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Abstract 

Isocitrate dehydrogenase (IDH) wild-type diffuse lower-grade glioma (LGG) is usually associated with poor 

outcome, but there have been disputes over its clinical outcome and classification. We presented here a robust 

gene expression-based molecular classification of IDH wild-type diffuse LGG into two subtypes with distinct 

biological and clinical features. A discovery cohort of 49 IDH wild-type diffuse LGGs from Chinese Glioma 

Genome Atlas (CGGA) was subjected to clustering and function analysis. 73 tumors from The Cancer Genome 

Atlas (TCGA) were used to validate our findings. Consensus clustering of transcriptional data uncovered 

concordant classification of two robust and prognostically significant subtypes of IDH wild-type LGG. Sub1, 

associated with poorer outcomes, was characterized by significantly higher immune, cytolytic scores, M2 

macrophages and up-regulation of immune exhaustion markers; while Sub2 who had elevated lymphocytes and 

plasma cells showed relatively favorable survival. Somatic alteration analysis revealed Sub1 showed more 

frequently deleted regions, such as locus of CDKN2A/CDKN2B, DMRTA1, C9orf53 and MTAP. Furthermore, 

we developed and validated a five-gene signature for better application of this acquired stratification. Our data 

demonstrate the biological and prognostic heterogeneity within IDH wild-type diffuse LGGs and deepen our 

molecular understanding of this tumor entity. 
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Introduction 

Diffuse World Health Organization (WHO) grade II and III gliomas, namely diffuse lower-grade gliomas (LGG), 

present as heterogeneous disease. They are infiltrative tumors that arise from glial or precursor cells, and show 

a more indolent course compared with glioblastoma (GBM, grade IV)[1]. Despite standard treatment, including 

neurosurgical resection, radio- and chemo-therapy, tumor recurrence and malignant progression are inevitable 

because of their highly invasive nature [2, 3]. The survival ranges widely (1 to 15 years) and varies considerably 

when stratified by tumor type. 

  In the new classification by the WHO, diffuse LGGs are classified into three diagnostic and prognostic 

subgroups based on IDH mutation and 1p/19q codeletion status [4]. IDH wild-type tumors with mostly higher 

grade (III) hold the worst prognosis, followed by tumors with IDH mutation and no 1p/19q co-deletion, and by 

tumors with IDH mutation and 1p/19q co-deletion (oligodendrogliomas). A recent study reported that the 

majority of IDH wild-type LGGs were underdiagnosed GBMs [5]. The outcome of IDH wild-type LGG has 

been shown to be indistinguishable from that of IDH wild-type GBM and worse than that of IDH mutant 

GBM[6]. Moreover, it is proved that not all IDH wild-type LGGs have a poor survival [7, 8]. This evidence 

inspires many groups to further stratify this tumor prognostically. Aibaidula et al found that IDH wild-type 

LGG was prognostically heterogeneous, and MYB, EGFR, TERT promoter and H3F3A should be examined to 

delineate distinct prognostic groups [9]. The cIMPACT-NOW group addressed the molecular definition of 

“molecular GBM”, a cohort of IDH wild-type LGG characterized by either EGFR amplification, combined 

gains of chromosome 7 and loss of chromosome 10, or TERT promoter mutations [10]. A meta-analysis also 

assessed the prognostic values of several genetic markers, and found that TERT promoter, H3F3A mutation and 
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EGFR amplification have negative impact on survival of IDH wild-type LGG [11]. However, the transcriptional 

and biological heterogeneities within IDH wild-type diffuse LGGs need further dissection. 

