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PD-1/PD-L1 immune checkpoint inhibitors in glioblastoma: clinical studies, 
challenges and potential
Tianrui Yang, Ziren Kong, and Wenbin Ma

Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 
Beijing, China

ABSTRACT
Immune checkpoint inhibitors (CIs) have changed the landscape of tumor immunotherapy. Glioblastoma 
(GBM) remains the most common primary malignant brain tumor in adults and has a very poor prognosis. 
Due to the high invasiveness and aggressiveness of GBM, there is considerable interest in programmed 
cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) treatment. However, the immunosuppressive 
and immune-privileged characteristics of GBM limit the efficacy of CIs. While clinical studies of CI 
monotherapies have shown unsatisfactory survival benefits, new treatment strategies have received 
attention. Multiple clinical studies have focused on combination of standard therapy (temozolomide, 
radiotherapy), targeted therapy and other immunotherapies, and some have reported results. Here, we 
reviewed recent clinical trials of anti-PD-1/PD-L1 monotherapy, studies with neoadjuvant strategies, and 
preclinical and clinical studies of combination immunotherapies for GBM. The preliminary clinical reports 
in certain subsets of patients with hypermutated or mismatch repair system deficiency GBM are also 
discussed.
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Introduction

Glioblastoma (GBM) is the most common primary brain 
tumor in adults and exhibits high aggressiveness, with 
a median overall survival (OS) time of less than 2 years and 
a 5-year OS rate of less than 10%1. GBM represents one of the 
greatest therapeutic challenges of the modern era, with a low 
cure rate, high recurrence rate, and limited survival time. 
Therapeutic options are extremely limited at both the time of 
new diagnosis and relapse.

Studies on GBM therapies have been performed, and 
immune checkpoint inhibitors (CIs) have received consider-
able attention. CIs activate the anti-tumor response by inhibit-
ing negative immune regulatory pathways, providing new 
therapeutic approaches for GBM.2 The main category of CIs 
is monoclonal antibodies that target the programmed cell 
death protein-1 (PD-1) or its ligand (PD-L1); this category 
includes pembrolizumab, nivolumab, durvalumab, and atezo-
lizumab. These anti-PD-1/PD-L1 CIs have shown significant 
efficacy for some tumors (such as melanoma,3-5 non-small cell 
lung cancer (NSCLC),6,7 and small cell lung cancer (SCLC)8) in 
clinical trials and have been approved for multiple tumors. For 
GBM, although preclinical studies have shown some potential 
for treatment, anti-PD-1/PD-L1 monotherapy has shown few 
satisfactory results in clinical studies. Most trials revealed a low 
tumor response, and the treatment did not prolong patient 
survival, which limited its therapeutic application. We sum-
marized the existing clinical studies of anti-PD-1/PD-L1 anti-
bodies and explored the directions for CI treatment, including 
the treatment of specific hypermutated tumors, neoadjuvant 

therapy, and combination therapies, to investigate the potential 
of anti-PD-1/PD-L1 treatment for GBM.

Anti-PD-1/PD-L1 monotherapy

Most clinical studies of GBM anti-PD-1/PD-L1 monotherapy 
have shown limited efficacy. Table 1 showed identified clinical 
trials of anti PD-1/PD-L1 monotherapies. Pembrolizumab, 
which is FDA approved for NSCLC, melanoma, hepatocellular 
carcinoma and several other cancers, did not prolong the 
survival of patients with GBM when used as a single agent. 
The Keynote-0289 clinical trial investigated pembrolizumab 
monotherapy in 26 patients with recurrent GBM, and reported 
limited survival benefits: median stable disease (SD) of 
39.4 weeks (7.1–85.9 weeks), median progression free survival 
(PFS) of 2.8 months (1.9–9.1 months), and median OS of 
14.4 months (10.3-not reached). Several studies of high grade 
gliomas (WHO grade 3 and 4) also showed that pembrolizu-
mab monotherapy has limited efficacy compared with control 
groups.10,11 Nivolumab is another approved, widely used CI. 
Checkmate 143, the first large-scale phase 3 clinical trial invol-
ving CI treatment of GBM, initially evaluated ipilimumab + 
nivolumab. However, the major results were regarding nivolu-
mab monotherapy due to increased adverse effects with 
ipilimumab.12 Compared with the bevacizumab-treated con-
trol group, nivolumab did not significantly improve survival; 
the 12-month OS was 42% in both arms, while the median OS 
was 9.8 months in the nivolumab group and 10.0 months in the 
bevacizumab group; the median PFS was 1.5 months and 
3.5 months in the nivolumab and bevacizumab groups, 
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respectively. The anti-PD-L1 antibodies13 atezolizumab8 and 
durvalumab14 have been approved for several cancers. A phase 
1 clinical trial of atezolizumab monotherapy involving 16 
patients with recurrent GBM15 demonstrated unextended sur-
vival, except for 3 patients with IDH or POLE mutations who 
survived longer than 16 months. A phase 2 trial16,17 evaluating 
durvalumab in 5 GBM cohorts published preliminary results. 
Data from subgroups indicated partially clinical benefits. In the 
arm involving 30 patients with recurrent GBM who received 
durvalumab monotherapy, the overall disease control rate was 
60.0% (4 with a partial response, 14 with SD), the median OS 
was 28.9 weeks (22.9-not reached), and the median PFS was 
13.9 weeks (8.1–24.0 weeks). In conclusion, the efficacy of CI 
monotherapy in treating GBM is not satisfactory. It is neces-
sary to further analyze the underlying reasons and develop new 
treatment strategies.

