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Abstract
An astrocytoma is a subclassification of glioma, with primary spinal manifestations accounting for less than
10% of all spinal cord tumors, with the majority encompassing low-grade features. It is even more
uncommon for such lesions to demonstrate intracerebral metastasis. We report such an occurrence in a 39-
year-old female who initially presented with an intramedullary and intradural mass from T10-L1, as well as
secondary metastasis to the mesial right temporal lobe and cerebellum upon clinical follow-up. Surgical
resection of the spine and subsequent temporal lobe biopsy confirmed high-grade glioma. Given the rarity
and poor prognosis of spinal gliomas with cerebral metastasis, we also summarize all previously reported
cases to date. We recommend that physicians maintain an index of suspicion for spinal gliomas in young
patients with cord compression related symptoms outside the event of traumatic injury.
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Introduction
Primary spinal cord tumors are uncommon, constituting approximately 2-10% of all Central Nervous System
(CNS) tumors, with the overwhelming majority (70%) of such lesions being of low-malignant potential [1].
The occurrence of spinal cord gliomas is even less common, arising in approximately 0.22 per 100,000
individuals [2]. Such tumors have been historically shown to arise within the cervical region in primary cases
and typically occur in younger male patients (< 30 years old) [3]. Despite the best treatment with surgery and
adjuvant therapy, overall survival remains poor.

We present the case of a patient with a low-grade astrocytoma of the thoracic spinal cord who then
developed additional cervical and thoracic spread, followed by high-grade transformation upon cerebral
metastasis. We discuss the pertinent clinical, operative, and histopathological findings. We also performed a
comprehensive review of the literature of all reported cases of primary spinal astrocytomas with brain
parenchyma extension.

Case Presentation
A 38-year-old female presented with a three-month history of progressive low back pain radiating to
bilateral lower extremities with paraparesis and radiating shock-like pain with Valsalva. In addition, she
reported gait instability, falling episodes, and bilateral foot drop (left worse than right) with muscle laxity.
She denied any bowel or bladder incontinence. Physical exam demonstrated gait instability, impaired toe
walking, impaired heel walking, impaired tandem gait, and an antalgic gait. The bilateral upper extremity
strength was 5/5. Lower extremity exam demonstrated 4/5 psoas strength bilaterally, 3/5 quadriceps strength
bilaterally, 2/5 (left), and 1/5 (right) tibialis anterior strength, 2/5 (left) 1/5 (right) extensor hallucis longus,
3/5 gastrocnemius strength bilaterally. All upper extremity deep tendon reflexes were 2/4 bilaterally.
Patellar and ankle reflexes were 4/4 bilaterally. There were no changes in sensation among upper and lower
extremities bilaterally. Babinski and Hoffman signs were absent. Finger to nose coordination was
unremarkable.

Magnetic resonance imaging (MRI) demonstrated a large intradural intramedullary mass extending from
T10-L1 (Figure 1). The lesion was approximately 1.7 x 2.0 x 7.6 cm in size. Cranial imaging was negative for
any lesions.
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FIGURE 1: Sagittal (1) and axial (2) T1 MRI with contrast demonstrating
an intramedullary tumor (arrow) that was found to be a WHO Grade II
astrocytoma
Abbreviations: S, superior; I, inferior; L, left; R, right; A, anterior; WHO, World Health Organization

The patient underwent surgical resection, by which baseline motor evoked potentials (MEP) were recorded.
Baseline MEPs were abnormal, consistent with the preoperative presence of paraparesis on admission. A
vertical midline incision was made overlying the thoracolumbar junction, and a complete laminectomy from
T10-L1 was performed. The spinal cord was abnormal, demonstrating an enlarged component, consistent
with an intramedullary tumor. The surface of the spinal cord appeared discolored, and a midline myelotomy
was performed. A large, firm, rubbery, pale mass that encompassed the overwhelming majority of the spinal
cord was encountered, internally debunked, and sent for frozen pathology, which confirmed a World Health
Organization (WHO) grade II diffuse astrocytoma. The tumor demonstrated extensive spread, and several
areas were encountered that did not demonstrate a definable plane. The myelotomy was extended from the
bottom of T10 down to L1. Serial MEPs were performed throughout the bulking process, which eventually
indicated the loss of distal right lower extremity MEP and possible left lower extremity MEP loss. Given the
clear intraoperative findings that this invasive tumor was without clear margins, and the evidence of MEP
change, the surgical resection remained as a subtotal resection. The wound was then irrigated with copious
amounts of antibiotic irrigation and hemostasis obtained. The dura was then closed in a watertight fashion
and copiously irrigated with 3 liters of pulsatile antibiotic irrigation. During the closure of the case, there
was an improvement in the left lower extremity MEPs and a questionable slight improvement in the right
distal lower extremity MEPs. Cerebrospinal fluid (CSF) cytology was negative.