  Increasing evidence has revealed that molecularly distinct subtypes of glioma differs in tumor 

microenvironment [12, 13]. Wang et al found tumor evolution of glioma-intrinsic gene expression subtypes 

associated with immunological changes in the microenvironment [14]. NF1-silenced high grade glioma 

exhibited increased tumor-associated macrophage infiltration [15, 16]. Bockmayr et al identified four distinct 

microenvironmental signatures of immune cell infiltration (vascular, monocytic/stromal, monocytic/T cell- and 

APC/NK/T cell-dominated immune clusters) in high grade glioma [17]. Zeiner et al reported that GBMs contain 

mixed M1/M2-like polarized tumor-associated microglia/macrophages (TAM) and the levels of different TAM 

subpopulations in tumor core are positively associated with overall survival in IDH wild-type GBMs [18]. A 

better understanding of tumor immune microenvironment is critical for improving the efficacy of current 

immunotherapies. Robert et al found that GBMs with mesenchymal gene expression signatures might be more 

responsive to immune-based therapies [19]. CAR T cells targeting EGFRvIII and IL12R was proved to be safe 

in preclinical studies of GBMs [20, 21]. Immunotherapies have received extensive attention in gliomas. 

  Here, we sought to determine whether molecular profiling of transcriptomic data could provide valuable 

stratification for IDH wild-type diffuse LGG. We performed molecular subtyping on 122 diffuse lower-grade 

gliomas of IDH wild-type from Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas 

(TCGA). We revealed that IDH wild-type diffuse LGG could be classified into two robust subtypes with distinct 

prognostic and immune features. Our findings suggest that a subset of these gliomas may benefit from additional 

immunotherapy accompanied with the current treatments. 
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Materials and methods 

Patients and datasets 

A total of 122 IDH wild-type diffuse lower-grade gliomas (49 cases from CGGA microarray data and 73 cases 

from TCGA RNA-sequencing data) were collected in this study (supplementary material, Table S1). An 

informed consent was obtained from all patients. This study was carried out in accordance with the Declaration 

of Helsinki and approved by the ethics committee of Tiantan Hospital. 

  The microarray data and corresponding clinical information containing age, gender, histology, IDH, 1p/19q, 

methylguanine methyltransferase (MGMT) promoter status and survival information were downloaded from 

CGGA database as discovery cohort (http://www.cgga.org.cn) [22]. The RNA-sequencing data, somatic 

mutation and copy number alterations (CNAs) data and clinical information including TERT promoter and 

ATRX mutation status additionally were obtained from the TCGA database for validation cohort 

(http://cancergenome.nih.gov/) [23]. The clinical and molecular features are listed in supplementary material, 

Table S2. 

Identification of gene expression-based subtypes 

Unsupervised clustering was performed using the R package “ConsensusClusterPlus” for class discovery based 

on the comparison of gene expression profile[24, 25]. 80% item resampling, 50 resamplings and a maximum 

evaluated K of 10 were selected for clustering. The cumulative distribution function (CDF) and consensus 

heatmap were used to assess the optimal K. 

Gene signature selection 
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Significance analysis of microarray (SAM) was applied to identify differentially expressed genes between Sub1 

and Sub2. Univariate Cox regression analysis was performed to determine the genes with prognostic 

significance. Subsequently, the Cox proportional hazards model, which was suitable for high-dimensional 

regression analysis, was adopted for construction of the optimal gene set with R package “glmnet” [26, 27]. The 

linear combination of gene expression weighted by regression coefficients (Coeffs) was used to calculate the 

risk scores of patients.  

Bioinformatic analysis 

Gene ontology (GO) analysis were applied for functional annotation of differential genes between groups [28]. 

Gene set enrichment analysis (GSEA) was performed to determine gene sets of statistical difference [29]. 

Principal components analysis (PCA) was used to detect expression difference between groups with R package 

“princomp” [30]. Receiver operating characteristic (ROC) curve analysis was carried out for overall survival 

(OS) prediction with R package “pROC”. ESTIMATE algorithm was performed to calculate the fraction of 

stromal and immune cells with R package “estimate”, and tumor purity of each patient was inferred based on 

the formula described by Yoshihara [31]. The infiltrating immune cells were explored using CIBERSORT 

algorithm [32]. The cytolytic activity was calculated through an average expression of six genes, five granzymes 

and perforin-1 (PRF1), to assess the cytotoxic immune cell activity [33]. Tumor inflammation score were 

computed based on the formulas described previously [34, 35]. GISTIC2.0 analysis was adopted to assess CNAs 

between groups. Locus with GISTIC value more than 1 or less than -1 was defined as an amplification or 

deletion, respectively [36]. 

