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Abstract

The median survival time of lower grade glioma (LGG) tumors spans a wide range of

2–10 years and is highly dependent on the molecular characteristics and tumor

location. Currently, there is no prognostic predictor for these tumors based on

autophagy‐related (ATG) genes. A prognostic risk score model based on the most

significant seven ATG genes was established for LGG. These seven genes, including

GRID2, FOXO1, MYC, PTK6, IKBKE, BIRC5, and TP73, have been screened as po-

tentially therapeutic targets. The Kaplan–Meier survival curve analyses validated

that patients with high or low risk scores had significantly different overall survival.

Following the multivariate Cox regression and area under the ROC curve (AUC)

analysis, a final prognostic model based on age, World Health Organization grade,

1p19q‐codeletion status, and ATG risk score was performed as an independent

prognostic indicator (training set: p = 4.09E−05, AUC = 0.901; validation set‐1:
p = .00069, AUC = 0.808; validation set‐2: p = .0376, AUC = 0.830). Subsequently, a

prognostic nomogram was constructed for individualized survival prediction. The

calibration plots showed excellent predict efficiency between probability and actual

overall survival. In this study, we provided several potential biomarkers for further

developing potentially therapeutic targets of LGG. We also established a prognostic

model and nomogram to improve the clinical glioma management and assist in-

dividualized survival prediction.
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1 | INTRODUCTION

Lower grade glioma (LGG) is categorized as diffuse and anaplastic

gliomas (including World Health Organization [WHO] Grades II and

III, astrocytoma and oligodendroglioma; Furnari et al., 2007). Despite

aggressive therapeutic strategies, such as neurosurgical resection,

radiotherapy, and chemotherapy, patients with LGG have a median

survival time of 2–10 years depending on the age of the patient, the

Abbreviations: ATG, autophagy‐related; AUC, area under the ROC curve; CGGA, Chinese Glioma Genome Atlas; DE‐ATGs, differentially expressed ATG genes; FDR, false discovery rate;

GBM, glioblastoma multiforme; GO, Gene Ontology; GSEA, gene set enrichment analysis; GTEx, Genotype‐Tissue Expression Database; HADb, Human Autophagy Database; KEGG, Kyoto

Encyclopedia of Genes and Genomes; K‐M, Kaplan–Meier; LASSO, the least absolute shrinkage and selection operator; LGG, lower grade glioma; OS, overall survival; ROC, receiver‐operator
characteristic curve; TCGA, The Cancer Genome Atlas.
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molecular features, and tumor location (Bauchet & Ostrom, 2019;

Bready & Placantonakis, 2019).

Beyond mutant isocitrate dehydrogenase (IDH) and 1p/19q co-

deletion, there is a lack of promising biomarkers and comprehensive

models to predict clinical outcomes in patients with LGG (van den

Bent, 2010). Recent studies have attempted to characterize the

molecular basis for the histological and prognostic differences be-

tween LGG and glioblastoma multiforme (GBM; Rao, Santosh, &

Somasundaram, 2010). However, with improvements in bioinfor-

matics approaches, the use of novel biomarkers to precisely identify

biologic classes of LGG become possible. Profiling studies have also

led to the development of novel categorized methods based on the

molecular profile identified by using various bioinformatic analysis

(Petalidis et al., 2008).

Autophagy is the natural and regulated mechanism of the cell

that removes unnecessary or dysfunctional cargo. The lysosomal

degradation pathway mediated by autophagy‐related (ATG)

genes plays a fundamental role in cellular, tissue, and organismal

homeostasis including removal of dangerous cargo, renovation

during differentiation, and prevention of genomic damage in

cancer (Levine & Kroemer, 2019). The theoretical supports of

ATG genes in pathogenesis have been completed gradually in

biological processes (Mizushima, 2018; Ulasov, Fares, Timashev,

& Lesniak, 2019). To further elucidate potential progressive

processes, screening novel biomarkers and constructing a prog-

nostic model are essential.

To the best of our knowledge, there is no study to date that

has constructed a prognostic model for LGG. We constructed an

efficient, prognostically significant model composed of autophagy

signatures, and a promising nomogram to assess patients’ prog-

nosis of LGG.