Following surgical resection, physical exam demonstrated 5/5 upper extremity muscle strength
bilaterally. Lower extremity physical exam demonstrated 5/5 (left) and 4/5 (right) psoas strength, 5/5 (left)
3/5 (right) quadriceps strength, 0/5 dorsiflexion strength bilaterally, 1/5 (left) and 0/5 (right) extensor
hallucis longus strength, and 0/5 (left) and 4/5 (right) gastrocnemius muscle strength. New-onset
paresthesia was reported from L4 to distal right lower extremity, as well as from L1 to distal left lower
extremity. 

Due to social considerations, the patient began a seven-week course of chemoradiation two months
postoperatively. This included six cycles of adjuvant temozolomide. Over the next two months, the patient
reported progressive lower extremity weakness, dizziness, fatigue, poor appetite, and depressed
mood. Repeat MRI of the spine revealed a new expansile cord lesion with heterogeneous T2 signal within the
thoracic spinal cord spanning from T1 to T5 (Figure 2). She was subsequently admitted and began
intravenous dexamethasone. She also underwent brain MRI that revealed non-enhancing T2 Fluid-
attenuated inversion recovery (FLAIR) hyperintense mass located in the mesial right temporal lobe, with
diffuse involvement of the hippocampus, measuring 1.6 x 5.1 x 2.4 cm, with diffuse subependymoma
involvement and compression of the temporal horn (Figure 3). In addition, another area of non-enhancing
FLAIR hyperintense signal located in the vermis of the cerebellum measuring 2.6 x 2.9 x 2 cm with
compression of the anterior aspect of the fourth ventricle without evidence of hydrocephalus.
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FIGURE 2: Sagittal (1) and axial (2) T1 MRI with contrast of T1-T5
demonstrating a new expansile cord lesion with heterogeneous signal
within the thoracic spinal cord
Abbreviations: S, Superior; I, inferior; L, Left; R, Right; A, Anterior.

FIGURE 3: Axial FLAIR and T1 MRI with contrast demonstrating non-
enhancing FLAIR hyperintense masses in the right cerebellum (Image A,
B) and mesial right temporal lobe (Image C, D) compatible with
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multifocal Grade III astrocytoma
FLAIR: fluid attenuated inversion recovery

A stereotactic needle biopsy of the right temporal lobe was performed, with subsequent
histopathology demonstrating WHO grade III anaplastic astrocytoma without microvascular proliferation or
necrosis (Figure 4). Moderately cellular astrocytic proliferation with two to three mitotic figures detected on
hematoxylin and eosin stain was demonstrated. Immunohistochemical studies were positive for glial
fibrillary acidic protein (GFAP) and oligodendrocyte transcription factor 2 (OLIG2), with P53 demonstrating
<20% labeling. IDH-1R132H labeling was equivocal, and ATRX expression was retained. Phosphohistone H3
(PHH3) demonstrated mildly increased mitotic figures. Ki67 labeling index was 5%. H3K27M mutation was
noted.

The patient survived for only eight months post-diagnosis.

FIGURE 4: Right temporal lobe biopsy demonstrating WHO grade III
anaplastic astrocytoma consisting of infiltrating hyperchromatic nuclei
and numerous mitotic figures (yellow arrow)

Literature review
The PubMed database and all major neurosurgery journals were searched during June of 2020 using the
keywords “glioma”, “astrocytoma”, "glioblastoma", “spine”, and “cerebral extension”, alone or in
combination to obtain articles fitting the inclusion and exclusion criteria. The inclusion criteria were high-
grade astrocytomas or glioblastomas involving the spine with secondary brain parenchyma metastasis.