Immunohistochemical staining 
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Paraffin-embedded tissues of 12 cases from CGGA cohort were collected. Anti-CD163 [16646-1-AP, 1:300, 

Proteintech (Wuhan, Hubei, PR China)] was used to detect M2 macrophages. Anti-GZMA [ab10870, 1:300, 

Abcam (Burlingame, CA, USA)], anti-PD-1 (18106-1-AP, 1:300, Proteintech) and anti-HAVCR2 (60355-1-lg, 

1:300, Proteintech) were used to evaluate the cytolytic activity and immune exhaustion, respectively. Briefly, 

the sections were incubated with antibody overnight at 4 °C, then incubated with secondary antibody at room 

temperature for 1 h. After washing, the sections were stained with DAB (MXB, Fuzhou, Fujian, PR China) for 

2 min and counterstained with hematoxylin (Solarbio, Tongzhou, Beijing, PR China). Stained cells were 

counted three times for each photograph independently by two investigators. Five different fields of each section 

were examined for quantitative evaluation. 

Statistical analysis 

All statistical analyses were conducted using R software, GraphPad Prism 6.0 (GraphPad Inc., San Diego, CA, 

USA) and SPSS 16.0 (IBM, Chicago, IL, USA). P < 0.05 was considered statistically significant. Kaplan–Meier 

analyses with log-rank tests were performed to assess survival difference between groups. A Chi-square test 

was carried out to determine the difference of clinical and molecular parameter between groups. Univariate and 

multivariate Cox regression analyses were conducted to determine factors with independent prognostic value. 

 

Results 

IDH wild-type diffuse LGGs split into two expression subgroups  

To further stratify the patients of IDH wild-type lower-grade diffuse glioma, we obtained microarray data of 49 

samples from the CGGA database and took an unbiased approach using consensus clustering of gene expression 
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profile. Hierarchical clustering of 2501 genes with highly variable expression (median absolute deviation 

(MAD) > 1) identified two main subtypes (Figure 1A), assessing by CDF curves and consensus matrices 

(supplementary material, Figure S1). Principal component analysis (PCA) found robust differences in the 

expression portraits between these two subtypes (Figure 1B). The group membership of each of the two subtypes 

was associated with distinct molecular and survival characteristics (Figure 1C). Patients in Sub1 had 

significantly poorer clinical outcome in comparation with ones in Sub2. In contrast, Sub2, with longer overall 

survival, contained more tumors of grade II (supplementary material, Figure S2A). Meanwhile, univariate Cox 

analysis showed that the acquired new stratification of IDH wild-type LGG had a significant prognostic value 

(P = 0.022, Table 1). Additionally, we also assessed the effect of three-classification on patients’ prognosis, yet 

survival and PCA analysis revealed no obvious difference (supplementary material, Figure S3). Survival 

analysis based on progress free survival (PFS) also confirmed the above findings.  

  An independent set of 73 IDH wild-type diffuse LGG expression profiles was collected from TCGA database 

to assess subtype reproducibility. Applying a similar gene ordering from the training set (2365 genes available) 

in the validation set clearly recapitulated the subgroups identified in the CGGA data set (Figure 1D). PCA also 

confirmed the gene expression profile difference between these acquired subtypes (Figure 1E). Consistently, 

survival analysis revealed that Sub1 mainly consisted of grade III tumors with shorter overall survival (Figure 

1F and supplementary material, S2A). Referring to EM/PM classification [37], Sub2 had more PM and EM-

low/PM-low tumors which implied better outcome (supplementary material, Figure S2B). Moreover, univariate 

Cox analysis also demonstrated this classification was of prognostic significance in the TCGA cohort (P = 0.039, 

Table 1).  
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The subtypes differ in biological functions 

Next, we analyzed the functional context of these two subtypes of IDH wild-type diffuse LGG. Gene ontology 

(GO) analysis based on the differentially expressed genes between groups, which were identified by SAM 

(Figure 2A, false discovery rate < 0.05), showed that the highly expressed genes in Sub1 were mainly enriched 

in immune, inflammatory response, antigen processing and presentation and interferon gamma mediated 

signaling pathway. Instead, the upregulated genes in Sub2 were annotated to chemical synaptic transmission, 

nervous system development, neurotransmitter and glutamate section (supplementary material, Figure S4A). 

