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Abstract
Background Proton therapy (PT), frequently utilised to treat paediatric brain tumour (PBT) patients, eliminates exit dose and
minimises dose to healthy tissues that theoretically can mitigate treatment-related effects including cognitive deficits. As clinical
outcome data are emerging, we aimed to systematically review current evidence of cognitive changes following PT of PBT.
Materials and methods We searched PubMed and Scopus electronic databases to identify eligible reports on cognitive changes
following PT of PBT according to PRISMA guidelines. Reports were extracted for information on demographics and cognitive
outcomes. Then, they were systematically reviewed based on three themes: (1) comparison with photon therapy, (2) comparison
with baseline cognitive measures, to population normative mean or radiotherapy-naïve PBT patients and (3) effects of dose
distribution to cognition.
Results Thirteen reports (median size (range): 70 (12–144)) were included. Four reports compared the cognitive outcome
between PBT patients treated with proton to photon therapy and nine compared with baseline/normative mean/radiotherapy
naïve from which two reported the effects of dose distribution. Reports found significantly poorer cognitive outcome among
patients treated with photon therapy compared with proton therapy especially in general cognition and working memory.
Craniospinal irradiation (CSI) was consistently associated with poorer cognitive outcome while focal therapy was associated
with minor cognitive change/difference. In limited reports available, higher doses to the hippocampus and temporal lobes were
implicated to larger cognitive change.
Conclusion Available evidence suggests that PT causes less cognitive deficits compared with photon therapy. Children who
underwent focal therapy with proton were consistently shown to have low risk of cognitive deficit suggesting the need for future
studies to separate them from CSI. Evidence on the effect of dose distribution to cognition in PT is yet to mature.
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Abbreviations
PT Proton therapy
PBT Paediatric brain tumour

PRISMA Preferred Reporting Items for Systematic
Reviews and Meta-Analyses

CSI Craniospinal irradiation
WISC Wechsler Intelligence Scale for Children

Introduction

Among long-term paediatric brain tumour (PBT) survivors, a
decline in core foundational cognitive ability including in
memory, working memory, attention and information pro-
cessing speed is an important consequence of the disease
and treatment [1, 2]. The decline may affect the quality of life
including difficulties in social functioning, employment and
education attainment [3–5]. Children have disproportionately
higher risks of impairment due to the rapid development of
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glial cells during childhood. Thus, improving therapies to mit-
igate the decline is paramount.

As there are multitudes of evidence suggesting that higher
radiation dose to normal brain tissue is associated to greater
cognitive decline in photon-based therapy [6, 7], proton ther-
apy (PT) which eliminates exit dose and can be tailored to
minimise dose to normal brain tissues is a promising solution
[8–11] . Merchant et al. produced a theoretical quantitative
model which predicted significant neuro-sparing benefit of
PT owing to a lower volume of temporal lobes and cerebrum
receiving high dose [12].

However, PT is up to 2.4 times more expensive than pho-
ton therapy and may not be an affordable option for many
[13–15]; thus, questions whether the cost is justified in terms
of clinically meaningful and evidence-based improvement of
treatment outcomes are important [16, 17]. While dosimetric
analyses have consistently shown the potential neuro-sparing
benefit of PT for PBT patients based solely on dosimetric
advantage alone [8, 9, 11, 18, 19], yet, there appear to be
few reports presenting actual clinical cognitive outcomes.
The limited availability of PT in the past may be the reason
for the sparse empirical evidence of the cognitive benefit.
However, as more centres are offering PT as a standard for
PBT patients, the uncertainty that still lingers after years of PT
introduction may come to an end as more clinical results ma-
ture. In this study, we aimed to systematically review the
cognitive changes following proton therapy of paediatric brain
tumour patients.

Materials and methods

Systematic review protocol and eligibility criteria

The systematic review protocol and methodology established
by Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) were utilised [20–22]. Original re-
search manuscripts were evaluated for inclusion or exclusion
based on PICOS criteria detailed in Table 1. The PICOS

framework was used to develop literature search strategies
by systematically determining the inclusion based on patient
population, intervention, comparison, outcome and study de-
sign. Reports fulfilling all five criteria were included.
Excluded studies were reported based on the first PICOS cri-
terion not fulfilled.

