient’s 

individual state of lymphatic progression has not been investigated sufficiently. 

 

Pouymayou et al [68], [69] presented a statistical model of lymphatic tumor progression in 

head & neck cancer using the methodology of Bayesian networks [70], which is illustrated in 

figure 4. In this model, each lymph node level is associated with a binary random variable for 

the microscopic state, which indicates whether or not the level truly harbors tumor including 

occult metastases. The microscopic state is a latent state that is not directly observable for 

radiotherapy patients. Associated with the microscopic state is an observable macroscopic 

state, which indicates whether a lymph node level contains visible metastases based on PET-

CT imaging (and possible additional diagnostic modalities). Macroscopic and microscopic 

states are linked via the specificity and sensitivity of PET-CT imaging. The microscopic states 

are connected via directed arcs if one lymph node level receives efferent lymphatics from the 

other. Each arc is associated with a probability of tumors to spread from one level to the 

next. For example, level II and level III are connected by an arc reflecting the directional 

lymph flow from level II to level III, which allows tumors to spread from level II further down 

to level III. Thus, the graph of the Bayesian network reflects the anatomy of the lymphatic 

drainage system. 



 

 
Figure 4: Illustration of a Bayesian network model for lymphatic progression of head and neck 

cancer. The microscopic state is depicted as round nodes, the macroscopic state (typically 

corresponding to PET-CT imaging) as square nodes (positive findings are illustrated as purple, 

negative findings as green).   

 

The parameters of the model, the probabilities of tumor cells to spread from the primary 

tumor site to the lymph node levels and in between lymph node levels, can be learned from 

datasets of lymphatic progression patterns. However, this requires more detailed knowledge 

than the prevalence that is reported in publications. Instead, a dataset is needed in which the 

detailed configuration of lymph node involvement is known for the individual patients. 

Except for data published by Sanguineti et al [71] for early stage oropharynx patients, such 

data is not made available. Hence, changes to the current guidelines on elective CTV 

definition based on this model would require a multi-institutional effort to acquire larger 

datasets of lymphatic progression patterns. 

 

A given model can then be used to calculate the probability of microscopic involvement for a 

newly diagnosed patient. In this application phase, the population based knowledge on 

lymphatic progression patterns is combined with the individual patient’s state of disease 

progression, i.e. the location of visible macroscopic metastases. 

 

 

5. Incorporating uncertainty in tumor extension in treatment plan optimization 

 

In current practice, target volume concepts and dose prescriptions are binary in the sense 

that treatment planning simultaneously aims at covering a target volume with a prescribed 



dose and at achieving a steep falloff of the dose distribution outside of the target volume. 

This appears to contradict the continuous nature of microscopic tumor progression and does 

not reflect the uncertainties in the extent of the tumor. This can be illustrated for three 

situations: 

 

1. Interobserver variability in contouring. Target contours may vary between different 

observers due to multiple reasons. GTV contours may vary due to ambiguities in the 

radiological appearance of the tumor, translating in differences in CTV contours 

derived from GTV contours.  

2. Continuous fall-off of the tumor cell density. For glioblastoma, the tumor cell density 

is believed to drop continuously with distance from the GTV. However, glioblastoma 

are often thought of as a systemic disease of the brain, i.e. tumor cells may be found 

at any distance from the GTV. In that sense, there is no boundary of the tumor that 

would naturally define the CTV contour in white matter. The size of the CTV is to 

some degree arbitrary and it is counterintuitive that a voxel just inside the CTV should 

receive a fixed prescribed dose while the dose to a voxel just outside the CTV contour 

should be minimized. 

3. Continuously varying risk of tumor presence. For cancers with lymphatic progression, 

the probability to find occult metastases varies continuously over different parts of 

the lymph drainage region.  

 

It is useful to distinguish between a falloff of the tumor cell density and a falloff of the 

probability of tumor presence with distance from the GTV, as these two distinct situations 

may have different implications for treatment planning. Variations in the tumor cell density 

may give rise to dose-painting strategies as regions of very low tumor cell density may 

require less dose. This situation is further discussed in section S5.1 in the supplementary 

materials. For variations in the probability of tumor presence, implications for dose painting 

are less clear. Reducing the dose in regions where the probability of tumor presence is low 

may mean that this region is overtreated if there is no tumor, and undertreated if there is 

tumor. On the other hand, delivering no dose to a region with low tumor cell density may 

reduce tumor control probability to almost zero. Instead, not irradiating a region that is 

tumor with low probability reduces tumor control probability by only a small amount. 

