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Abstract

Background: Glioblastoma (GB, formally glioblastoma multiforme) is a malignant type

of brain cancer that currently has no cure and is characterized by being highly hetero-

geneous with high rates of re-incidence and therapy resistance. Thus, it is urgent to

characterize the mechanisms of GB pathogenesis to help researchers identify novel

therapeutic targets to cure this devastating disease. Recently, a promising approach

to identifying novel therapeutic targets is the integration of tumor omics data with

clinical information using machine learning (ML) techniques.

Recent findings: ML has become a valuable addition to the researcher's toolbox,

thanks to its flexibility, multidimensional approach, and a growing community of

users. The goal of this review is to introduce basic concepts and applications of ML

for studying GB to clinicians and practitioners who are new to data science. ML appli-

cations include exploring large data sets, finding new relevant patterns, predicting

outcomes, or merely understanding associations of the complex molecular networks

presented within the tumor. Here, we review ML applications published between

2008 and 2018 and discuss ML strategies intending to identify new potential thera-

peutic targets to improve the management and treatment of GB.

Conclusions: ML applications to study GB vary in purpose and complexity, with posi-

tive results. In GB studies, ML is often used to analyze high-dimensional datasets

with prediction or classification as a primary goal. Despite the strengths of ML tech-

niques, they are not fail-safe and methodological issues can occur in GB studies that

use them. This is why researchers need to be aware of these issues when planning

and appraising studies that apply ML to the study of GB.
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1 | INTRODUCTION

Glioblastoma (GB, formally glioblastoma multiforme) is one of the

most aggressive types of brain cancer because of its rapid progression,

poor response to treatment, and limited survival rate.1 The current

treatment includes surgical resection of the tumor if possible,

followed by radiotherapy accompanied with temozolomide (TMZ) reg-

imen1-6; however, tumor reappearance and resistance/adaptation to

treatment are high. The poor prognosis has been associated with mul-

tiple factors including tumor heterogeneity, poor immune response,

infiltration of the tumor into “healthy” tissue, generation of cancer

stem cells, and the fast adaptation of the tumor to aggressive treat-

ment. Therefore, there is an urgent need for novel therapeutic targets

and drugs to cure or slow down this devastating disease.

Despite the significant accumulation of clinical, pathological, and

omics data gathered by high screening platforms of thousands of
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samples from healthy and GB individuals, in retrospective as well as

ongoing cohorts, no new standard treatment has been approved.2,7

We quote Micheel et al to define omics as “scientific disciplines com-

prising the study of related sets of biological molecules. Examples of

omics disciplines include genomics, transcriptomics, proteomics, met-

abolomics, and epigenomics.”8 In general, the analysis of these large

data sets is difficult for several reasons. First, the integration of data

from different sources suffers from intrinsic heterogeneity at different

levels, including biological sample type and recollection protocol,

tumor development, and patients' genetic and environmental factors.

Second, depending on the type of analysis, result interpretation may

require additional adjustments, like false discovery rate corrections in

genome-wide association studies.9,10 Third, most of these analyses

focus on association studies to identify DNA mutations or

upregulated and downregulated genes present in the more abundant

cell subpopulation, excluding those that belong to small cell

populations such as GB stem cells (GBSC) or subcellular structures like

tunneling nanotubes (TNTs), which are essential for tumor coloniza-

tion, growth, and adaptation to treatment.11-13

The use of computer-intensive methods in data analysis such as

machine learning (ML) is growing and has become a science on its

own. ML corresponds to the study and development of algorithms

and models for automated learning from large and multidimensional

data. Currently, most biological studies involving the analysis of large

data sets contemplate the use of computational methods such as

ML.14 The use of these techniques has multiple benefits, including

exploiting complex relationships in high dimensional settings.15 Evi-

dence of the increasing popularity of ML-based strategies in cancer

research is reflected in the increasing number of publications associ-

ated with the terms “cancer” and “machine learning” from 2008 to late

2018 (Figure 1).

ML enables researchers to perform complex analyses of large

databases to predict or to understand the pathogenesis of several dis-

eases, including cancer.16-18 As defined by Beam and Kohane, ML can

be seen as a “continuum between fully human-guided vs. fully

machine-guided data analysis” based on the level of specification of

the assumptions built into the model.19 Briefly, if the analysis con-

siders a fully machine-guided study, the model would be able to learn

a particular task with little or no human instruction. This facilitates the

analysis of large data sets involving several variables, including the

integration of different types of data for precision medicine applica-

tions.20 In contrast, in a fully human-guided analysis, the model would

consider variable specification, distribution, and relationships, among

other considerations, as is the case when developing a prognostic

model.21

Unlike traditional inference analysis, which focuses on parameter

estimation based on sample data, ML algorithms use sample data

either to predict an outcome based on a set of predictor variables (ie,

a supervised learning problem) or to find patterns in the input data (ie,

unsupervised learning problem). Another important difference is that

most ML methods can be applied to examine high-dimensional data,

such as when the number of variables surpasses the number of sub-

jects or observations.22

Even though both traditional statistical inference and ML can be

affected by study design, ML has the key advantage of using algo-

rithms that can learn from the data while making minimal assumptions

about the data-generating process.22 For instance, most traditional

statistical methods assume relationships between the outcome and

the predictors that are either linear or not very complex (eg, quadratic,

exponential, or logarithmic). In contrast, thanks to the use of efficient

optimization algorithms, ML techniques can be more flexible models,

which can exploit the complex relationships between outcomes and

predictors to learn more about the underlying relationships in high-

dimensional settings.

Here, we will describe different ML techniques that have been

used over the last decade to study GB pathogenesis, and the positive

and the negative aspects of the analyses. We will also discuss their

limitations as well as suggest potential improvements based on new

methodologies. Subsequently, validation practices for ML methods

and applications for the examination of targeted cell populations and

subcellular structures such as TNTs are challenged. Finally, figures to

describe the more common ML techniques used in GB research for

researchers starting in these ML techniques are provided and

explained.