Moreover, GSEA further found that immune and inflammatory response were significantly enriched in patients 

of Sub1 (Figure 2C and supplementary material, Figure S4B). Then, these functional analyses were repeated on 

the TCGA cohort. GO and GSEA also reproduced the enriched functions of these two subtypes (Figure 3A–C, 

and supplementary material, Figure S4C,D). 

To further decipher the immune heterogeneity between these two subtypes, we resorted to immune-related 

tools published recently. We first examined the distribution of stromal and immune content of each group by 

computing Estimate algorithm [31]. Sub1 had significantly higher stromal and immune scores compared to 

Sub2 (Figures 2D and 3D). When comparing tumor purity, we observed a reduction in Sub1 (Figure 2D), 

suggesting that tumors in Sub1 contained higher number of immune cells in both CGGA and TCGA cohorts. 

Since natural anti-tumor immunity requires a cytolytic immune response, we next examined the immune cell-

mediated cytolytic activity by quantifying the average expression of granzymes and PRF1. Consistent with the 

immune scores, the cytolytic scores of tumors in Sub1 were significantly higher than those of Sub2 (Figures 2E 

and 3E). Further, we computed the tumor inflammation signature algorithm and found that Sub1 presented 
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higher inflammation scores when compared to Sub2 (Figures 2F and 3F). we also looked into the expression of 

major histocompatibility class 1 (MHC1) complex which is required to present endogenous cellular antigens to 

circulating T cells [38]. The expression of HLA-A, HLA-B and HLA-C was significantly increased in cases of 

Sub1 in two cohorts (Figures 2G and 3G).  

We next explored the composition of infiltrating immune cells between groups by CIBERSORT method [32]. 

Cases in Sub1 showed the higher enrichment of M2 macrophages, while Sub2 tumors were enriched in 

lymphocytes, naïve B cells and plasma cells (Figure 2H). In cohort of TCGA, we observed similar results 

(Figure 3H). Additionally, we detected the expression of several exhaustion marker genes, since T cell and 

natural killer cell exhaustion has been identified as an important mechanism by which cancer cells escape host 

immunity [39, 40]. We observed that most of these exhaustion marker genes (LAG3, CTLA4, PD1, PD-L1 and 

HAVCR2) were expressed highly in tumors of Sub1 in both CGGA and TCGA cohorts (supplementary material, 

Figure S5A,B), indicating an elevated level of immune exhaustion in these tumors. We further selected some 

classical markers for IHC validation (CD163 for M2 macrophages, GZMA for immune cytolytic activity, PD1 

and HAVCR2 for immune exhaustion). Twelve IDH wild-type tumor samples from CGGA cohort were used (n 

= 6 per subtype). As shown in supplementary material, Figure S5C,D, these four genes showed higher protein 

expression level in sub1, which was consistent with results of transcriptional sequencing data. Collectively, 

these results identified an extensive immune heterogeneity in IDH wild-type diffuse LGGs, as illustrated by 

several immune signatures and molecular features. 

An inflammatory signature is associated with outcome in IDH wild-type diffuse LGG 

Infiltrating immune cells derived from gene expression profiles have been shown to be prognostic in many 
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human cancers [41, 42]. We therefore determined prognostic values of differential immune cell signatures 

between groups in IDH wild-type LGG. Out of these immune signatures, the cytolytic and inflammatory 

signatures were significantly associated with outcome of patients in CGGA cohort (Figure 4A), as well as PFS 

analyses (supplementary material, Figure S6). Figure 4B revealed that high inflammatory scores implied poor 

outcome in the TCGA cohort. Additionally, the inflammatory and cytolytic signatures were correlated with M1, 

M2 macrophage, CD8+ T cell, Neutrophils and memory activated CD4+ T cell (Figure 4C). Likely, a correlation 

between inflammatory scores, cytolytic scores and immune inhibitory genes (PD-1 and CTLA4) was observed 

(Figure 4D). These findings suggested that inflammatory microenvironment and infiltrating cytolytic immune 

cells might impact patient outcome in IDH wild-type diffuse LGG. 