To date, 96 cases of primary spinal gliomas with secondary intraparenchymal manifestation have been
reported since 1908, including this case (Table 1). These lesions occurred in patients ranging from six
months to 65 years old, with the majority presenting under the age of 40 years (Mean: 20, 95% CI: 17-23.28
months). Among such reported cases, the long-term survival and outcome remain poor with a mean average
survival of 24 months from diagnosis (95% CI: 13.07-33.99 months). There appears to be a slight predilection
for this subtype among men over females (1.46:1).

Author Age Sex
Primary Tumor
Site

Brain Metastasis
Survival
since
presentation

Histology

Abel et al.,
2006 [4]

4 M T7-T9 cerebral cortex
Not
specified

III

Allen et al.,
1998 [5]

4 M Corticomedullary  Leptomeninges 14 months III

Allen et al.,
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1998 [5] 13 F Cervical Spine Leptomeninges 15 months IV

Allen et al.,
1998 [5]

12 F Thoracic Spine Leptomeninges 20 months III

Allen et al.,
1998 [5]

15 M Cervical spine Leptomeninges 8 months IV

Amlashi et al.,
2006 [6]

6 F T7-T9 cerebral cortex 4 years II

Ando et al.,
2010 [7]

65 F C1-C4 Pons 7 weeks IV

Andrews et al.,
1978 [4]

45 M
T12, Conus
medullaris

Septal region, right lateral ventricle, right cerebellum and
septum pellucidum

13 months IV

Asano et al.,
1990 [4]

23 F T11-L1
4th ventricle, anterior horn of the left lateral ventricle,
septum pellucidum and pituitary gland

12 months IV

Battaglia et al.,
2007 [5]

11 M T4-T5  Leptomeninges, hippocampus 6 months IV

Bell et al.,
1988 [4]

2 M C3-C7 Basal Cistern 17 months II

Bell et al.,
1988 [4]

3 M C2-C7 Interpeduncular cistern
Not
specified

II

Bonde et al.,
2007 [5]

16 M conus medullaris  Cervicomedullary junction, pituitary stalk 13 months IV

Caroli et al.,
2005 [5]

6 M T9-T11  Frontal lobe 13 months IV

Chida et al.,
1995 [8]

22 M Cervical spine Brainstem and cerebellum 3 months IV

Ciappetta et
al., 1991 [9]

59 M C3-C7 Left occipital lobe 29 months IV

Civitello et al.,
1988 [6]

3 N/A Cervical spine Basal Cistern, tentorium, chiasm, hypothalamus
Not
specified

II

Civitello et al.,
1988 [6]

6 N/A Cervical spine cerebral white matter, vermis
Not
specified

II

Claus et al.,
1995 [4]

43 M
Conus
medullaris

 Brainstem, cerebellum, septum pellucidum, ventricles 5 years II (progression to IV)

Cohen et al.,
1988 [4]

17 F Thoracic spine Subarachnoid space and brainstem
10 months
(post-op)

IV

Cohen et al.,
1989 [4]

9 M Cervical spine Brainstem
1 month
(post-op)

IV

Cohen et al.,
1989 [4]

14 M
Conus
medullaris

Septum pellucidum
4 months
(post-op)

IV

Cohen et al.,
1989 [4]

10 F Cervical spine Subarachnoid space
5 months
(post-op)

IV

Cohen et al.,
1989 [4]

16 F
Conus
medullaris

Septum pellucidum
6 months
(post-op)

IV

Cursiefen et
al., 1998 [8]

16 M C5-T1 Supratentorial 5 months IV

Demir et al.,
2010 [6]

8 F T8-T9 cerebellum
Not
specified

II

Derinkuyu et
al., 2015 [5]

9 F T8-T10  brainstem 8 months IV
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Eade et al.,
1971 [4]

21 F thoracic spine Subarachnoid space, ventricles 11 months II

Eade et al.,
1971 [4]

19 M
Conus
medullaris

Subarachnoid space, ventricles 6 months II

Eade et al.,
1971 [4]

21 F thoracic spine Subarachnoid space, ventricles 8 months II

Eden, 1938 [4] 11 M T4-T5 Cerebellar leptomeninges, perimedulla and hippocampus 7 months IV