2 | SUPERVISED MACHINE LEARNING
TECHNIQUES

Currently, most of the multiple clinical outputs of GB pathology, treat-

ment, and clinical evolution have been studied using traditional statis-

tical models based on pathology, clinical, molecular, imaging, and

omics analyses.9,23-28 Despite the success, these models are limited to

exploring a restricted number of predictors simultaneously.

F IGURE 1 The increasing popularity of ML-based strategies in
cancer research, as seen in PubMed from 2008 to 2018. The gray line
represents the percentage of publications in PubMed's “cancer”
subject that includes the MeSH term “machine learning”, while the

numbers shown in boxes correspond to the actual number of such
publications. The information for doing this plot was downloaded on
26 April 2019 from PubMed's search results using the “Results by
year” option. The search terms used were: cancer [sb] (for the number
of publications in “cancer” subject) and "Machine Learning" [Mesh]
AND cancer [sb] (for the number of publications in “cancer” subject
that include the MeSH term “machine learning”)
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Conversely, computational models based on ML have been created to

achieve these goals in high-dimension spaces, and therefore allow

exploring a whole set of predictors simultaneously (see description

below and differences in Figures 2–8).

Supervised models attempt to predict or classify an outcome of

interest (the response variable) using the information from a pool of

predictors (ie, explanatory variables). An example of response variable

could be the primary outcome of a clinical trial. The response can be

either quantitative (eg, survival time) or categorical with two or more

possible outcomes (eg, good vs poor prognosis or the subtype of

tumor). Then, supervised ML problems are classified into either predic-

tion or classification problems if the response is quantitative or cate-

gorical, respectively. However, in basic and clinical sciences,

researchers and clinicians have been more interested in the second

one; that is, to classify patients in terms of prognosis or response to

treatment.

2.1 | Support vector classifiers and support vector
machines

Among the most commonly used ML methods for GB classification

and clinical outcomes are support vector classifiers (SVCs). Starting

with two groups of observations as input, SVCs search for a

mathematical linear function in the high-dimensional data space that

can separate both groups (Figure 2A-C). For example, SVCs can be

used to predict tumor behavior (outcome), eg, proneural vs multiforme

tumor subtype, based on omics data (input). The potential disadvan-

tage of SVCs is that the outcome classes may not be linearly separa-

ble. In such cases, SVCs use a soft margin—which is why SVCs are

also referred to as soft margin classifiers—that prevents model over-

fitting and subsequent loss of generalizability at the cost of risking

misclassification of some observations as indicated in the examples

shown in Figure 2D-F.17 Thus, for this kind of classification, it is

important that the data can be separated by a linear boundary; other-

wise alternative methods need to be considered.

An example of SVC application to predict survival and molecular

subtype in patients with GB was described by Macyszyn et al.29 The

authors fitted six SVC models using preoperative MRI data from a ret-

rospective cohort to predict two different outcomes: OS (categorized)

and the GB molecular multiclass outcome (neural, proneural, classical,

and mesenchymal, according to one of their references). The authors

demonstrated that SVCs could be extended for multiclass classifica-

tion using separate SVCs; each one was used to discriminate among

each of the four GB molecular subtypes and the remaining three,

using the majority vote as the final prediction. Moreover, the authors

combined the results from two SVCs to predict OS; one to distinguish

between patients surviving less/more than 6 months, and another

F IGURE 2 A hypothetical example of sample
subtype classification using support vector
classifiers (A-C), soft margin classifiers (D-F), and
support vector machines (G-I). A, data from two
different subtype samples, represented by circles
and stars projected onto a plane made of two
molecular features (mol1 and mol2). B, possible
linear separation of both groups of subtype
samples by two different hyperplanes (lines).
Samples classified as circles are shown in white,
whereas samples classified as stars are shown in
black. C, the optimal hyperplane is the linear
combination of molecular features (solid line) that
maximizes the margin between itself and its
closest observations (dashed lines). D, as in A, but
now both groups of subtype samples cannot be
perfectly separated by hyperplanes. E, allowing
some classification error makes it possible to
separate both groups by a hyperplane (solid lines)
that maximizes the margin (dashed lines). F, the
amount of classification error that is allowed
affects the shape of the linear boundary that
separates both groups. G, like in A, but now a
linear boundary will not work well for separating
both groups. H, the same samples but projected
onto a possible expansion of the original feature

space by using a kernel function. In this new
space, both tumor subtypes groups can be
separated by a hyperplane (solid tilted plane)
which maximizes the margin between both groups
(dashed tilted planes). I, in this example,
hyperplanes from the expanded feature space
look like ellipses in the original feature space
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between less/more than 18 months, to generate a single “survival pre-

diction index” that was ultimately used to classify patients into long,

medium or short-term survivors. Using a separate prospective cohort,

they obtained accuracies or percentages of correct predictions close

to 80% for survival and 76% for GB molecular class. Overall, this

example shows the flexibility of SVCs to combine its results to reach

good predictions in multiclass settings, even though originally SVCs

distinguish between two classes only.29

Although SVCs are sometimes referred to as support vector

machines (SVM, discussed below), we prefer to make a distinction

between them, as they achieve classification differently. SVMs (also

known as kernel SVMs) become useful when the outcome cannot be

separated by a linear boundary. SVMs are an extension of SVCs that

use a kernel function, which is a mathematical transformation applied

to the nonlinear/nonseparable data, accommodating data in an

enlarged feature space where the separation of outcome classes is

possible and translates into a nonlinear boundary in the original space

(Figure 2G-I). The technicalities of this method are beyond the scope

of this review, but further details can be found in Hastie et al.18

For example, Korfiatis et al30 used SVMs with a particular type of

kernel named Gaussian Radial Basis Function to predict already known

MGMT gene methylation status in a sample of tumors based on poten-

tial biomarkers of MRI texture features (correlation, energy, entropy,

and local intensity of T2-weighted images). The best SVM classifier,

based on the four MRI texture features mentioned above, had a maxi-

mum area under the receiver-operating characteristic (ROC) curve of

0.85, with sensitivity and specificity at the optimal threshold of the

ROC curve of 0.803 and 0.813, respectively. Using the model, SVMs

could predict MGMT methylation status in preoperative GB tumors

using MRI texture features and therefore assess prognosis in a nonin-

vasive way.30

A different example of SVM application in brain tumor classifica-

tion is the work of Metsis et al,31 where the authors used SVMs to

classify different brain tumor types (GB, anaplastic astrocytoma,

meningioma, schwannoma, and adenocarcinoma), with the main

objective of identifying potential tumor biomarkers based on two

independent and heterogeneous data sets: magnetic resonance spec-

troscopic (MRS) metabolite and microarray gene expression informa-

tion. After feature selection of MRS metabolite and microarray gene

expression, tumor classification accuracy showed to be improved from

61.7% (gene expression data only) and 78.7% (MRS data only) to

87.2% when both types of data were used in the SVM model,

although the results should be considered carefully because of some

unclear qualitative aspects of their samples discussed below.