Somatic variations in two subgroups 

Several genomic alterations have negative impact on survival of IDH wild-type diffuse LGG [9, 11]. We also 

analyzed the somatic mutations and CNVs data from TCGA database to explore the difference of genomic 

alterations between these two subtypes. First, we compared the frequency of mutations and found no significant 

enrichment of mutations between two groups (Figure 5A). In contrast, GISTIC2.0 analysis revealed distinct 

copy number alterations between Sub1 and Sub2 tumors. Sub1 showed more frequently deleted regions, such 

as locus of CDKN2A/CDKN2B, DMRTA1, C9orf53 and MTAP (Figure 5B).  

Identification of a classification-related prognostic signature for IDH wild-type diffuse LGG 

Considering the convenient application of the new classification for prognostic prediction, we proposed to 

develop an easier gene set based on the differential genes between Sub1 and Sub2 of TCGA cohort. SAM 

analysis identified 1453 differentially expressed genes (false discovery rate < 0.05), wherein 326 genes were 
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significantly correlated with patients’ survival in univariate Cox regression analysis (P < 0.05, Figure 6A). Then, 

we performed a Cox proportional hazards model for selecting gene set with best prognostic value (Figure 6B). 

A five-gene signature was obtained and risk score of each case was computed with the gene expression level 

and regression coefficient (Figure 6C).  

  Subsequently, tumors were assigned into low or high-risk group based on the median value of risk scores. 

Kaplan–Meier analysis revealed that patients in high-risk group had significantly poorer outcome than those in 

low-risk group (P < 0.001, Figure 6D). We also calculated the risk scores of samples in CGGA cohort with the 

same coefficients to validate this signature (Figure 6F). Consistently, the survival curve showed that high-risk 

patients had shorter overall survival than low-risk ones (Figure 6G). We also detected the association between 

this signature and pathological features. Patients were arrayed based on the risk scores. As shown in Figure 6E 

and H, the risk scores distributed differently in patients stratified by grade, subtype and EM/PM classification. 

We further evaluated the prognostic independence of this signature by performing univariate and multivariate 

Cox regression analyses. As expected, the acquired signature was significantly correlated with patients’ overall 

survival, independent of other factors, whereas only in univariate analysis of CGGA cohort (Table 1). 

Afterwards, we assessed the predictive accuracy by computing area under the curve (AUC) of risk score, age 

and group. The AUC of risk score (80.5% in TCGA cohort, 72.2% in CGGA cohort) was much higher than that 

of other factors (Figure 6I). These results demonstrated the superior performance of this signature for prognosis 

prediction. 

 

Application and functional annotation of the acquired signature 
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The signature was further applied in diffuse gliomas to determine the compatibility. 550 samples from TCGA 

database and 299 samples from CGGA database (supplementary material, Table S2) were included in survival 

analyses. High risk scores conferred shorter OS in these two sets (supplementary material, Figure S7A and E). 

When stratified by grade and molecular subtypes (IDH and 1p/19q), high scores tended to be associated with 

poor outcome in cases of LGG, whereas in GBM and other molecular groups found no significant differences 

(supplementary material, Figure S7B–H). The relatively shorter follow-up period of CGGA cohort might affect 

the consistency of survival analyses. 

We next compared gene expression between low and high-risk patients to determine the functional differences. 

Based on the differential genes identified by SAM, GO analysis found that immune, inflammatory response and 

interferon gamma mediated signaling pathway were significantly enriched in high-risk tumors, while the low-

risk ones showed enrichment of chemical synaptic transmission, neurotransmitter and glutamate section 

(supplementary material, Figure S8A,B). Meanwhile, GSEA also confirmed this finding (supplementary 

material, Figure S8C,D). Correlation analyses found that this signature was associated with inflammatory, 

cytolytic signatures and immune inhibitory genes (PD-1 and CTLA4) (supplementary material, Figure S8E–L). 

These results indicated that the signature derived from the new classification could represent the similar 

biological differences in IDH wild-type diffuse LGG. 