Search strategy and selection process

Electronic databases (National Center for Biotechnology
Information (PubMed) and Scopus) were systematically
searched to identify relevant articles. Keywords and search
strings used are detailed in the Supplementary Material A. In
the first phase, articles were reviewed in increasing specificity
via the title, abstract, then finally, via full text by NY and
HAM independently. In the second phase, bibliographic ref-
erences and citations of the included studies were extracted
from Scopus and hand searched for additional eligible studies
based on the assumption that relevant studies cited or were
cited by other related studies. Despite a small chance of pub-
lication bias that is expected to be prevented in the first phase,
we have confidence in the robustness of this two-step method
to ensure no omission of relevant studies. No publication date
or publication status restriction was imposed. Discrepancies in
the results of the selection were deliberated in team meetings.
Where more than one reports of a study existed or where the
independence of cohorts is questionable, reports of which
subjects were a complete subset of a later report were exclud-
ed. Study search and selection were completed on 5 February
2020.

Quality assessment

We used an assessment tool from the National Heart, Lung
and Blood Institute, Quality Assessment Tool for
Observational Cohort and Cross-Sectional Studies, to assess
the quality of included studies.

Table 1 PICOS criteria for
inclusion in systematic review Criteria

P—patient Patients treated with paediatric brain tumours (PBT) regardless of age at
follow-up. Threshold age is 21. In a mixed population, it should not
consist of more than 10% adult patients (age > 21).

I—intervention Proton therapy (PT).

C—comparison pre- and post-PT or between post-PT and healthy controls or between
post-PT and normative means or between post-PT and post-photon therapy

O—outcome Any cognitive measures.

S—type of study Exclude studies with no statistical comparisons (case study or case series),
reviews or consisting of less than 10 patients.
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Data review and extraction

Upon finalisation of article selection, both authors performed
data extraction together. Information was extracted into
spreadsheets and included details of the articles, patients, pro-
ton therapy dose regime and technique and measures for cog-
nitive changes. Data on cognition following PT for PBT, com-
parison with photon-based radiotherapy or to baseline cogni-
tive measures, population normative mean or radiotherapy-
naïve patients, dose-effect and predictors of cognitive out-
comes were extracted.

Results

Study selection and quality assessment

The database queries produced 1248 and 131 records from
PubMed and Scopus, respectively (Fig. 1, Supplementary
A). After removal of duplicates, 1275 reports were reviewed
for inclusion and 13 met the inclusion criteria. One report [23]
was a subset of another report [24], thus, excluded. In the
second phase, where references and citations of the previously

selected reports were reviewed using Scopus that is a source-
neutral abstract and citation database, 608 articles were
reviewed, and one recently published report was included.

Even though some included studies reported longitudinal
comparisons, they are not compulsory for inclusion. Thus, a
less stringent quality apparatus, Quality Assessment Tool for
Observational Cohort and Cross-Sectional Studies, was
utilised. Generally, studies have a reasonable quality with
most reported lower accrual rate than the pool of eligible per-
sons due to the lack of neurocognitive assessment available
(Supplementary B). Except for Peterson et al. [25], all others
reported the effect of exposures (i.e. dose or treatment fields).
Sample size and calculations were rarely mentioned due to the
retrospective or hypothesis-generating nature of most studies.

Characteristics of included studies

Table 2 summarises the characteristics of the selected studies
[25–34]. Only two studies reported prospectively accrued pa-
tients while the rest reported retrospective cohorts [30, 34].
The publication dates ranged from 2013 to 2020, which reflect
the recency of PT introductory into widespread practice. The
reports included 651 paediatric patients irradiated to the brain

Fig. 1 Identification for inclusion
based on PRISMA. Eligibility
was determined using PICOS
criteria
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with proton. The number, however, is likely to be an overes-
timation due to probable overlap of patients reported by the
same centres with researchers from Massachusetts General
Hospital and Texas Children’s Hospital produced five and
three reports, respectively. Other centres reported one report
each and one is a combined analysis from two centres includ-
ing Texas Children’s Hospital. Due to the potential lack of
independence, we refrained from summing the number of pa-
tients in the preceding subsections and the number of reports
were included instead. The sample size ranged between
12 and 144. Median/mean time to evaluation was more
than 2 years for all included reports. Tumour types are
diverse and generally mirror the prevalence of diagnoses
treated with radiotherapy. No study reported an extraor-
dinary prescription dose.