Finally, SVM-based classification can also be achieved by first

using an SVM regression model to predict a quantitative response that

is ultimately used for classification. As an example, Mao et al32 used

the regression approach to classify mutation types in GB and ovarian

cancer based on structural and evolutionary features used by over

10 already known algorithms (eg, CHASM, SIFT, and

MutationAssessor) that discriminate deleterious mutations from non-

deleterious ones. To address the imbalanced number of driver and

passenger mutations in the training set, the authors used a weighted

version of SVMs, implemented in an annotation tool that they named

CanDra. The use of weights into data allows unbalanced classes to be

equally represented during the classification process; minority classes

get higher weights, while majority classes get lower weights. Subse-

quently, the resulting outcome value was used to classify every muta-

tion into one of three categories: driver (if its score greater than the

90th percentile), passenger (if less than the 10th percentile), or as a no

call. More details about their implementation are available at https://

bioinformatics.mdanderson.org/main/CanDrA. This method achieved

values of the area under the receiver operating characteristic curve

(AUC) of 0.911 and 0.941 in two independent validation datasets,

which compared favorably with those obtained by other similar

implementations (eg, CHASM with AUC of 0.890 and MutationTastor

with AUC of 0.923). Thus, this implementation can achieve a good

classification of cancer-type-specific driver mutations using a continu-

ous outcome.32

2.2 | Decision trees and random forest classifiers

A different supervised learning technique for tumor classification is

a decision tree (DT), which is an ordered set of splitting rules that

sequentially segments the predictor space into simple regions. The

goal of this ML technique is to obtain homogeneous regions with

every new segmentation (see example in Figure 3).17,33,34 Finding

the best DT among all the possible ones is, generally, a computa-

tionally prohibitive problem; thus, a heuristic approach becomes

necessary. A DT is usually allowed to grow, accrue splitting rules,

and then it is pruned to prevent overfitting. Every observation

within a region is then classified according to the most frequent

class in that region, segmenting the data into simpler homogeneous

subsets.

An example of DTs applied to the study of GB can be found in

the work of Gollapalli et al,35 who studied alterations in human serum

proteome of healthy and GB patients to identify potential biomarkers

for GB pathogenesis. The authors selected two sets of proteins after

the analysis of 2DE data (five proteins) and 2D-DIGE data (19 pro-

teins), and used each of these as the input for different DTs. The

resulting DTs achieved 93.75% accuracy in the test group (eight

healthy and eight GB patients for 2DE, 14 and 14 for 2D-DIGE). Inter-

estingly, the authors found similar results when compared with other

classification methods, such as SVMs and Naïve Bayes, indicating that

DTs can discriminate healthy from GB patients as accurate as other

known methods.35

Random forest classifiers (RFCs) are considered the next step in

DT-based models (Figure 4). RFCs are an ensemble method, ie, a

method that bases its results on the decisions obtained from a collec-

tion of methods that work on altered or perturbed versions of the

original data set. In RFCs, the collection corresponds to a set of DTs

that usually are not allowed to grow much (eg, no more than three

splitting rules). Every DT is grown using a bootstrapped sample

obtained by sampling with replacement from the original sample.

Then, several DTs are grown to build the forest, and then cast a
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majority vote, which the RFC uses to predict classes. Usually, the

growth of the forest is stopped when the results stabilize.

Several studies have used RFCs for cancer analysis.30,36-39 As a

representative example, Chang et al37 used RFCs to identify potential

biomarkers of carcinogenesis using imaging data as input to predict

bevacizumab response in recurrent GB patients. The RFC was trained

to predict patient OS based on pretherapy and post-therapy MRI data

from a retrospective cohort of patients. The RFC was trained using a

set of 84 patients and then tested in 42 patients. The results accuracy

was variable depending on the input used to predict OS. Despite

some sample limitations, their model, including both pre- and post-

therapy features, showed hazard ratios of 5.10 and 3.64 in the train-

ing and testing cohorts, respectively. This proved the high reproduc-

ibility of their results and their utility in assisting with the clinical

decision in patients with recurrent GB.37

In a different study, Kickingereder et al36 used RFCs to classify

molecular characteristics like methylation patterns and copy number

variations in patients with newly diagnosed GB, using multiparametric

and multiregional MRI features as input. The RFC method allowed the

authors to identify and predict the EGFR amplification status (ampli-

fied vs nonamplified) and the RTK II glioblastoma subgroup (“classic”

vs all other GB subgroups) with moderate accuracy (63% and 61%,

respectively). However, these overall results were not sufficiently

strong for reliable and clinical prediction of molecular features.36

Another example of RFC applied in GB research can be found in

the work of Korfiatis et al.30 These authors used a sample of GB

tumors with already known MGMT methylation status to train an RFC

model to classify such a state based on MRI-derived texture features.