Elsamaloty et
al., 2006 [10]

20 M
Conus
medullaris

Cervicomedulary junction, suprasellar cistern, left lateral
ventricle and right cerebellum

13 months IV

Galarza et al.,
2006 [6]

0.5 M C1-C6 pons
Not
specified

I

Galarza et al.,
2006 [6]

2 M T8-T9 cerebellum
Not
specified

I-II

Greenfield et
al., 1934 [4]

48 M Cauda Equina Subarachnoid Space, ventricles 6 years Meduloepithelioma?

Hely et al.,
1985 [4]

19 F
Conus
medullaris

Subarachnoid space, ventricles, thalamus,
hypothalamus, midbrain, pineal gland

28 months II

Hely et al.,
1985 [4]

38 F T2-T3
Subarachnoid space, ventricles, hypothalamus,
brainstem, thalamus

9 months III

Hukin et al.,
2003 [6]

5 N/A Not specified Not specified 5 months II

Hukin et al.,
2003 [6]

8.7 N/A Not specified Not specified 60 months ganglioglioma

Inagawa et al.,
1995 [4]

16 M Cervical Spine  Medulla 7 months II

Jeong et al.,
2010 [4]

22 M T3-T11  Lateral ventricles, septum pellucidum
Not
specified

III

Johnson et al.,
1987 [4]

9 F T11-L3 Subarachnoid space, ventricles 17 months III

Kataria et al.,
2011 [8]

15 F T11-L1 brainstem 3 months III

Kawanishi et
al., 1993 [8]

50 M T11-T12 Cerebellum, cingulate gyrus and sylvian fissure 18+ months IV

Kawashima et
al., 2004 [5]

8 F C7-T11  Cerebellum, brainstem 12 months IV

Kendrick et al.,
1987 [4]

41 F Thoracic spine Subarachnoid space
Not
specified

IV

Kim et al.,
2011 [5]

16 F T12-L1  Not specified 12 months IV

Klase et al.,
2007 [4]

1.5 F
Cervicothoracic
spine

 Cerebellum 18 years II (progressed to IV)

Klepstad et al.,
2001 [5]

12 F Cervical spine  Brainstem, medulla 2 months IV

Kokkalis et al.,
2016 [5]

12 M T4-T8 Bilateral frontal midline lesion and corpus callosum 20 months IV

Kopelson et
al., 1982 [11]

32 F Not specified midbrain
Not
specified

II

Kumar et al.,
2019 [5]

4 M
Cervicothoracic
spine

Brain stem, cerebellum and tuber cinereum 4 months IV

Linsenmann et
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al., 2015 [8] 35 M T2-T3 Left frontal lobe 19 months IV

Mallory et al.,
1908 [4]

N/A N/A Lumbar Spine Subarachnoid Space, cervical cord, pons and cerebellum
Not
specified

III-IV

Medhkour et
al., 2005 [8]

20 M T12-L1
Thoracic and cervical spine, medulla, pontomedullary
junction, cerebellum, suprasellar cistern and left lateral
ventricle

11 months IV

Morais et al.,
2012 [12]

19 M T6-T11
Pituitary stalk, inter-peduncular cistern and left superior
cerebellar peduncle

21 months IV

Mori et al.,
2012 [5]

10 F Holocord Corticomedullary junction and pituitary stalk 14 months IV

Ng et al., 2001
[4]

9 F C5-C7 Sylvian Fissures, brain stem and cerebella sulci
Not
specified

I

Nunn et al.,
2017 [13]

31 M conus medullaris leptomeninges 14 months IV

O'Connell et
al, 1946 [4]

16 M T6-T12
Pontine, interpeduncular cistern and inferior cerebral
hemispheres

16 months IV

Ozgiray et al.,
2013 [8]

54 F C3-C4
Medullary-pontine junction, cerebellum, suprasellar
cistern, left lateral ventricle

2 months IV

Peraud et al.,
2004 [4]

14 M T11-T12 Ventricles, frontal lobe
Not
specified

II-III

Perese et al.,
1959 [4]

39 M
Conus
medullaris

Subarachnoid space, ventricles, cerebellum 28 months I - II

Perilongo et
al., 2002 [8]

7 M C5-C6 cerebellum, cerebrum, brain stem 3 months II

Perilongo et
al., 2002 [8]