2 | METHODS

2.1 | Data retrieval and processing

The training set of LGG including RNA‐sequencing data and cor-

responding clinical information was downloaded from The Cancer

F IGURE 1 Flowchart for profiling the

autophagy‐related genes of LGG. Abbreviations:
CGGA, Chinese Glioma Genome Atlas; CI,
confidence interval; GESA, gene set enrichment

analysis; GTEx, Genotype‐Tissue Expression;
HADb, Human Autophagy Database; ILASSO,
least absolute shrinkage and selection operator;

LGG, lower grade glioma; ROC, receiver operating
characteristic; TCGA, The Cancer Genome Atlas

F IGURE 2 Volcano plot of differentially expressed ATG genes

between the LGG samples from TCGA database and normal
samples from GTEx database. ATG, autophagy‐related; GTEx,
Genotype‐Tissue Expression Database; LGG, lower grade glioma;

TCGA, The Cancer Genome Atlas
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Genome Atlas (TCGA; https://tcga-data.nci.nih.gov/tcga/). Two

validation sets of patients with LGG were downloaded from the

Chinese Glioma Genome Atlas (CGGA; http://www.cgga.org.cn/).

For differentially expressed analysis of ATG genes, the normal

brain tissues were downloaded from the Genotype‐Tissue Ex-

pression (GTEx) Database (https://www.gtexportal.org/). The ex-

pression levels of fragments per kilobase of exon model per million

reads mapped (FPKM) data were log‐transformed by log2

(FPKM + 1) for subsequent analysis. And the batch effects among

different datasets were adjusted by the ComBat method with

using R package “sva.” The ATG genes of all tissue were obtained in

the Human Autophagy Database (HADb; http://autophagy.lu/).

Only cases with the primary tumor, postoperative overall survival

(OS) of more than 30 days and with no adjuvant therapy pre-

operatively were included in our study. The schematic of the

analysis flowchart is shown in Figure 1. All analyses were per-

formed using R under version 3.5.1.

2.2 | Identification of differentially expressed ATG
genes and enrichment analysis

The differentially expressed ATG genes (DE‐ATGs) between the LGG

and normal samples were identified by the Wilcox test. Adjusted

p values (adj. p) were applied to correct the false‐positive results by

using the false discovery rate (FDR) method (Benjamini & Hochberg,

1995). Adj. p < .05 and |fold change (FC) | > 1 were considered the

cutoff values for identifying DE‐ATGs (Wang et al., 2019).

Here, we figure the volcano plot to show the DE‐ATGs of TCGA.
A total of 214 ATG genes, from HADb, provide a complete list of

human genes and proteins in autophagy as described in the literature

from PubMed and other public biological Databases (Moussay

et al., 2011). The DE‐ATGs that were considered significant for fur-

ther analysis were then visualized by heat map analysis.

To better explore the biological mechanism associated with DE‐
ATGs, the functional annotation and pathway enrichment analyses of

F IGURE 3 (a) Heatmap and (b) the gene expression levels of differentially expressed ATG genes between the LGG samples from TCGA
database and normal samples from GTEx database. ATG, autophagy‐related; GTEx, Genotype‐Tissue Expression Database; LGG, lower grade
glioma; TCGA, The Cancer Genome Atlas
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Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) were used with the R package “ClusterProfiler” (Yu, Wang,

Han, & He, 2012).

2.3 | Construction and validation of the prognostic
risk score model

Univariate/multivariate Cox regression analysis was performed on

DE‐ATGs of the training cohort in TCGA to identify the association

between the expression levels of the genes and patients' OS using

the “survival” package in R (http://bioconductor.org/packages/

survival/; Linden & Yarnold, 2017).

The least absolute shrinkage and selection operator (LASSO) Cox

regression analysis is ideal for high‐dimensional data (Tibshir-

ani, 1997). We performed the LASSO Cox regression model to de-

termine the optimal coefficient and to calculate the deviance

likelihood. The coefficients and deviance were calculated with the

“glmnet” package in R. According to each coefficient, the DE‐ATGs
were divided into high‐ and low‐risk subgroups based on the median

risk scores. The prognostic model for OS was calculated by multi-

plying the expression level of each DE‐ATGs and corresponding

coefficient.