On the basis of a stratified fivefold crossvalidation, RFC showed an

average AUC of 0.756 or 0.840, depending on whether the input cor-

responded to T1 postcontrast or T2 images, respectively. Their results

exemplify how supervised ML techniques like RFC can be used to

obtain noninvasive imaging correlate for MGMT methylation status in

preoperative GB tumors.30

2.3 | Deep neural networks

Deep neural networks (DNNs) are a different kind of supervised

method used in the study of GB, which allows working with nonbinary

data. Inspired by biological neural networks, DNNs consist of a set of

hidden interconnected layers of neurons or units that, just as neural

networks do, attempt to accomplish a specific task, eg, pattern recog-

nition (Figure 5). Once a neuron receives input from a source, these

observations are multiplied by weights that shape the future activa-

tion function that generates the output. DNNs have the capability of

learning throughout the process of net communication, and good

training to adapt and improve its predictions.16,40 Backpropagation is

F IGURE 3 A hypothetical example of sample
subtype classification using decision trees. A
and B, data from two different subtype samples,
represented by circles and stars, projected onto a
plane of two molecular features (mol1 and mol2).
A, a solid line at mol1 = a divides the feature
space into two, and samples are classified
according to the majority class in each of the
resulting partitions. Subtype samples classified as

circles are shown in white, whereas samples
classified as stars are shown in black. B, another
division is done within one of the previous
partitions, and samples are classified according to
the majority class of their group. C, a decision tree
representation of B. The starting group is called
the root node, while groups that are not further
partitioned are called terminal nodes or leaves.
The process of dividing groups by partitioning the
feature space is called splitting, and it is generally
done by considering one feature at the time to
produce homogeneous nodes

F IGURE 4 A hypothetical example of sample subtype
classification using random forest classifiers. A, the original data is
sampled with replacement k (hundreds or thousands) times,
generating a diverse set of resamples. B, each resample is used to
train a decision tree, creating a random forest. Classification of a
subtype sample can then be done by the most voted prediction
among the decision trees of the random forest

VALDEBENITO AND MEDINA 5 of 15



a common deep learning technique for training DNNs and allows

searching for the best scheme of weights that will cause the neural

network to have the lowest error for a training set because of the

minimization of the total loss function.16 The loss function reflects the

performance of the neural network, meaning how well this model

achieves the desired results.17,18 When the expected result for a train-

ing set is not obtained, a potential solution is to modify the weights in

backpropagation. This relatively recent application of neural networks

is becoming more common in brain cancer research studies.41,42 For

instance, Mohsen et al42 showed how DNNs could be used to classify

brain MRIs into normal, or three types of malignant brain tumors (glio-

blastoma, sarcoma, and metastatic bronchogenic carcinoma). Their

fitted model achieved an average rate of correct classification of

96.97% and an average AUC of 0.984, with these averages computed

using sevenfold crossvalidation (a validation scheme that we describe

later in this review).

A recent application of DNNs using magnetic resonance data

from BRATS 2013 and BRATS 2015 is the one from Hussain et al,41

who used convolution technology on artificial neural networks for

tumor segmentation into three categories: enhancing tumor, core

tumor (necrosis, nonenhancing, and enhancing tumor), and all tumor

classes. This technology groups artificial neurons into overlapping

regions based on how close these input neurons are to each other.16

In the case of image analysis, group artificial neurons must respect the

location of pixels and their proximity to emulate how biological eyes

process images. In contrast to DNNs, convolutional neural networks

(CNNs) do not consider every possible combination of weights but

share some of them, helping computational resources when dealing

with complex structures.

For model assessment, Hussain et al41 evaluated the accuracy of

their CNN-based algorithm using pixel-by-pixel sensitivity and speci-

ficity (correctly classified tumor and normal labels, respectively) and

dice score. For a given label, the dice score is twice the number of

pixels in which both predicted, and manually segmented labels coin-

cide, divided by the sum of the total number of pixels that were

predicted plus the ones manually segmented. Therefore, the dice

score measures the overlapping predicted output image with the man-

ually segmented labels. The authors obtained high dice scores for the

complete (0.86), core (0.87), and enhancing (0.90) tumor labels.

However, the most important result of this study was that CNNs out-

performed the “state-of-the-art” techniques in the analysis of BRATS

2013 and BRATS 2015 datasets.43 For instance, for BRATS 2013

database, the best implementation was one that used concatenated

features for RFC, which achieved dice scores lower than Hussain

et al.41 CNN implementation for labeling core (0.78 vs 0.89, respec-

tively) and enhancing tumor regions (0.74 vs 0.92, respectively), had

comparable results for labeling the whole tumor region (0.87). In the

case of BRATS 2015, one of the best previous methods was an imple-

mentation of deep CNN44 that focused on global information in con-

trast to the patch-based approach of Hussain et al. Comparing these

two approaches to analyze BRATS 2015 data, the latter approach

showed a higher dice score for the enhancing label (0.90 vs 0.72,

respectively), similar dice scores for core (0.87 vs 0.85, respectively),

and lower for complete (0.86 vs 0.92, respectively). Thus, deep learn-

ing shows us a complex and interesting branch of ML with successful

applications on image analysis for cancer research pattern recognition.

3 | UNSUPERVISED MACHINE LEARNING
TECHNIQUES

Another approach to learn from data is unsupervised learning, a set of

ML techniques that are mostly focused on the data structure, like the

relationships between variables, rather than predicting a particular

outcome, with the prospect of discovering patterns that lead them to

new hypotheses. In contrast to supervised learning, this method of

learning lacks supervision as there is no main outcome to predict or

classify; hence the name “unsupervised.” Overall, unsupervised ML

techniques focus on learning about the structure of the data, produc-

ing results that may be used as the input of further analyses as we

describe below.

3.1 | Principal component analysis

A popular unsupervised ML technique for analyzing quantitative fea-

tures is principal components analysis (PCA). This technique organizes

a large set of correlated features into a smaller number of

F IGURE 5 A hypothetical example of tumor
subtype classification using deep neural networks.
Data contain labeled T2-weighted MRI images of
proneural and mesenchymal subtypes of the
tumor. This fully connected multilayered neural
network has one input layer, three hidden layers,
and one output layer with two possible outcomes.
Each neuron (black dots) is multiplied by its weight
plus bias. Information on the weights is not shared

by the neurons as in convolutional neural
networks. Later the sum of these multiplications is
passed to an activation function that defines the
output of that neuron given a set of inputs. The
learning process will find which weights and
biases minimize the out-of-sample error measure
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representative variables called principal components (PCs) that

together explain most of the variability originally observed in the sam-

ple. PCs are constructed as linear combinations of the original fea-

tures such that they contain most of the variability of the data and are

linearly uncorrelated (see example in Figure 6).45 An example of PCA

application is the work of Akbari et al46 where PCA was used to pre-

process the time series contrast-enhanced MRI data down to a few

PCs that could capture most of the information on the temporal

dynamics of blood perfusion. PCA, in this case, served as a good data

reduction technique as it captured more than 99% of the variance in

the perfusion signal, so it quantified almost all the subtleties that

these time curves store. Moreover, each of these PCs conveyed dif-

ferent characteristics of the perfusion signal as inferred from a visual

exploration of them as a function of time.