Studies comparing proton therapy and photon
radiotherapy outcomes

Four studies presented a comparison between proton therapy
and proton radiotherapy in terms of cognitive functioning
(Table 3) [25, 27, 31, 35]. Three of the studies (Kahalley
et al. 2016, Gross et al. 2019 and Kahalley et al. 2020) report-
ed a complete treatment account of these patients including
the dose and treatment type while Peterson and Katzenstein
(2018) did not provide details of the treatment given. Kahalley
et al. (2020) accrued patients treated for medulloblastomawith
CSI while others accrued patients treated with either focal or
CSI for diverse diagnosis [25, 27, 31, 35].

Overall, in all cognitive measures where the differences
were significant, patients treated with proton therapy per-
formed better. General cognition was found to be better
among patients treated with proton therapy in three reports
including in a cohort of patients treated with CSI [27, 31,
35]. For working memory, both Gross et al. and Kahalley
et al. found better outcomes for proton therapy. Across time,
the slopes of changes for working memory are significantly
different, stable for proton and decline for photon [35]. For
patients treated with CSI, Kahalley et al. found a significant
decline in processing speed in both proton and photon groups.
While in a cohort of diverse diagnosis, patients treated with
proton performed better with CSI found to be a significant
predictor for worse outcomes [27]. For verbal reasoning,
Gross et al. found a significant difference between proton
and photon groups while Kahalley et al. (2020) found neither
significant difference nor significant slope of change [27, 35].
Other measures where proton groups were found to perform
better include visual-motor, reading/decoding, written calcu-
lation and perceptual reasoning [27, 35].

Factors affecting cognition were diverse with hydrocepha-
lus requiring shunt and CSI were consistently associated with
poorer cognitive outcomes.

Association between PT and general cognition (eight
reports)

Eight reports determined the change to general cognition, the
majority of which using the Wechsler Intelligence Scale for
Children (WISC) instrument [24–26, 28, 30, 33, 36, 37]. Two
reports on patients receiving focal therapy found no signifi-
cant difference while in combined cohorts, CSI patients per-
formed worse than either baseline or normative mean
(Table 4). The only report on CSI alone found significant
mean change per year. Significant factors impacting general
cognition for proton therapy include CSI, dose, posterior fossa
syndrome and follow-up.

Association between PT and verbal IQ (six reports)

Weschler verbal IQ tool was the most utilised instrument for
verbal IQ. Three reports are from the same institution [24, 26,
34] and another three from another institution [30, 32, 38]. In
verbal IQ, CSI was found to be an important predictor of
poorer outcomes [32, 34, 38].

Association between PT and perceptual reasoning
(five reports)

In five reports reporting the changes of perceptual reasoning
[24, 26, 30, 34, 38], Roth et al. and Pulsifer et al. found a
significant difference to normative mean and between age
and treatment groups [24, 38]. Only the CSI group was impli-
cated in Roth et al., while the perceptual reasoning among
patients treated with focal therapy was not statistically differ-
ent to normative mean [38]. Pulsifer et al. found no sustained
impact in post hoc analyses between focal and CSI group [24].
In contrast, York et al. found no significant mean change of
perceptual reasoning score per year despite accruing only CSI
patients [34].

Association between PT and working memory (four
reports)

In four reports on working memory, significant changes were
associated with CSI in two reports [24, 38] which were in
contrast to Yock et al. found no significant mean change per
year for a cohort of patients treated with CSI. Peterson et al.
reported a significant decline but the impact of CSI cannot be
verified.

Association between PT and processing speed (five
reports)

In five reports on processing speed, CSI was a significant
factor for significant cognitive decline. Roth et al. found a
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significant change to normative mean for patients treated with
either focal therapy or CSI.