To assess the efficiency of the prognostic risk score model,

scatter and heat map plots have been shown as differentially sig-

nificant OS. Kaplan–Meier (K‐M) survival curve analysis was also

F IGURE 4 The top significant categories of functional enrichment analysis in the (a) GO analysis and (b) KEGG analysis. GO, Gene Otology;
KEGG, Kyoto Encyclopedia of Genes and Genomes
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performed to further estimate the associations between two differ-

ent subgroups and OS. Time‐dependent receiver operating char-

acteristic (ROC) curves with censored data, “timeROC” package in R

(Blanche, Dartigues, & Jacqmin‐Gadda, 2013), was used to generate

the area under the ROC curve (AUC). The performance of the DE‐
ATGs‐based prognostic model was validated by the CGGA validation

sets 1 and 2 in similar ways.

The evaluation of autophagy signature as an independent parameter

was conducted by integrating the following clinical parameters into the

univariate and multivariable Cox regression analysis: age, gender, grade,

IDH‐mutated, O[6]‐methylguanine‐DNA methyltransferase‐promoter‐
methylated, 1p19q‐codeletion, and risk score.

2.4 | Construction and validation of the nomogram

All the independent prognostic factors were identified by univariate

and multivariate Cox regression analysis to construct a prognostic

nomogram to assess the OS probability at 1, 3, and 5 years for pa-

tients with LGG by the “rms” package in R (https://cran.r-project.org/

web/packages/rms/; Qian et al., 2018).

2.5 | Gene set enrichment analysis

Gene set enrichment analysis (GSEA; http://software.

broadinstitute.org/gsea/index.jsp) was performed to identify sig-

nificantly enriched groups of all ATG genes, corresponding path-

way, and oncogenic mechanisms (Subramanian et al., 2005).

Nominal p < .001, FDR q < 0.013, and the absolute value of normal

enrichment score > 1.99 of the enrichment gene sets were

screened as representative.

F IGURE 5 (a) The most 13 prognostic‐related ATG genes. (b)

Construction of prognostic signatures based on LASSO Cox analysis.
ATG, autophagy‐related; LASSO, least absolute shrinkage and
selection operator

F IGURE 6 (a–c) The upper part of each dot indicates the distribution of patients’ survival times and survival status. (d–f) The middle
part represents the risk score curve. Color transition from green to red indicates the increasing risk score of corresponding expression level of

ATG genes from low to high. (g–i) The bottom part of heat map shows the ATG signatures of every patient with LGG. ATG, autophagy‐related;
LGG, lower grade glioma
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3 | RESULTS

3.1 | Information access and analysis flowchart

We obtained 214 ATG genes of patients with LGG from HADb

(Table S1). Patients with nonapplicable clinical parameters were

excluded. A total of 21 significant DE‐ATGs between the LGG

samples from the TCGA database (n = 529) and normal samples

from the GTEx database (n = 207) were identified (Figures 2 and 3

and Table S2).

3.2 | Functional enrichment analysis

In the GO analysis, a total of 994 categories were detected. The DE‐
ATGs sets were enriched into biological process, cellular compo-

nents, and molecular function classes, such as calcium‐mediated

signaling and protein phosphatase binding pathway (Figure 4a). In the

KEGG analysis, a total of 46 KEGG pathways were also detected such

as human cytomegalovirus infection (hsa05163), cellular senescence

(hsa04218), and ErbB signaling pathway (hsa0012; Figure 4b).

3.3 | Construction and evaluation of the prognostic‐
related ATG‐based risk score model

The most 13 ATG genes significantly correlated with prognostic‐
related were identified on the 21 candidate genes in the training

set (p < .05; Figure 5a). By using LASSO Cox analysis and multi-

variate Cox regression analysis, a prognostic model based on

seven genes was developed (Figure 5b), which was considered to

be an ideal predictor with the following formula: risk score =

expression level of GRID2*(−0.689) + expression level of FOXO1*

(0.925) + expression level of MYC*(−0.83) + expression level of

PTK6*(−0.932) + expression level of IKBKE*(−0.82) + expression

level of BIRC5*(−0.626) + expression level of TP73*(−0.758)

(Table S3).