Another use of PCA is to perform data visualization. The main

idea is that, if the first few PCs explain most of the variability

observed in the data, then the projection of the data onto the first

few PCs should result in a low-dimensional representation that cap-

tures most of the original information. As an example, Madhavan

et al47 used PCA to assist real-time data exploration and biological

hypothesis generation in the analysis of the Repository of Molecular

Brain Neoplasia Data (Rembrandt). PCA can be used to ordinate gene

expression data in two- or three-dimensional graphs that plot each

sample as a point at coordinates defined by the PCs, which in this case

are low-dimensional summary representations of the gene expression

data. Further visualization options, like filtering, sample coloring, and

selection, help the user to explore data in ways that would not be

practical to do gene-wise. Nowadays, this use of PCA can be found in

the Georgetown Database of Cancer or G-DOC platform

(Georgetown University, https://gdoc.georgetown.edu/gdoc/), which

encompasses a diverse collection of cancer datasets and analysis tools

to enable the integrative analysis of multiple data types to understand

their disease mechanisms.

3.2 | Clustering methods

If the objective of an analysis is to find groups of instances (eg, indi-

viduals) or clusters within the data, a collection of unsupervised ML

techniques known as clustering methods can be used. Most of these

techniques focus on finding discrete homogeneous groups of individ-

uals such that members within each cluster are similar to each other

by their features, as well as members from different clusters are dis-

similar to each other48 (see Figure 7). Normally, a hierarchical algo-

rithm output corresponds to hierarchical relationships between

observations in the dataset, such that at each level of the hierarchy,

clusters within the same group are more alike than those in different

groups (see example in Figure 7H). Starting with every instance in a

F IGURE 6 A hypothetical example of gene expression data
exploration using principal components analysis. Each dot represents
a subtype sample (e.g., tumor subtype) against its expression levels for
two genes. PCA captures two principal components (PC1 and PC2)

containing most of the variability in the data as indicated by the lines.
PC1 accounts for most of the variability of the data (61,4%), while
PC2 becomes the second to contain most of the variability (18%) of
the explored genes

F IGURE 7 A hypothetical example of
subtype data clustering using a
hierarchical agglomerative algorithm. A,
data from seven tumor samples projected
onto a plane made of two features. B–G,
samples, and groups of samples are
sequentially grouped, joining those who
are closer in terms of a metric or distance
measure and a linkage criterion. In this
example, the distance measure is the
Euclidean distance while the linkage
criterion is based on linking clusters with
the closest centroids first. H, dendrogram
representation of the clustering

procedure. If the distance represented by
the dashed line is used as a threshold for
deciding the number of clusters, we
would then identify three clusters: one
made of samples 1, 2 and 3, another made
of samples 5, 6 and 7, and sample 4 in its
own (singleton) cluster
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different cluster, this algorithm iteratively combines the least dissimi-