The efficacy of CIs may be affected by several factors, 
including tumor cell PD-L1 expression,18 tumor-infiltrating 
lymphocytes (TILs),19 tumor-infiltrating myeloid cells 
(TIMs),20 tumor mutation burden (TMB), new antigen bur-
den, microsatellite instability (MSI), mismatch repair (MMR) 
system status, and POLE mutation status.21 As high PD-1 
expression may be correlated with a worse prognosis in 
patients with GBM,22 the results that 88% of patients with 
newly diagnosed GBM and 72.2% of patients with recurrent 
GBM have high PD-1 expression18 may be a challenge for 
further studies. In addition, since the existence of TILs is the 
basis of its effectiveness, the ‘cold’ microenvironment and the 
depletion of TILs in GBM also causes challenges for efficacy.19

Patients with specific GBM subtypes may benefit more from 
CI therapies. A higher TMB, higher MSI, neoantigen, MMR 
system deficiency (MMRD), and germline POLE mutation 
usually suggest better efficacy, which has been confirmed in 
clinical practice.23-26 In patients with melanoma,27 NSCLC,28 

colorectal cancer,29 and several other tumors,30 hypermutated 
subtypes are often associated with better CI efficacy. In one 
case report about a GBM patient with hypermutation and 
POLE germline mutation,23 radiographic response and 
increased lymphocyte infiltration were observed, suggesting 
preliminary effectiveness. However, the definition and classifi-
cation of hypermutation are inconclusive. The determination 
of hypermutation is mainly based on TMB, which quantita-
tively reflects the quantity of tumor mutations. Different 
thresholds have been reported for pan-cancer analysis, and 
there is no consensus yet for the critical definition of 
‘hypermutation’.31,32 For GBM, several different important 
criteria were used in published studies. Hodges et al. used 
TMB> 20 mutations/1.4 Mb as the criterion for glioma 
hypermutation.33 Johnson et al. chose TMB> 20 mutations/ 
Mb in pediatric brain gliomas.34 Campbell et al. classified 
tumors with TMB> 9 mutations/Mb as hypermutated and 
tumors with TMB> 100 mutations/Mb as ultra-high mutated 
in GBM.24,31 Bouffet et al. defined hypermutation as >100 
mutations per exome in GBM.26 In follow-up studies, the 
appropriate definition of ‘hyper’ should be further classified 
and unified.

Another type of GBM associated with better CI efficacy is 
MMRD. The four MMR genes (PMS2, MLH1, MSH2, and 

MSH6) are responsible for correcting DNA mismatches during 
replication, maintaining DNA stability.25 MMRD GBM 
demonstrated high TMB and predicted high neoantigen load, 
even higher than those of melanoma, lung cancer, and colon 
cancer, which are usually considered ‘immuno-responsive’ 
tumors.26 In an MMRD pedigree study,26 2 pediatric siblings 
received nivolumab after GBM recurrence (newly diagnosed at 
3.5 years and 6.5 years and recurrent at 4 and 7 years, respec-
tively), resulting in a significant radiologic and clinical 
response. Follow-up MRI showed tumor disappearance, 
which was stably maintained for a long time. An abstract35 

from the 2019 American Society of Clinical Oncology (ASCO) 
conference also reported that after treating 12 high grade 
glioma patients (with weak and absent MMR expression, 
according to immunochemistry) with pembrolizumab, 4 
patients developed SD. In the weak MMR and absent MMR 
subgroups, the median OS was 2.8 months and 5.6 months, 
respectively, and the PFS was 1.8 months and 3.1 months, 
respectively. Although the tumors progressed in all patients, 
survival data showed that patients without MMR might benefit 
from pembrolizumab monotherapy.