Subsequently, we calculated the prognostic risk scores for all

patients with LGG in the training set and the two independent vali-

dation sets. Based on the median risk score, the patients were di-

vided into high‐ and low‐risk subgroups, which were associated with

distinct OS (Figure 6). The K‐M survival curve and AUC analysis

validated the performance of the prognostic model with well‐
performing in prognosis prediction (Figure 7).

F IGURE 7 (a–c) Kaplan–Meier curves of prognostic models for high‐ and low‐risk subgroups of patients with LGG. (d–f) Area under the ROC

curves of prognostic prediction models for LGG within 1, 3, and 5 years. AUC, area under the ROC curve; LGG, lower grade glioma; ROC,
receiver‐operator characteristic curve
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3.4 | Identification of the autophagy signature as an
independent prognostic factor

The clinicopathological parameters of patients with LGG in the

training set and two validation sets are shown in Table 1. Following

the multivariate Cox regression and AUC analysis, the prognostic

model remained a moderate and independent prognostic indicator

(training set: p = 4.09E−05, AUC = 0.901; validation set‐1: p = .00069,

AUC = 0.808; validation set‐2: p = .0376, AUC = 0.830; Table 2 and

Figure 8).

3.5 | Construction and evaluation of the nomogram

A prognostic nomogram was constructed to predict the OS

probability at 1, 3, and 5 years based on the training set

of patients with LGG (Figure 9a). The four significantly in-

dependent parameters including age, grade, 1p19q‐status, and
autophagy signature were recruited in this prognostic model. The

calibration plots displayed excellent predict efficiency between

probability and actual OS in training set and two validation sets

(Figure 9b–j).

3.6 | Gene set enrichment analysis

GSEA analyses reveal that a total of 139 underlying biological pro-

cesses, especially in the group of high‐risk score, including cell cycle,

oocyte meiosis, pyrimidine metabolism, and focal adhesion pathway

(Table S4 and Figure 10).

4 | DISCUSSION

LGGs are a type of primary neuroepithelial tumor in the cerebrum.

Patients with LGG have a wide range of prognosis from 2 to 10 years

based on the molecular features of the tumor and the location within

the brain (Buckner et al., 2017). For an LGG, removal of the tumor

accompanying with chemoradiotherapy generally allows functional

survival for several years (Buckner et al., 2016). Increasing evidence

shows that the classification of primary LGG depends molecular di-

agnosis rather than tumor grade (Baumert et al., 2016; Cancer

Genome Atlas Research et al., 2015; Eckel‐Passow et al., 2015; Reuss

et al., 2015). These new notions should be considered in the overall

management of the treatment of patient with LGG. In this study, we

focused on comprehensive classification of LGG in adults on the basis

of clinical parameters and molecular characteristics composed

of WHO Grades II and III gliomas, including the histological types of

astrocytoma, oligoastrocytoma, and oligodendroglioma, to pre-

dict OS.

Recent developments in high‐throughput whole genome‐
sequencing technologies have promoted the identification of novel

autophagy signatures that allow for further exploration of the mo-

lecular pathogenesis of LGG. Several studies have identified prog-

nostic signatures by combining multiple genes for glioma. For

example, Liu et al. (2019) identified five novel prognostic pseudo-

genes capable of predicting patients with LGG survival based on a

risk score model. C. Zhang et al. (2019) established a four‐gene sig-

nature based on the chr1p/19q codeletion in patients with LGG. Zeng

et al. (2018) developed a three‐gene prognostic signature by an in-

tegrated analysis of genome‐wide methylation and gene expression

data. Xiao et al. (2020) also reported a three‐gene model of pre-

dicting short‐ and long‐term survival of patients with LGG. Although

these signatures have the potential to predict LGG patients’ survival,

the sample sizes of some studies were not enough and it is in-

sufficient to prove the signatures stability for limit samples and va-

lidity. In this study, we integrated the ATG genes and clinical

information of patients with LGG to identify prognosis‐related au-

tophagy signatures and construct prognostic model that could stra-

tify patients with LGG into subgroups with distinct OS for uncovering

potential molecular biomarkers. The prognostic model based on

these signatures had satisfactory performance in prognostic predic-

tion under two other validation sets. A nomogram composed of

clinical parameters and risk score also performs well in prediction of

OS probability. Our model was validated and possessed a stable

predictive efficacy in two validation sets. Moreover, comparing with

TABLE 1 Clinicopathologic parameters of patients with LGG in the
TCGA training set and CGGA validation sets