lar pair of groups according to a metric (a function describing the dis-

tance between pairs of observations) and a linkage criterion (a rule for

computing distances between pairs of groups).48

An example of a hierarchical clustering (HC) technique applied to

GB research is seen in the work of Bredel et al,49 where they applied

a two-way complete linkage clustering based on Pearson correlation

as the distance metric to discover both GB samples and landscape

genes that showed similar gene alteration patterns. “Two-way” means

that the algorithm was applied to a group individuals based on fea-

tures, and also to group features based on individuals; “complete link-

age” means that distances between groups are computed as the

maximum pairwise distance observed between the instances from

one group and the instances from the other group, using Pearson cor-

relation coefficient as a metric between instances. The authors found

two subgroups of GB samples that showed distinct profiles of chro-

mosomal alterations. These results led them to generate and test fur-

ther hypotheses, showing once again that unsupervised ML

techniques can be used for data exploration and hypotheses

generation.49

3.3 | Association rules mining

Another technique for finding structural patterns in an unsupervised

way is the association rules mining (ARM). Originally popular in market

research, ARM can identify frequent association rules (ARs) of the

form “if antecedents then consequents” from a set of lists containing

the items that are candidates to be antecedents and consequents.18

Although ARM is not as popular in cancer research as the other tech-

niques, Cremaschi et al50 used ARM to assist molecular-based cancer

research. In the study, the authors gathered information from differ-

ent cancer-related datasets found in the GEO Datasets Archive

(http://www.ncbi.nlm.nih.gov/gds); subsequently they obtained the

pairwise comparisons between the tumor and normal tissue samples

from those data sets, and finally obtained a list of differentially

expressed probes of long noncoding RNAs (lncRNAs) that were seen

in each of those pairwise comparisons. Then they used these lists as

input for the ARM algorithm and identified 102 nonredundant ARs,

from which they selected the one with the highest number of differ-

entially expressed lncRNAs. This last AR was found to be present in

comparisons from a subset of datasets of different kinds of human

brain tumors and had 13 lncRNAs, of which 10 were found to be con-

sistently up or downregulated in another gene expression database

obtained from the ArrayExpress archive (https://www.ebi.ac.uk/

arrayexpress/). These 10 lncRNAs were further investigated with

PCA to assess if they could help to distinguish between brain tumor

and normal samples, finding that this was the case. A further com-

odulation analysis followed by a gene enrichment analysis was done

and used to find that biological processes specific to the nervous

system could be compromised. This is a clear example of how

unsupervised ML techniques can be used to assist molecular-based

cancer research.50

3.4 | Deep learning models

Deep learning models (DLMs) can also be used to learn about the

hierarchical structure of data in an unsupervised learning setup. For

this, a DLM is composed of multiple layers of latent variables (ie, hid-

den layers). Each layer learns from the original data, and an alternative

representation of it, varying the degree of complexity within each

layer. In GB research, Young et al51 applied a DLM to cancer gene

expression data hypothesizing that a hidden layer was likely to repre-

sent the activation state of the signaling systems that regulate trans-

criptomic activities in cancer cells. These authors found that the

number of hidden elements in the first layer agreed with the number

of human transcription factors and, therefore, favored the interpreta-

tion of this layer as a representation of the transcription factors used

by cancer cells. Then, using six similar DLMs, they clustered GB sam-

ples based on gene expression, identifying six clusters of samples that

showed differences in patient survival. Further investigation of the

associations of these clusters with differentially expressed genes and

mutations led the authors to find many genes with functions or muta-

tions relevant to cancer. This example shows that it is possible to

study cellular signaling pathways without the need to concentrate on

a handful of (hypothesis-driven selected) molecular agents, but

instead, studying all the molecular agents that are measurable at once.

By using unsupervised DLM on the whole transcriptomic mixture of

expressed genes, regulated by active pathways, Young et al were able

to show how the hierarchical decomposition ability of this method

could reveal subtypes (clusters) of GB that encoded clinically relevant

information.51

To conclude this section, it is noteworthy to mention that

unsupervised or semi-supervised methods (ie, having a portion of the

data already labeled) tend to be less expensive regarding the compu-

tational resources and time they demand, whereas using supervised

methods for predicting or classifying data can take a longer time

to run.

4 | DISCUSSION OF MODEL ASSESSMENT,
VALIDATION, AND LIMITATIONS

As indicated in Figure 9, an important step after training an ML model

is assessment and validation. To that end, different measures of per-

formance and strategies may be used. Besides reviewing some basic

aspects of model assessment and validation, the focus of this

section is to discuss several aspects that need consideration as they

can pose significant limitations that cannot be overcome by ML tech-

niques and need the researcher's attention and evaluation.

4.1 | Appropriate use of machine learning
nomenclature

Because of the current increase in popularity and use of ML methods

in cancer research, it is important that researchers in health sciences
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become knowledgeable of the appropriate use of the ML nomencla-

ture to avoid misunderstandings and promote clear and reproducible

research.52 Misunderstandings can happen because of misconcep-

tions, like inaccurate definitions or misinterpretation of the results

achieved. For instance, clustering techniques used for finding a priori

unlabeled groups are unsupervised learning techniques, and thus it

would be wrong to present them as supervised, even if a posteriori

the group output is used to define classes within the data. Another

source of potential misunderstanding is interpreting the results of a

methodology beyond their intended scope. For example,

crossvalidation does not guarantee that results are generalizable to

other samples; in fact, generalizability must be sought by doing repli-

cation studies with the same target population.

4.2 | Is there a best technique to learn from the
data?

After explaining different ML techniques, the readers may have asked

themselves if there is one method that surpasses the rest. For

instance, we can argue that DNN is better than SVMs because the

first can work directly with complex image data structures, whereas

the second needs the user to handcraft input features (like the

preprocessed features as described for Akbari et al46 work). In this

respect, DNNs are considered better because they learn directly from

the data in a hierarchical manner, as its hidden layers “do” the

preprocessing.16

Although the flexibility to learn from highly complex data

structures is a desired property, sometimes restrictive but simpler

models can perform sufficiently well and have easier or more

straightforward interpretations regarding the model. Interpretability

is then another desirable characteristic of model assessment.

Ultimately, it must be remembered that if we intend to predict an

outcome, our efforts should concentrate on choosing the most

appropriate variables and data sets to achieve the best prediction

results for our ML model. Conversely, if instead of predicting an

outcome the goal is to assess an explicit association based on a

predefined biological hypothesis, then the use of an explanatory

model and traditional statistical inference may be of more

interest for finding the model that fits best to our theoretical

hypotheses.53

4.3 | Model assessment and model validation

Although we did not mention it, models fitted through ML techniques

are assessed in different terms depending on whether they are super-

vised or unsupervised, and whether the outcomes are continuous or

categorical. For instance, classifiers like SVCs, SVMs, DTs, and RFCs

are assessed regarding quantities that describe their classification

quality, very similar to how medical screening tests are assessed.

Therefore, classifiers obtained by using different inputs, or even dif-

ferent ML techniques, can be compared regarding their sensitivity,

specificity, AUC, and misclassification rates as described.17,18,54

Of course, model assessment based on the very same

dataset that was used to train the model is likely to result in over-

optimistic results (ie, overestimate the classifier accuracy). To

prevent this problem, different model validation strategies are

required.17,18,55 Considering the examples described above, the

most popular approaches for model validation are: (a) testing the

model in a dataset that is independent of the training dataset and

(b) performing a subsampling validation scheme known as

crossvalidation. A testing set independent of the training set may

be obtained by splitting the original sample or by sampling the

same study population from which the training set was

sampled, although this increases the costs of the study in most

cases.

Crossvalidation is a general algorithm that tries to balance the

benefits of splitting the dataset in training and testing sets to have

a better estimation of the accuracy of the trained model, with the

benefits of gaining fitting precision by using the whole sample to

train the model. For this, crossvalidation consists of dividing the

dataset into k subsets or folds (with k usually 5 or 10), leaving

each subset out at a time and using the rest to train a model that

is tested with the set that was left out at that time (Figure 8). This

crossvalidation produces k sets of estimates of model accuracy,

which gives the researcher a better idea of the accuracy of the

method. An alternative to this method is to use classical goodness

of fit measures, such as the Akaike information criterion (AIC),

Bayesian information criterion (BIC), Mallow's Cp or adjusted R2 as

described.17,53 For the sake of reproducibility and comparability

across studies, we suggest that researchers use more than one

measure for assessing their models, including (if possible) the ones

that have already been used in past studies.