3 F C7-T5 cerebellum, brain stem, temporal lobes 9 years II

Perilongo et
al., 2002 [8]

12 M C7-T1 cerebellum, occipital love, lateral ventricles
Not
specified

II

Purkayastha et
al., 2018 [14]

23 M T8-T10 Frontal, occipital horn and septum pellucidum 8 months IV

Rubenstein et
al., 1970 [11]

17 F filum terminale ventricles 29 years ependymoma

Ruppert et al.,
2010 [4]

54 F
T7-T10, cervical
and lumbar
spine

Sylvian fissure, suprasellar cistern and posterior fossa
Not
specified

III

Russell et al.,
1949 [4]

37 M Cervical spine Subarachnoid space, ventricles 5 months Oligodendroglioma

Russell et al.,
1959 [4]

11 F Cervical spine Subarachnoid space, ventricles 6 months IV

Russell et al.,
1971 [4]

16 F
Conus
medullaris

Subarachnoid space
Not
specified

III-IV

Salazar et al.,
1976 [4]

N/A N/A Not specified Not specified
Not
specified

IV

Saleh et al.,
1987 [15]

9 M T6-T8 Third ventricle 6 months II

Sanei-Sistani
et al., 2020
[16]

6 M T8-T12
posterior fossa, left lateral ventricle, cerebellopontine
angle, left meckel cave

28 months II

Santi et al.,
2003 [17]

3 M T7 not specified 13 months IV
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Santi et al.,
2003 [17] 18 M T10-T12 not specified 14 months III-IV

Santi et al.,
2003 [17]

27 M T12-L2 cerebellum 16 months IV

Santi et al.,
2003 [17]

20 M T11-L1 Optic Nerve, brain base 3 months III-IV

Santi et al.,
2003 [17]

45 M C1-C7 brainstem, infundibulum, and cranial nerve roots 3 months  III-IV

Santi et al.,
2003 [17]

29 M Cervical spine subarachnoid space 42 months IV

Santi et al.,
2003 [17]

22 F T12 Supratentorial 6 months III-IV

Sarabia et al.,
1986 [4]

54 M thoracic spine
Subarachnoid space, ventricles, corpus collosum, optic
chiasm

13 months III

Schlereth et
al., 2012 [4]

63 M T6-T7 Temporal lobe 5 weeks III-IV

Simonati et al.,
1978 [4]

19 F Not specified Subarachnoid space, ventricles 5 years II

Song et al.,
2020 [5]

7 F T2-T5
cerebellum, pons, ventricles, hippocampus, basal
ganglia, paraventricles, frontal lobe, temporal lobe, pineal
gland, thalamus, cerebral peduncle

1 month IV

Stecco et al.,
2005 [5]

14 M
T12-L1, Conus
medullaris

Posterior fossa 9+ months IV

Strik et al.,
2000 [8]

31 F T10-T11 Medulla, cerebellum and suprasellar region 15 months IV

Sun et al.,
2009 [5]

14 M
Conus
medullaris

Lateral ventricle 16 months IV

Takara et al.,
1985 [8]

20 M T5-T8 subarachnoid space, ventricles, cerebellum, brainstem 5 months IV

Tashiro et al.
1976 [4]

12 F
Conus
medullaris

Cerebellum, hypothalamus, brainstem and thalamus 11 months IV

Umezu et al.,
1992 [4]

40 M C2-C4
Leptomeninges, ventricles, basal cistern and prepontine
cistern

14 months III

Vassilyadi et
al., 2005 [6]

3 M T12-L1
brainstem, suprasellar region, quadrigeminal system and
around the middle cerebral artery

Not
specified

II-III

Yamagami et
al., 1990 [11]

44 M
Conus
medullaris

Subarachnoid space, ventricles, frontal lobe, basal
ganglia

7 years 8
months

II-III

Yamashita et
al., 2001 [4]

43 F T7-T9 Brainstem, cerebellum, cerebral cortex 2 years III

Yan et al.,
2017 [5]

10 M
T11-L1, Conus
medullaris

Left apical lobe, right cerebellar vermis, corpus callosum,
basal ganglia and lateral ventricle

14 months IV

Vadhan et al.,
2020 (current
case)

39 F T10- L1
Mesial right temporal lobe, hippocampus and
subependymoma

8 months II-III

TABLE 1: Summary of previous reported cases of primary spinal gliomas with secondary
intracranial metastasis
Abbreviations: F, female; M, male; C, cervical spine; T, thoracic spine.
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The most common location for tumor involvement was the thoracic spine, which was in agreement in a
previous survey published by Linsenmann et al. [8]. Varying levels of resections were attempted (both within
the spine and brain), demonstrating no remarkable differences in outcomes.