Training set Validation set‐1 Validation set‐2
Variables (n) (n = 477) (n = 199) (n = 139)

Age, years

<50 324 169 111

>50+ 153 30 28

Gender

Female 217 84 52

Male 260 115 87

Grade (WHO)

II 230 99 92

III 247 100 47

IDH‐mutated

Yes 392 148 103

No 85 51 36

MGMT‐promoter‐
methylated

Yes 394 N/A N/A

No 83 N/A N/A

1p19q‐codeletion
Yes 157 62 52

No 320 137 87

Abbreviations: CGGA, Chinese Glioma Genome Atlas; IDH, isocitrate

dehydrogenase; LGG, lower grade glioma; MGMT, O[6]‐methylguanine‐
DNA methyltransferase; N/A, not available; TCGA, The Cancer Genome

Atlas; WHO, World Health Organization.
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other corresponding studies, our model showed satisfactory perfor-

mance in predicting the 1‐, 3‐, and 5‐year survival of patients with

LGG through time‐dependent ROC curve analysis. Therefore, we

established a promising prognostic model to assist individualized

survival prediction of patients with LGG.

ATG pathway selectively targets intracellular microbes, dys-

functional organelles, and pathogenic proteins (Levine & Kroemer,

2019). This process is conserved in all eukaryotic organisms. It is

essential for cellular homeostasis, stress proteins, and organismal

adaptation to environmental stress (Mizushima & Komatsu, 2011). To

date, 16 “core” ATG genes have been identified, which are commonly

used by both nonselective and selective macroautophagy, and the

others are exclusive to the selective autophagy of various organelles,

including mitochondria, endoplasmic reticulum (ER), lipid droplets,

peroxisomes, ribosomes, and the nucleus (Nakatogawa, Suzuki,

Kamada, & Ohsumi, 2009; Parzych, Ariosa, Mari, & Klionsky, 2018).

F IGURE 8 Area under the ROC curves of

risk scores and clinicopathologic parameters
for patients with LGG in training set and two
validation sets. LGG, lower grade glioma; ROC,

receiver‐operator characteristic curve
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The numerous links between mutations in selective autophagy genes

and human diseases emphasize the physiological importance of

selective autophagy. The role of autophagy in promoting genomic

stability is consistent with its role in tumor suppression. Autophagy

acts to dampen protumorigenic inflammation and to enhance adap-

tive immunity in myeloid cells by enhancing antitumor cytotoxic

T lymphocyte responses and contributing to the antitumor efficacy of

radiochemical therapy (Drake, Springer, Poole, Kim, & Macleod,

2017; Galluzzi, Buque, Kepp, Zitvogel, & Kroemer, 2017; Wu

et al., 2017; Yan et al., 2016; Z. Zhang et al., 2019). Wu et al. (2017)

reported that the role of autophagy in the antiangiogenic therapy

could improve the susceptibility of bevacizumab. In addition, there

has been some hypotheses that autophagy inhibitors could enhance

the benefits of TMZ chemosensitivity in the treatment of aggressive

gliomas (Yan et al., 2016). In parallel with the antitumor efficacy,

numerous studies have demonstrated protumorigenic roles of au-

tophagy, primarily in cancers driven by KRAS that require high cel-

lular metabolic activity to sustain survival (Kimmelman &

White, 2017), and ATG genes lead to maintain tumor cellular energy

production (Razaghi, Heimann, Schaeffer, & Gibson, 2018). There-

fore, autophagy plays an important role in cancer, both in protecting

against cancer as well as potentially contributing to the growth of

F IGURE 9 (a) A prognostic nomogram was constructed to predict the OS probability based on the training set of patients with LGG. (b–j)

The calibration plots validated excellent predict efficiency. LGG, lower grade glioma; OS, overall survival
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F IGURE 10 GSEA analyses reveal underlying biological processes on ATG genes. ATG, autophagy‐related; GSEA, gene set enrichment
analysis
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cancer. Further progress in our understanding of autophagy biology

would clarify the roles of the process in the growth of cancer relating

to the pathophysiological effects at the cellular and tissue level.