F IGURE 8 A 5-fold cross-validation toy
example. A simple way to assess how well the
results from a model will generalize to
independent data is to create equal-sized
subsamples or folds from the original data set
and use each of these folds to test a statistical
model that has been trained with the data that
was not part of that respective fold. By the end
of this procedure, there will be as many model
assessments as folds, which helps to assess how
well the applied model will generalize to
new data
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4.4 | Preventing overfitting

If the investigators are working with parametric models in a high-

dimensional setting, overfitting can easily happen because of the

number of parameters being estimated. If left unaddressed, this prob-

lem can result in high estimated variances for the coefficients of the

model. Moreover, overfitting hinders the external validity or generaliz-

ability of the model results, resulting in poor predictions, classification,

or consistency of the discovered structures when the model is used in

new and independent data sets. To address this point, it is always rec-

ommended to address overfitting, for which simple strategies like

splitting the dataset or crossvalidation can be a good starting point as

described.17,18,53

It must be noted that not all ML techniques are equally prone to

the issue of overfitting. For instance, although DTs can be affected by

overfitting, random forests as an ensemble of DTs are less affected by

this problem. Alternatively, some techniques may be regularized to

prevent overfitting. For example, in neural networks, regularization

usually involves modifying the weights of the neural network as the

training is carried out. In DNNs, dropout is another commonly used

regularization technique, which consists of removing neurons as the

training progresses to prevent the network from becoming overly

dependent on any single neuron.16

4.5 | Dealing with missing data

Having to deal with missing data can occur when working with

large databases, for example, missing information on mutation sites

or clinical information of a patient because of a variety of reasons.

This is typical of high-dimensional space, either biological or clinical

data sets, where we can either ignore or impute the missing data.

The main recommendation is to investigate the missing data mech-

anism, which could be missing at random (MAR), missing

completely at random (MCAR), or missing not at random (MNAR).

The worst case is when data is MNAR because it cannot be con-

trolled by the researcher, the true population is misrepresented,

and thus future predictions based on the sample are not reliable.

For this reason, under the MNAR mechanism, we do not recom-

mend imputation, but to describe how the data was collected and

the reasons for missingness of the data.

When observations are MCAR, omission or imputation of data

could be a viable alternative. If we consider MCAR as a random sam-

ple of the data, omitting those values will not generate bias, but we

must be careful because reducing the sample size can reduce accuracy

and precision. Imputation can be performed in a classical procedure,

which is considering the mean or median of nonmissing observations

for that variable. A different approach could also refer to regression

models for imputation, which consider predicting a value for the miss-

ing observation by using a regression or ML model as described by

Ishwaran et al on the adaptative tree imputation.56

Regarding MCRA and binary data, we agree with Hastie et al18

that one way to diagnose that missingness is not happening entirely

at random is to include an indicator of missingness as a predictor and

check if this helps to predict the outcome. Furthermore, different

approaches can be used to deal with this problem. For example, in

Mao et al.,32 when selecting the best features for their SVM model,

they also applied an algorithm to deal with missingness called the k-

nearest neighbor algorithm, which replaces missing values using the

information from the k nearest mutations in the same gene being

studied.

Another example regarding MAR mechanism is found when work-

ing with RNA-seq data, which typically has observed zeros due to

technical (ie, batch effects) and biological variation. One way to tackle

the problem of an incomplete data matrix is to use an imputation

method that considers the distribution of counts in RNA-seq data. For

example, some proposed methods that comply with this are the

Poisson mixture model, Bayesian Poisson regression, and zero-inflated

Poisson.57 There are many options to consider for missing data impu-

tation and as Baghfalaki et al57 suggest, using the one which outper-

forms the others in a training-testing approach can be considered as a

suitable approach to select one.

4.6 | How to deal with representation in low cell
populations?

In general, profiles of small populations of cells, such as cancer stem

cells, are masked because of their low abundance in the bulk of the

tumor that is composed mostly of proliferating cells and immune cells.

Both conventional and ML-based statistical methods cannot resolve

this problem because the signals of interest are weakened because of

the measurement limitations of the experimental design. This problem

is a direct consequence of searching for associations between survival

and gene expression data derived from whole blood samples instead

of, for example, cancer stem cells.9 The sample cells of interest are

diluted in a larger population of cells.

For instance, in RNA-seq data, the low relative abundance of

cancer stem cells can result in missing read counts for genes that

are differentially expressed in the underrepresented cell subpopula-

tion. If this is the case, imputation methods could be used as an

alternative approach to “rescue” some of the signals. Using this

imputed data matrix, ML methods will enable the processing of all

the available information simultaneously to generate a fuller con-

ceptual framework. Most of the development of these methods is

required and urgent for targeted exploratory identification of novel

biomarkers of disease.

For example, in GB and other types of tumors, a rare subpopula-

tion of cancer stem cells or subcellular structures such as TNTs has

been described.11-13 In the area of GBSC, this cell population is char-

acterized by their self-renewing proliferation properties, resistance to

treatment, and differentiation into multiple cell types. Moreover,

these cells give rise to new tumors after therapeutic eradication of

the primary tumor. Thus, it is essential to understand their properties

and to identify their contribution to tumor development, treatment

resistance, and survival. To study this small population, it is better to
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consider the hierarchical structure of this subpopulation of cells while

designing the study. Thus, using exclusive data coming from the bulk

of the tumor is not enough, and single-cell data need to be consid-

ered. The adaptation of the ML methods to work with an omic hierar-

chical structure is a research area of interest in GB treatment and is

still in development.

4.7 | How to deal with class imbalance?

Another issue related to representativeness is class imbalance. This

problem arises when the classes to be predicted have relative fre-

quencies that are too uneven, making the training model biased

towards favoring the majority class. The latter occurs because the

trained model seems to be more accurate, even though it fails to

detect the rarer instances that are of interest to detect in the first

place. Mao et al32 faced this issue when trying to predict driver muta-

tions in cancer, as these happen in a low proportion compared with

passenger mutations. To tackle this problem, the authors used a

weighted version of SVMs.

A different approach for the class imbalance problem is to use

resampling strategies to produce balance.58 Undersampling, for exam-

ple, consists in extracting a smaller random sample from the majority

class, such that this one is used instead of the original majority class.

Another resampling strategy is oversampling, which means adding

instances from the lesser class through duplication or slightly altered

copies. Although these strategies should be repeated to assess the

stability of the results, each time that they are used, they risk losing

information (when undersampling) or overfitting the data (when

oversampling).