Approaches to include uncertainty in tumor extension into treatment plan optimization are 

discussed in section S5.2 in the supplementary materials.  

 

 

6. Discussion 

 

In current practice, CTV delineation is usually a time-consuming manual process performed 

by the radiation oncologist. In addition, the extent of microscopic tumor spread is often not 

well known. Image segmentation algorithms play a significant role in automating current 



guidelines to CTV definition. This includes, auto-segmentation of whole organs for treatment 

sites such as prostate cancer, where an entire organ is part of the CTV. Further examples are 

auto-segmentation of lymph node stations for the delineation of nodal CTVs and the auto-

segmentation of anatomical barriers to tumor progression that are to be excluded from the 

CTV. Although treatment planning systems had some support for segmentation using 

traditional techniques, it is now widely believed that deep CNNs substantially improve 

accuracy and may yield a breakthrough in the practical usefulness of auto-segmentation 

methods. 

  

For most tumor sites, definition of the primary tumor CTV amounts to a margin expansion 

around the GTV-T. For tumor sites where this expansion is anisotropic, computational 

methods can help creating anisotropic margins that are consistent with anatomical barriers 

of tumor progression and incorporate preferred directions of tumor spread. For many 

treatment sites such as lung cancer, it is sufficient to segment tissues not infiltrated by the 

tumor and remove these from the CTV-T. With further improvements in normal tissue 

segmentation methods, this step can potentially be fully automatic in the future. A further 

improvement to anisotropic margin expansion, going beyond cropping for anatomical 

barriers, is the use of shortest path algorithms. These methods have been developed to 

facilitate GTV-to-CTV expansion for glioblastoma that is consistent with neuroanatomy. 

  

The main scope of image segmentation algorithms lies in automation of CTV definition 

guidelines rather than questioning the way CTV definition is currently performed and 

improving on it. This is in particular the case for neural network based models that are 

trained on examples of CTVs manually delineated based on the current state-of-the-art. 

However, it can be argued that an automatic segmentation algorithm that is able to 

reproduce CTV definitions corresponding to best current clinical practice, may improve on 

less experienced radiation oncologists. 

  

Attempts to improve on current guidelines to CTV definition through computational methods 

go beyond automation. Given that computational methods do not generate additional 

experimental or clinical data, one role for computational methods consist in developing 

mathematical models of tumor progression, that allow for better analysis of the available 

data on tumor progression patterns or patterns of failure. An example for that is the 

development of statistical models of lymphatic progression, which may improve our 

understanding of microscopic involvement risk and eventually improve on the decision which 

parts of the lymph drainage regions should be included in the elective CTV. 

 

Often, the question of how to validate computational tools for CTV definition is raised. In that 

regard it is important to consider the scope of the respective computational tool, i.e. 

whether the goal is automation of current guidelines or whether the goal is to change 

current guidelines. In the case of automatic segmentation algorithms, validation consists in 



testing how accurately an algorithm can reproduce a ground truth contour, which is typically 

given by a manual contour provided by one or multiple experts according to guidelines. Here, 

the question is not whether this contour is an appropriate CTV, but only whether the 

algorithm does what it is expected to do. The situation is different when the goal is to change 

CTV definition guidelines. In this case, models of tumor progression data may influence 

expert recommendations or the design of clinical studies.   

 

Eventually, target volume definition should be seen in conjunction with dose prescription and 

treatment plan optimization. In the context of infiltrating tumors without boundary and 

uncertainties in tumor extent, the concept of binary CTV volumes with a fixed prescription 

dose appears counterintuitive. There are approaches to incorporate these aspects in 

treatment plan optimization, typically through exponential cell kill models as discussed in 

section 5. However, providing a quantitative relation between dose and probability or density 

of tumor cells is inherently problematic. This limitation is similar to the difficulties faced in 

dose painting inside the GTV based on functional imaging. 

 

There are many additional aspects of CTV definition not discussed in this article. One 

research direction is certainly the development of novel imaging modalities that shift the 

boundary between visible tumor (GTV) and invisible tumor (CTV). For the example of gliomas, 

this includes PET tracers for amino acid metabolism [3] and MRI techniques such as diffusion 

tensor imaging (DTI) or 2-hydroxygluterate spectroscopy imaging in IDH-mutant gliomas [72]. 

In combination with advanced image analysis algorithms, this may lead to improved 

predictions of the extent of microscopic tumor infiltration [73], [74]. Another largely unsolved 

problem is CTV definition in the context of adaptive radiotherapy for shrinking tumors 

(section S6, supplementary materials). 