Here, we systematically identified seven prognosis‐related ATG

genes including GRID2, FOXO1, MYC, TP73, IKBKE, PTK6, and

BIRC5. It is potential to be a novel therapeutic targets and prognostic

predictors in LGG. The protein encoded by GRID2 gene is a member

of the family of ionotropic glutamate receptors that act as an ex-

citatory neurotransmitter in the central nervous system. Previous

study reported that biallelic deletions of GRID2 lead to a syndrome of

cerebellar ataxia and tonic upgaze in humans, which indicate an

evolutionarily unique role for GRID2 in the human cerebellum (Hills

et al., 2013). The FoxO1 gene belongs to the forkhead family of

transcription factors that are characterized by a distinct forkhead

domain. It has been reported that silencing of Akt1 by decreasing

phosphorylated Foxo1 and inducing the expression of Foxo1 inhibited

the growth and invasion of glioma cells (Que et al., 2015). Over-

expression of FoxO1 was able to enhance the etoposide‐induced
apoptosis pathway in glioma (Ni et al., 2019). In addition, the features

of activated in mTORC2 signaling, c‐Myc levels, and acetylated FoxO1

are highly intercorrelated in clinical glioma samples and with shorter

survival of patients with GBM (Masui et al., 2013). MYC is a family of

regulator genes and proto‐oncogenes that code for transcription

factors, which is viewed as a promising target for anticancer drugs.

However, due to several undruggable features, any anticancer drugs

for Myc will require acting on the messenger RNA rather than the

protein itself. As a prognostic biomarker, the long noncoding RNA

TP73‐AS1 with high expression in glioma cells and promoting temo-

zolomide (TMZ) resistance in glioblastoma cancer stem cells with

poor prognosis have been reported (Mazor et al., 2019). Due to

IKBKE overexpressing in human gliomas, the downregulation of

IKBKE inhibits the proliferative and invasive abilities of glioma cells

(Tian et al., 2015). Similarly, regulating IKBKE/nuclear factor‐κB sig-

naling axis by inhibiting PLK4 increases TMZ sensitivity and sup-

presses glioma proliferation via therapeutic targeting (Z. Zhang

et al., 2019). The above‐mentioned studies are consistent with our

results. The role of Ptk6 and BIRC5 in neurologic tumors are still

unclear and need further research for novel therapeutic target.

Nomograms have been widely used in clinical study since they

provide an intuitive visual presentation (Harrell, Lee, & Mark, 1996).

A nomogram, in this study, with the age, grade, 1p19q‐status, and
autophagy signature was constructed to perform individualized

survival prediction more precisely. The calibration plots based on

the training and validation sets exhibited excellent consistency

between the actual survival (CGGA) and the predicted survi-

val (TCGA).

Limitations inevitably impact on our study. There were a limited

number of patients with LGG with intact clinical information re-

cruited in our analysis. More datasets of whole genome sequencing in

glioma disease are needed to validate prognostic model and potential

biomarkers. Further experiments on the functions and mechanisms

are needed to validate the efficiency of these autophagy signatures in

LGG progression.

Finally, we identified the prognostic model and nomogram, based

on seven favorable autophagy signatures, performed well in predic-

tion of OS probability for patients with LGG. According to our study,

several potential biomarkers could be elucidated from further vali-

dations. It may also be beneficial to promote prognosis prediction

and therapeutic target.

5 | CONCLUSIONS

In summary, the current study established a prognostic model based

on seven survival‐associated ATG genes and a promising prognostic

nomogram based on autophagy signature and clinical characteristics,

which is valuable for clinical glioma management. The further iden-

tification of promising biomarker will facilitate the ongoing effort on

exploration of autophagy mechanisms and therapeutic target in LGG

patients.
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