Association between PT and memory (two reports),
executive function (two reports) and motor (one
report)

Two reports highlighted the change to memory using delayed
story memory task, Rey-Kim memory task or Weschler
Memory Scale [27–29]. Compared with baseline, Zureick
et al. found a significant and a trend toward significant change
for immediate and delayed verbal memory, respectively. This

is in concordance to the findings by Park et al. in comparison
with normativemeans. Park et al. found no difference between
the executive function outcome in a combined focal and CSI
cohort. Antonini et al. who subjected patients to a battery of
specialised executive function test (Delis–Kaplan Executive
Function System) and separated between those treated with
CSI and focal therapy observed differences between them.
Patients treated with CSI performed worse than normative
means in word reading score and more errors in inhibition/
switching tasks in Colour-Word Interference test which as-
sesses verbal inhibition. They also performed worse in
number-letter switching and number and letter sequencing in

Table 3 Comparison between cognitive outcome following paediatric proton and photon therapy for brain tumours

First author, year Main cognitive measure Main outcome Significant predictors for
worse cognitive outcome

General cognition

Gross, 2019 FSIQ (Wechsler) Higher FSIQ for proton Hydrocephalus requiring shunt

Kahalley, 2016 FSIQ (Wechsler) Worse IQ change for photon. IQ
slopes did not differ between
groups

IQ test type—Leiter scores, worse
performance scores, lower SES

Kahalley, 2020 FSIQ (Wechsler) Worse IQ slope for photon therapy,
stable slope for proton

Working memory

Gross, 2019 Digit span Proton significantly better Younger

Kahalley 2020 WMI (Wechsler) Worse slope for photon therapy,
stable slope for proton

-

Peterson, 2018 WMI (Wechsler) Not significant -

Processing speed

Gross, 2019 PSI (Wechsler) Proton significantly better CSI, posterior fossa syndrome

Kahalley, 2020 PSI (Wechsler) Significant decline for proton
and photon

Peterson, 2018 PSI (Wechsler) Not significant -

Verbal reasoning

Gross, 2019 VCI (Wechsler) Proton significantly better Younger, lower SES

Kahalley, 2020 VCI (Wechsler) Not significant -

Perceptual reasoning

Gross, 2019 PRI (Wechsler) Nonverbal reasoning—not significant Lower SES, hydrocephalus
requiring shunt and CSI

Kahalley 2020 PRI (Wechsler) Perceptual reasoning—higher
mean scores for proton, significant
difference of slopes between
proton and photon

-

Other measures

Gross, 2019 Delayed story memory
task (WRAML2 or CMS)

Memory—not significant Lower SES, black,
hydrocephalus requiring shunt

Visuographic skills (VMI) Visual-motor integration—proton
significantly better

CSI, longer time to evaluation

Reading/decoding (WIAT or WJA) Academic skills—proton
significantly better

None

Written calculation (WIAT or WJA) Academic skills—proton
significantly better

Higher SES, hydrocephalus
requiring shunt and CSI

FSIQ full-scale intelligence quotient, WMI working memory index, PSI processing speed index, VCI verbal comprehension index, PRI perceptual
reasoning index, SES socioeconomic status, CSI craniospinal irradiation, VMI Beery-Buktenica Developmental Test of Visual-Motor Integration,
WRAML Wide Range Assessment of Memory and Learning, CMS Children’s Memory Scale, WIAT Wechsler Individual Achievement Test, WJA
Woodcock-Johnson Tests of Achievement
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Table 4 Comparison between cognition following proton therapy to baseline, normative mean or radiotherapy-naïve paediatric brain tumour patients

First author, year Treatment technique Comparison Main outcome Significant predictors for worse
cognitive outcome

General cognition

Greenberger, 2014 Focal Baseline No significant difference High-risk dose

Kahalley, 2019 Focal and CSI Radiotherapy-naïve Proton CSI significant decrease.
Significant slope difference
between CSI to both focal
and surgery