 

Discussion 

Numerous genetic alterations have been found in glioma, such as IDH, TERT promoter mutation and 1p/19q 

codeletion [43, 44]. The prognostic role of IDH mutation is widely accepted and IDH wild-type gliomas show 
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distinct biological and clinical characteristics compared with IDH mutant gliomas [45, 46]. The new WHO 

classification has segregated GBMs into IDH wild-type and mutant groups, which have significant difference 

in prognosis [4]. However, IDH wild-type diffuse LGG has be described as provisional entity, and its definition 

and typing are still controversial.  

  Here, we showed that transcriptome profiling defined two subtypes with distinct clinical and biological 

features in IDH wild-type diffuse LGG. The reproducibility of this classification was demonstrated in an 

independent validation set, and consistent phenotype was observed. Aggressive gliomas are characterized by 

higher stromal, immune scores and cytolytic activity, but lower purity [33, 47, 48]. We found that cases in Sub1 

who had a poorer outcome showed similar immune phenotype in functional annotation. In addition, we observed 

M2 macrophages in tumors of Sub1, which have protumor activity in glioma [49, 50]. While Sub2 tumors 

displayed higher levels of naïve B cells and plasma cells, and these immune cells are favorable for patients’ 

survival in glioma [41]. The presence of tumor infiltrating B cells has a paradoxical effect in GBMs. Candolfi 

et al showed that B cells can act as APC for T cells and play a critical role in T cell-mediated antitumor immunity 

[51]. In contrast, Lee-Chang et al recently found that GBM-associated B cells showed an immunosuppressive 

function toward activated CD8+ T cells [52]. Although naïve B cells exhibited elevated level in Sub2 which 

had better outcome, the function of B cells in IDH wild-type diffuse LGG needed to be further inquired. In 

addition, GO and GSEA analyses found that Sub2 showed higher expression genes which were involved in 

chemical synaptic transmission, neurotransmitter and glutamate section. A recent study reported by Venkatesh 

et al found that synaptic and electrical integration in neural circuits promotes glioma progression [53], which 

implied the underlying mechanism of progression in Sub2 tumors.  
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When we used these immune-related scores to identify predictors of survival, we found that higher cytolytic 

activity was associated with adverse survival in this tumor entity (Figure 4A), which was contrary to most 

studies of cancers. These indicated that cytolytic activity might not be in function in this tumor. On the other 

hand, despite high immune and cytolytic activity, the higher expression of immune exhaustion genes in Sub1 

implied an immune-suppressive status, which might lead to the poorer outcome.   

To summarize, our data indicated that transcriptomic profiling stratified IDH wild-type lower-grade diffuse 

glioma into two distinct subgroups with different clinical and biological phenotypes. We believe that this 

classification has implications for differential therapeutic strategies and will lead to targeted treatment for 

patients with this tumor. 
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Figure legends 

Figure 1. Unbiased clustering identified two subtypes with distinct outcome in IDH wild-type diffuse LGG. (A) 

Heat map of two subtypes defined by 2501 genes with highly variate expression. MAD > 1. (B) PCA analysis 

of two subtypes in CGGA cohort. (C) Kaplan–Meier analysis of two clusters based on overall survival (OS) and 

progression-free survival (PFS). (D) Gene order of training set was applied in TCGA cohort as validation set. 

(E) PCA analysis of two subtypes in TCGA cohort. (F) Survival difference between two subtypes in validation 

set.  

 

Figure 2. Biological function analysis of two subtypes in the CGGA cohort. (A) Heatmap showing the 

differentially expressed genes (DEGs) between Sub1 and Sub2. FDR < 0.05. (B) Gene Ontology analysis based 

on the DEGs. (C) GSEA analysis in CGGA cohort. (D–F) Comparison of stromal, immune, purity, cytolytic 

and inflammation scores presented in boxplots. (G) The expression of human leucocyte antigen (HLA) genes. 