Discussion
Tumors of the spinal cord can either be primary or (more commonly) of metastatic origin. Primary spinal
tumors are most often intramedullary and are rare even within the realm of CNS neoplasms, accounting for
less than 10% of all primary CNS lesions [18]. Among the intramedullary spinal neoplasms, astrocytomas and
ependymomas make up the majority of cases, with gliomas accounting for less than 0.22 per 100,000 [3].

While the isolated occurrence of these tumors is certainly uncommon, subsequent metastasis of these
lesions into the intraparenchymal space is even rarer.

A striking feature of our particular case was the supratentorial dissemination of the spinal lesion, which gave
a progressive and multifocal picture. Of note, although it is certainly possible that the brain metastases are
due to CSF dissemination and seeding during the initial surgery, it is also possible that the tumor
disseminated postoperatively, given the aggressiveness and invasiveness seen with the H3K27M mutation
profile.

The H3K27M mutation is an important consideration regarding high-grade gliomas, as the prognosis of
H3K27M gliomas remains poor, and even less favorable than Glioblastoma Multiforme (GBM), with few
options in treatment. One clinical trial worth noting has demonstrated efficacy and an exceptional safety
profile targeting gliomas with such mutations via a selective dopamine receptor D2/3 antagonist (ONC201),
regardless of age or tumor location [19]. 

Our assessment highlights several patterns regarding the presentation and treatment of these tumors. First,
primary spinal high-grade gliomas most commonly occur in young males (1.46:1 male: female) with a mean
age of 20 years old (95% CI 17.0 to 23.28). This is in stark contrast from primary intracranial gliomas, which
have a mean age of diagnosis of 60.4, as well as the overall incidence of primary spinal cord tumors overall
[19]. Second, and unsurprisingly, the typical presenting symptoms for patients with spinal astrocytomas and
cerebral metastasis are the result of cord compression (including pain, paresthesia, weakness, gait
imbalance, and incontinence). Third, with regards to treatment, surgical resection remains the mainstay of
treatment. However, despite such measures, survival outcomes remain poor, with increasing stage
correlated with decreased mean survival time (Figure 5). Interestingly, high-grade gliomas demonstrated a
similarly poor outcome relative to GBM. Both anaplastic astrocytomas and GBMs demonstrated reduced
mean survival time relative to low-grade astrocytomas when using an analysis of variance (p < 0.05).

FIGURE 5: Mean survival time among cases of primary spinal gliomas
with intracranial metastasis
Cases with advanced disease were classified according to the initial grade discovered.

*Anaplastic astrocytoma and GBM demonstrated a reduction in mean survival time relative to low-grade
astrocytomas and pilocytic astrocytomas

**Among the four reported cases of pilocytic astrocytomas, only one study reported a mortality

In sum, given the consistent constellation of symptoms portraying cord compression, and the unique age of
presentation of high-grade spinal gliomas, we recommend providers maintain an index of suspicion for such
patient presentations in practice when instances of traumatic injury as a potential cause are not apparent.
Lastly, because secondary cranial metastasis is possible (although admittedly uncommon) we recommend
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routine brain imaging surveillance of all patients with primary high-grade gliomas.

Conclusions
Primary high-grade gliomas of the spine with cerebral metastasis is a rare occurrence with a poor prognosis
and most commonly presents in a unique patient population. Although surgical resection is commonly
attempted, tumor recurrence and three-year mortality still remain close to 100%. Following our evaluation
of the data, we recommend that providers maintain an elevated index of suspicion for spinal high-grade
gliomas in young persons who present with cord compression related symptoms outside the realm of
traumatic injury and that all patients with such tumors undergo aggressive surveillance imaging to monitor
for secondary cranial spread.
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