Posterior fossa syndrome

Macdonald, 2013 Focal Baseline No significant difference None

Park, 2017 Focal and CSI Normative mean No significant difference None

Pulsifer, 2018 Focal and CSI Baseline significantly worse than baseline Longer follow-up interval,
younger, higher baseline score,
CSI

Roth, 2020 Focal and CSI Normative CSI worse than normative mean.
No significant difference for focal

Not studied

Yock, 2016 CSI Baseline Significant mean change per year Younger, involved field

Zureick, 2018 Focal and CSI Baseline No significant difference Not studied

Verbal IQ and language skills

Antonini, 2017 Focal and CSI Normative CSI: Worse letter fluency
Focal: No difference

Older age at testing and RT

Greenberger, 2014 Focal Baseline No significant difference Younger, high-risk dose

Kahalley, 2019 Focal and CSI Radiotherapy-naïve No significant change and slope
difference for both CSI and proton

Posterior fossa syndrome

Park, 2017 Focal and CSI Normative No significant difference None

Pulsifer, 2018 Focal and CSI Between age and
treatment group

No significant difference None

Roth, 2020 Focal and CSI Normative CSI worse than normative mean,
focal no difference

Not studied

Yock, 2016 CSI Baseline Highly significant mean change
per year

None

Perceptual reasoning

Greenberger, 2014 Focal Baseline No significant difference None

Kahalley, 2019 Focal and CSI Radiotherapy-naïve No significant change and slope
difference

Posterior fossa syndrome, history
of VP shunt,

Park, 2017 Focal and CSI Normative mean No significant difference None

Pulsifer, 2018 Focal and CSI Between age and
treatment group

Significant None in post-hoc

Roth, 2020 Focal and CSI Normative mean CSI worse than normative mean,
focal no difference

Not studied

Yock, 2016 CSI Baseline No significant mean change per year None

Working memory

Kahalley, 2019 Focal and CSI Radiotherapy-naïve Proton CSI significant decrease.
No slope difference between
CSI to both focal and surgery

Posterior fossa syndrome

Peterson, 2018 Not mentioned Baseline Significantly worse than baseline Age, gender (direction not
mentioned)

Pulsifer, 2018 Focal and CSI Between age and
treatment group

Significant CSI

Roth, 2020 Focal and CSI Normative CSI worse than normative mean,
focal no difference

Not studied

Yock, 2016 CSI Baseline No significant mean change per year None

Processing speed

Kahalley, 2019 Focal and CSI Radiotherapy-naïve Proton CSI significant decrease.
Significant slope difference
between CSI to both focal a
nd surgery

Posterior fossa syndrome, history
of VP shunt

Park, 2017 Focal and CSI Normative No significant difference None
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the Trail Making Test which assesses the flexibility of think-
ing [39]. Patients treated with focal therapy were not signifi-
cantly different to normative mean and in one instance per-
formed better than normative means.

Effect of dose factors

Three reports found significant associations between dose fac-
tors and cognition (Table 5). Only Antonini et al. who
analysed the effect of total dose found a significant association
to cognition while others found no such association or used

the dose measure to adjust for multivariate analysis [29–31,
34, 38]. Two studies performed dose analyses of specific
structures (temporal lobe and hippocampus) and found signif-
icant association overall cognition, verbal comprehension and
verbal and visual memory [26, 28].

Discussion

We conducted the first systematic review to methodically ac-
cumulate and synthesise the evidence of cognitive changes

Table 5 Effects of dose measures
to cognition First author, year Dose measure Effect to cognition

Antonini, 2017 Total dose Slower responding

Greenberger, 2014 Dose distribution to left temporal
lobe/hippocampus

Overall cognition and verbal
comprehension

Zureick, 2018 Dose distribution to left hippocampus Verbal and visual memory scores

Table 4 (continued)

First author, year Treatment technique Comparison Main outcome Significant predictors for worse
cognitive outcome

Peterson, 2018 Not mentioned Baseline Significantly worse than baseline None

Pulsifer, 2018 Focal and CSI Between age and
treatment group

Significant CSI

Roth, 2020 Focal and CSI Normative CSI and focal worse than
normative mean

Not studied

Yock, 2016 CSI Baseline Highly significant mean
change per year

None

Memory

Park, 2017 Focal and CSI Normative Significantly worse than
population mean

None

Zureick, 2018 Focal and CSI Baseline Significantly lower than baseline
for delayed verbal memory