*, P < 0.05; **, < 0.01; ***, < 0.001. (H) Relative abundance fractions (%) of immune cell population in each 

tumor using CIBERSORT tool, lymphocytes = B cells + T cells CD4 + T cells CD8 + T cells follicular helper 

+ Tregs + T cells gamma delta + NK cells +Plasma cells. (t-test, Benjamini–Hochberg method). *, FDR < 0.05; 

**, < 0.01. 

 

Figure 3. Validation set displaying consensus immunological differences between two clusters. (A) Heatmap 

showing the DEGs between two clusters. FDR < 0.05. (B and C) Gene Ontology and GSEA analysis in TCGA 

cohort. (D-F) Comparison of stromal, immune, purity, cytolytic and inflammation scores presented in boxplots. 
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(G) The expression of human leucocyte antigen (HLA) genes. *, P < 0.05; **, < 0.01; *** (H) Relative 

abundance fractions (%) of immune cell population in each tumor subgroup using CIBERSORT tool. Elevated 

M2 macrophages occurred in Sub1 gliomas (t-test, Benjamini–Hochberg method). *, FDR < 0.05; **, < 0.01. 

 

Figure 4. Immune cell signatures were associated with outcome for IDH wild-type diffuse LGG. (A) Kaplan–

Meier analyses of IDH wild-type LGG patients stratified by cytolytic and inflammatory scores in CGGA cohort. 

(B) Kaplan–Meier analyses of IDH wild-type LGG patients stratified by cytolytic and inflammatory scores in 

the TCGA cohort. (C) Heat maps of Spearman correlation coefficients between cytolytic, inflammatory 

signatures and 22 immune cell signatures in IDH wild-type LGG patients of both cohorts. (D) Heat maps of 

Spearman correlation coefficients between cytolytic, inflammatory signatures and immune inhibitory molecules 

in both cohorts. 

 

Figure 5. Comparison of genomic alterations between Sub1 and Sub2 in the TCGA cohort. (A) Differential 

somatic mutation analysis between two subgroups. (B) Distinct CNA profile between Sub1 and Sub2. 

 

Figure 6. Identification of a prognostic signature by Cox proportional hazards model. (A) Venn diagram shows 

prognosis-related genes which are differentially expressed between two groups. (B) Cross-validation for tuning 

parameter selection. (C) Heat map of 5 signature genes. (D) Survival analyses of the signature in the TCGA 

cohort. (E) Distribution of risk scores in cases stratified by subtype, grade and EM/PM classification in TCGA 

set. (F) Heat map shows the expression of 5 signature genes in CGGA cohort. (G) Survival analyses of the 
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signature in the CGGA cohort. (H) Distribution of risk scores in cases stratified by subtype and grade in CGGA 

set. (I) ROC curve analysis of age, subtype and risk score in the TCGA cohort. AUC, area under the curve. 
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Table 1. Univariate and multivariate Cox regression analysis of clinical pathologic features. 
 CGGA cohort TCGA cohort 

 Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis 

Characteristics HR 95% CI 
P 

value 
HR 95% CI 

P 

value 
HR 95% CI 

P 

value 
HR 95% CI 

P 

value 

Age 1.05 
1.008-

1.093 
0.018 1.038 

1.001-

1.077 
0.043 1.055 

1.024-

1.086 
<0.001 1.051 

1.009-

1.094 
0.017 

Gender 1.162 
0.516-

2.617 
0.718       1.272 

0.621-

2.603 
0.51       

MGMT 

promoter 
2.634 

0.928-

7.476 
0.069       1.635 

0.79-

3.385 
0.186       

Grade 0.133 
0.052-

0.345 
<0.001 0.165 

0.062-

0.439 
<0.001 0.258 

0.061-

1.09 
0.065       

Subtype 0.339 
0.134-

0.855 
0.022 0.805 

0.531-

1.2214 
0.308 0.47 

0.23-

0.962 
0.039 0.846 

0.489-

1.461 
0.548 

TERT 

promoter 
            1.482 

0.568-

3.871 
0.421       

ATRX             1.028 
0.35-

3.018 
0.96       

Risk score 4.35 
1.125-

16.819 
0.033 1.732 

0.373-

8.053 
0.484 16.411 

5.111-

52.69 
<0.001 7.396 

2.077-

26.329 
<0.001 

Gender: male, female; MGMT promoter: methylated, unmethylated; TERT promoter: mutant, wild-type; Grade: II, III; ATRX: 

mutant, wild-type; Subtype: Sub1, Sub2. Values in bold, statistically significant. 
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