4.8 | Sampling

Despite the efforts of gathering information for GB and subsequent

analyses, sometimes results can be misunderstood in light of the study

design used to obtain the sample subjects. In the field of health sci-

ences, dealing with convenience samples or independent databases

becomes a relatively regular practice considering the limitations

encountered by clinicians (ie, accruing patients of low-prevalence dis-

eases), which makes them prioritize availability and accessibility to

patients over sample representativeness of the population. In brief, it

is important to acknowledge the limitations of each of these data-

bases when reporting our results.

Using nonprobabilistic samples can lead to biased and non-

generalizable results, so it quickly becomes imperative that

researchers clearly state what their target population, study popula-

tion, and sampling method are before concluding or making

inferences from their results. A good start could be a clear description

of the study design and sampling process that will generate the input

data of ML techniques, including the strong and weak areas of these.

Another reason to consider an initial and appropriate sampling

procedure is to assure independence between observations in our

data; that is, every individual contributes independent pieces of

information to the learning process. Dependence among individuals

can happen if, for instance, we ignore the hierarchy of our data (eg,

measures of subjects in different clusters or entities). Then, if our

sample is indeed highly correlated, we can expect our training and

testing sets to be highly correlated too. This redundancy in informa-

tion can jeopardize the generality of the results because of the train-

ing and testing sets not being representative of the target

population. For instance, we realized that one of the cited manu-

scripts31 did not fully describe nor consider the samples' hierarchical

aspect when running the analyses, having more than one biological

sample per subject for some of the individuals, and thus the risk of

data redundancy because of pseudoreplication could be a potential

problem.31

4.9 | Additional ML techniques

The reader must be aware that only a small sample of the available

spectrum of ML methods have been described here. Moreover, most

of these techniques can be modified to change the type of learning

problem or analysis. Therefore, there is a vast array of options of sta-

tistical models waiting to be applied in the field of brain cancer

research. For instance, random forests can be modified to predict

quantitative outcomes that are subject to censoring data (eg, OS),

resulting in a supervised learning technique known as random survival

forests that allow learning about how features are associated with

patients' survival time.56

As for unsupervised learning, there are several extensions of PCA

and a myriad of clustering algorithms. An example of an extension of

PCA is functional PCA (fPCA),59 which is applied to functional data

(eg, spectra and time series) to find PC functions that can be used to

describe the data better. Like in PCA, results from fPCA can be used

for exploratory data analysis or as a preprocessing step with an output

that is used as input in a supervised learning method. For example, if

fPCA were to be applied to MRS metabolite data from Metsis et al,31

we would be interested in checking whether different brain tumor

types show different (averaged) values of the PC functions (ie, differ-

ent patterns).

As mentioned before, there are many clustering algorithms,

most of which can be classified as either hierarchical or partitioning.

Partitioning methods, unlike HC, search for a predefined number of

groups or partitions in the data set. One of the most popular algo-

rithms for doing this is the K-means algorithm, which will assign

each observation to one of the predefined numbers (K) of groups.

For this, K-means iterates between two steps: firstly, the means of

the currently assigned clusters are recomputed, so the total cluster

variance is minimized; secondly, observations are reassigned to their

currently closest cluster mean so that the total cluster variance is

minimized. The algorithm is stopped once cluster assignments stabi-

lize or do not change.

To assess the validity of its results, the stability of the output

of the K-means algorithm is checked for several different starting
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random cluster assignments (random seeds), as well as for a

varying number of K (within a sensible range of values). An exam-

ple of the application of K-means can be found in the work of

Sturm et al,60 where the authors used this technique to discover

clusters of GB samples based on DNA methylation, finding six dis-

tinct biological subgroups that were characterized using further

analyses.

4.10 | Input variables justification

Considering the large quantity of data that ML models require, scien-

tists interested in predicting prognosis or understanding associations

explaining the biology and tumor behavior may think that using all the

available information can help them to comply with the data size

requirement. Nevertheless, it is pertinent to always explain the inclu-

sion of every variable in the input of any ML technique, as this exer-

cise can save time, resources, and lead to better performance.

As an example of this last point, Wang and Liu61 recently used a

weighted version for random survival forest, where they showed how

prediction accuracy could be improved by skewing the model to

choose highly connected genes on gene expression data. By using

these topologically relevant genes and signatures, they were able to

obtain robust prognostic values with high biological relevance to the

development of GB and esophageal squamous cell carcinoma.61

The answers to questions like “Can this feature be measured in a

clinical setup?” or “Is it plausible that this feature is associated with

the biological process?” can help to justify the inclusion or exclusion

of variables. Two additional reasons for justifying input variables are

to prevent turning ML techniques into data dredging tools and the

fact that ML is not immune to the principle of “garbage in, garbage

out.”

5 | CONCLUDING REMARKS

So far, by using omics, researchers have been able to get closer to the

promise of precision medicine,14,62-64 especially now that ML is

becoming more and more popular and well-established in the clinical

arena. Moreover, ML consisting of flexible techniques that readily

allow the use of independent datasets32,41 or combined information

from different technologies as input31 makes us acknowledge and

address dependency limitations. To help researchers keep in mind

what we have discussed throughout this review, we have provided a

flowchart with general guidelines for using ML techniques in cancer

research (Figure 9).

Our manuscript focuses on GB because of its highly lethal out-

come and complex heterogeneity as a model for other cancers, which

we believe needs to be addressed through modern statistical ML

methods. Using such methods will allow us to reach the goal of learn-

ing about GB oncogenesis, elucidating the relationships between

targeted molecular structures, like TNTs and tumor development.

Finally, new developments in the ML arena are necessary to identify

therapies or drugs to eradicate GB.

F IGURE 9 A simplified roadmap to
the use of machine learning (ML)
techniques in cancer research. Major
stages are shown in dark-gray boxes,
while further details and summaries are
shown in light-gray boxes. Supervised ML

models differ on their flexibility to fit the
data and the level of interpretability that
their results exhibit. Unsupervised ML
methods can be used for: data reduction,
clustering, and structure discovery. Only
the ML techniques reviewed in this work
are included in this figure
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