Higher dosimetric index, lower
baseline score and female

Executive functions

Antonini, 2017 Focal and CSI Normative Conners’ Continuous
Performance Test

CSI and focal: no difference

History of craniotomy, higher
total RT dose, younger age

Colour word interference
CSI: Lower processing word

reading score and more errors
in inhibition/switching task

Focal: No difference

Infratentorial tumours

Trail making test
CSI: Worse Number-Letter

Switching, Number sequencing
and Letter sequencing tests

Focal: better Number-Letter
switching errors

Female, history of a shunt

Park, 2017 Focal and CSI Normative No significant difference None

Motor

Antonini, 2017 Focal and CSI Normative CSI: Worse motor coordination
and visual perception

Focal: Worse motor coordination

Female, history of a shunt,
supratentorial
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following proton therapy among paediatric brain tumour pa-
tients. Based on this systematic review, we found that while
the cognitive decline is evident, they were not profound for
focal therapy at about a median of 2- to 3-year follow-up
following proton therapy of paediatric tumours. Significant
changes impacted a segment of patients, i.e. those treated with
craniospinal irradiation and those with hydrocephalus.
Furthermore, available evidence suggests the reduction of
cognitive decline for patients treated with proton compared
with photon. Despite some evidence of the effect of dose
distribution to cognition, reports focusing on the effect were
limited to allow a definitive conclusion.

Initially, a meta-analysis was planned to provide estimates
of cognitive changes by combining the information across
studies. However, due to (1) variation of comparisons per-
formed including to normative means, baseline and radiother-
apy-naïve, (2) highly probable lack of independence of co-
horts reported by the same groups and (3) hypothesis-
generating nature of most studies, meta-analysis is not opti-
mal. However, with the growing number of new centres of-
fering proton therapy, these technical issues are likely to be
resolved in the future and meta-analysis should then be per-
formed. To date, only seven reports presented reasonably
large cohorts (> 50) of patients treated with proton therapy.
Similarly, we are optimistic to see reports with larger cohorts
in the future.

The neurocognitive function for paediatric patients with
intracranial tumours has some level of impairment at diagno-
sis related to age, location, posterior fossa syndrome and type
of tumour [29, 35, 40]. This may have some implications in a
significant number of studies which did not collect the base-
line cognitive function and compared post-treatment measures
with normative means [41]. While the comparisons with nor-
mative means may not be methodologically optimal, in many
domains of neurocognition, patients treated with proton ther-
apy were not significantly lower in cognitive measures than
that of the normal population. This observation of the lack of
significant difference to normative means gives a substantial
assurance that the decline, if any, is not profound. However,
comparison with normative means may not provide a clear
picture for physicians and guardians on how the children
may change following therapy which may impact educational
and pharmacological intervention decisions [42]. For future
studies, a proper baseline cognitive assessment to allow better
quantification of the magnitude of change is recommended.

In the current climate of healthcare financing, there are
growing needs for new technology, including proton therapy,
to be proven to be cost-effective. While dosimetric studies
have repeatedly shown the benefit of proton therapy, societal
demands require the physical advantage of proton therapy to
be translated to clinical benefit to the patients [43]. Direct
comparison in a randomised controlled trial is yet to material-
ise, potentially never will, due to ethical concern of

randomising a patient to a dosimetrically proven inferior treat-
ment arm. Furthermore, other clinical benefits of PT have
been observed including to reduce late endocrine abnormali-
ties, radiogenic second cancers and cardiac mortality [44, 45].
In this review, we included four reports that have attempted to
compare the outcome of proton therapy in comparison with
photon therapy. All of which were from retrospective cohorts
[25, 27, 31, 35]. Generally, studies found less impairment for
patients treated with proton [27, 31]. Kahalley et al. noted that
the IQ slopes did not differ between proton and photon groups
despite the persistent difference between groups [31].
However, in a more recent work to compare intellectual tra-
jectories between paediatric patients treated for medulloblas-
toma with comparable contemporary protocols, the slopes of
change of proton and photon that were found to be different
with proton showed stable performance over time since diag-
nosis while photon showed a statistically significant change
per year [35]. Of note, the study by Kahalley et al. accrued
cohorts of patients from two countries with different availabil-
ity of proton therapy that may reduce biases associated with
treatment selection due to differences in socioeconomic status,
prognosis and tumour characteristics [35].