 

In conclusion, computational methods can support CTV definition in different ways. Medical 

image segmentation algorithms can contribute to automating current guidelines to CTV 

definition. This includes the delineation of anatomically defined regions of tumor progression 

such as lymph node stations and the segmentation of anatomical barriers for tumor 

progression that are accounted for in smart GTV-to-CTV margin extensions. In addition, 

computational methods may improve the quantitative analysis and modeling of tumor 

progression patterns, which may ultimately lead to improved CTV definition guidelines. 
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Figure 1: 

Illustration of target volume definition for head & neck cancer. Primary tumor GTV-T (red) 

and primary tumor CTV-T (purple). Suspicious enlarged lymph nodes that are assumed to 

harbor metastases are contoured in yellow (GTV-N). In addition, the CT image shows normal 

appearing lymph nodes, which may however harbor occult metastases. The nodal CTV-N is 

contoured in blue, containing (on this axial slice) levels Ib, II, and V ipsilaterally and levels Ib 

and II contralaterally. 

 

Figure 2:  

Three patient examples of GTV segmentation in oropharyngeal cancer using a 3D U-net 

network [34], based on different combinations of imaging modalities. Top row: A large lymph 

node target is well identified by all combinations of imaging modalities. Middle row: The 

primary target is only identified when PET is included, but not with CT-MR only. Bottom row: 

All imaging combinations with PET erroneously identify (part of) a primary target at the left 



side base of tongue, which is excluded by the CT-MR combination. Images courtesy of Jintao 

Ren, Jasper Nijkamp and Stine Korreman, Aarhus University. 

 

Figure 3: 

Example of auto-segmentation of the brain structures relevant for CTV delineation (dark red 

contours) in comparison with manual delineation (colored shaded structures). Two axial 

slices, a) and b), and one coronal slice, c), show the falx cerebri (orange), ventricles (blue), 

brain sinuses (cyan), corpus callosum (green), tentorium cerebelli (yellow), cerebellum 

(brown), and brainstem (dark green). Panel d) shows the CTV (magenta) defined as a 

constrained expansion of the GTV (red) by 2 cm obtained via a shortest path algorithm. Panel 

e) shows the tumor cell density obtained by solving the Fisher-Kolmogorov equation 

numerically. Unlike in panel d, reduced diffusion in grey matter was assumed.  

 

Figure 4: 

Illustration of a Bayesian network model for lymphatic progression of head and neck cancer. 

The microscopic state is depicted as round nodes, the macroscopic state (typically 

corresponding to PET-CT imaging) as square nodes (positive findings are illustrated as purple, 

negative findings as green).   

 

 

 



 



 

 



 

Table 1: microscopic tumor extension for head & neck SCC and NSCLC  

Tumor location / 

Authors 

# pts tumor subsite 

/ histology 

Microscopic extension 

   Mean 

(mm) 

Median 

(mm) 

95% percentile 

(mm) 

Maximum 

extension (mm) 

Head & Neck SCC 

Ho (1997) 

Campbell (2012) 

Fleury (2014) 

 

Ligtenberg (2017) 

 

42 

10 

15 

 

25 

 

HYPO 

OC 

OC, ORO, 

HYP, LAR 

LAR, HYPO 

  

- 

0.99 

1 

 

2.3 

 

< 10 

3.95 

5 

 

6.3 

 

25 

7.8 

15 

 

12.3 

NSCLC 

Giraud (2000) 

 

Li (2003) 

 

Grills (2007) 

Van Loon (2012) 

 

70 

 

43 

 

71§ 

34 

 

ADC 

SCC 

ADC 

SCC 

ADC 

ADC + SCC 

 

2.69  

1.48  

2.18  

1.33  

7.2  

- 

  

8 

6 

7  

5 

13# 

26* 

 

Abbreviations: LAR: larynx; HYPO: hypopharynx; NSCLC: non-small-cell lung carcinoma; OC: oral 

cavity; ORO: oropharynx; ADC: adenocarcinoma; SCC: squamous cell carcinoma;  



§ T1-N0 only 

# based on GTV defined on the pathologic specimen 

* 90% percentile 

 
 
Highlights: 
 

● Clinical target volume definition in radiotherapy is challenging 
● The contribution of computational methods is discussed 
● Goals are automation, consistency, and ultimately improvements 
● Image segmentation algorithms can automate the process in parts 
● Mathematical models may quantitatively describe tumor progression patterns 
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