We categorised reports on cognitive changes based on the
neurocognitive tests/domains with the assumption that they
are not similarly affected by radiation therapy. Our results
suggest that patients treated with CSI performed worse than
those treated with focal therapy consistently across
neurocognitive domains. For full-scale IQ, verbal IQ, percep-
tual reasoning, working memory and executive functions, re-
sults showed that either no significant change for focal proton
therapy or, in combined cohorts of focal therapy and CSI, CSI
was the risk factor for a significant decline. For processing
speed, memory and motor, both focal and CSI groups were
affected. This is an important observation in twofold; first,
they are clinically relevant and second, future clinical studies
should separate the groups to allow appropriate comparisons.
It should be noted that since the whole brain is irradiated in
CSI, the protective effect of proton therapy to cognition is
likely to be small. However, the reduction of dose may be
more apparent during tumour bed boosts. Efforts to reduce
the volume and dose of radiation to normal brain tissue are
again highlighted in these findings. There are other factors
found to be significant predictors for worse outcomes.
However, due to the lack of consistency across studies, they
need further evaluations.

Four reports performed analyses of the cognitive changes
across time and resulted in interesting observations. Kahalley
et al. in 2016 reported that the slope of change between proton
and photon therapy did not differ suggesting that patients
treated with proton may have a similar trajectory to those
treated with modern photon therapy [31]. In another report
by Kahalley et al. in 2019, the trajectory of change for focal
proton therapy and radiotherapy-naïve patients was not
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significantly different suggesting a similar impact of local sur-
gery to proton therapy to cognition [30]. Among patients treat-
ed with CSI, York et al. showed a significant slope of decline
for general cognition [34]. In contrast, Kahalley et al. (2020)
found the trajectory to be stable for patients treated with pro-
ton therapy for general cognition, working memory and per-
ceptual reasoning. The analysis based on the trajectory of
change is potentially superior compared with a single obser-
vation to show patterns of change as patients are subjected to
periodical and long-term assessment and should be considered
in future study design.

Only two studies performed analyses on the effects of dose
to brain substructures to cognition. This is an interesting ques-
tion to answer as there is significant evidence that certain areas
of the brains are found to be correlated to cognitive decline
among adult brain tumour survivors [46] and children treated
with photon therapy [47–49] which can be a basis for treat-
ment optimisation [50]. Future studies should be encouraged
to assess the effect of dose distribution to cognition as the
dose–volume response relationships will allow better
individualisation of treatments. An international collaboration
to analyse normal tissue radiation dose–volume response re-
lationships for paediatric cancer patients has been established
and the reports from the collaboration are eagerly awaited
[51].

We should note some limitations of the systematic review.
First, the length of time from treatment to neurocognitive
evaluation was diverse which may impact the result of com-
parisons. However, mean/median times from treatment to
neurocognitive evaluation were more than 2 years for all re-
ports. Second, there were other confounders which may affect
neurocognitive performance not taken into consideration. For
example, as most patients received chemotherapy as part of
the treatment, the effect of cognitive changes due to cisplatin-
related hearing loss was indifferentiable to changes associated
with radiation. Third, it is acknowledged that selection bias
where negative studies are less likely to be published and thus
not be searchable may influence the observation.

Conclusion

Studies showed that the strong effects of treatment type with
craniospinal irradiation consistently caused a more significant
decline in cognition compared with focal therapy. The clinical
neurocognitive evidence of the superiority of proton over
modern photon therapy is evident and further investigations
to remove biases may be necessary potentially through anal-
yses of multi-institutional cohorts. Long-term longitudinal as-
sessment is recommended. The effect of dose distribution to
cognitive changes is in general still poorly studied.
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