Neoadjuvant therapy

As a new dosing regimen for current CI monotherapy, 
neoadjuvant treatment has been reported to reverse the 
immunosuppressive properties of the GBM microenviron-
ment, enhance local and systemic antitumor immune 
responses, improve chemokine expression, and increase 
immune cell infiltration in tumors.36 A single-arm phase 2 
clinical trial treated 30 patients with GBM (27 recurrent 
and 3 newly diagnosed) with neoadjuvant nivolumab37 and 
found a median OS of 7.3 months, and a median PFS of 
4.1 months. Furthermore, 2 patients had PFS of 28.5 and 
33.3 months. Multiple molecular and cellular analyzes 
showed that after neoadjuvant therapy, the expression of 
chemokines in tumor tissues was enhanced, and immune 
cell infiltration was increased. Another randomized trial 
involving 35 patients with recurrent GBM38showed that 
survival was longer in the neoadjuvant pembrolizumab 
group than adjuvant pembrolizumab group (median PFS 
of 2.4 months and 3.3 months, respectively, and median 
OS of 13.7 months and 7.5 months, respectively). Tumor 
gene expression profiles also converted in the experimental 
group, with enhanced interferon-γ-related gene expression, 
increased T cell clonality, and downregulated PD-1 signal. 
These two clinical trials suggest therapeutic potential for 
neoadjuvant therapy. Furthermore, a retrospective study 
investigated 66 CI-treated patients with recurrent GBM to 
specifically identify molecular changes caused by neoadju-
vant therapy and to predict its efficacy.39 In responders, the 
expression of mitogen-activated protein kinase (MAPK) 
pathway-related genes (PTPN1, BRAF) increased, accompa-
nied by an increase in T cell clone diversity and tumor 
microenvironment heterogeneity. However, in non- 
responders, enriched PTEN mutations indicated an immu-
nosuppressive microenvironment, together with a failure of 
selective recruitment of lymphocytes. Such molecular 
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alterations may act as response predictors and should be 
considered in further clinical investigations of neoadjuvant 
CI therapy.

Preclinical studies of combination therapy

As the efficacy of CI monotherapy has not meet expectations, 
combination therapies with CIs and other treatments are being 
pursued. Preclinical animal studies have indicated partial 
potential of the combination of standard therapy, targeted 
therapy, or other immunotherapies.

Addition of the standard medication temozolomide (TMZ) 
may enhance antitumor efficacy in rodent models.40,41 Local 
TMZ can increase the number of CD3 + T cells in the periph-
eral blood. Local TMZ + anti-PD1 treatment produced longer 
survival and higher circulating lymphocyte numbers than in 
monotherapy.40 However, systemic TMZ chemotherapy may 
result in lymphodepletion, abrogate part of the immune 
response induced by CIs, and decrease immune memories,42- 

44 suggesting that TMZ administration strategies should be 
considered.45 For radiotherapy (RT) rodents treatedwith anti- 
PD1combined with RT had a longer survival time with 
increased TILs and decreased local immunosuppression, indi-
cating therapeutic potential.46

The targeted monoclonal antibody bevacizumab has been 
regularly used in recurrent GBM as salvage therapy since it was 
FDA approved in 2009.47,48 PD-L1 expression is upregulated in 
bevacizumab refractory tumors, and CIs may restore sensitivity 
to bevacizumab.50 Bevacizumab can also promote the efficacy 
of CIs by inducing local high endothelial venules (HEVs),50 

regulating the immune microenvironment, and promoting the 
antitumor immune response.50 However, the specific effects of 
GBM treatment still need to be further explored.

Combinations with other immunotherapies are also consid-
erable strategies. TIM-3 and LAG-3 are co-inhibitory receptors 
expressed in TILs and can lead to immune exhaustion in the 
GBM microenvironment.51,52 The combination of anti-TIM3 
+ anti-PD1 + focal radiation and anti-LAG3 + anti-PD1 
resulted in prolonged survival in murine gliomas,53,54 and 
follow-up examinations also revealed immune cell infiltration 
and immune memory cell formation. The combined measles 
virus (MV) + anti-PD-1-treated mouse group showed an 
extended survival time with an increased number of TILs.55 

The combination of dendritic cell (DC) vaccines + anti-PD1 
extended survival time and increased integrin homing and 
immunologic memory markers on TILs,56 which indicated 
a potential for clinical translation.

Pre-clinical research, especially the integration of pre- 
clinical models, may assist in optimizing combination strate-
gies and match them with appropriate patient subsets.57 

However, the translation of preclinical murine models into 
clinical studies is an inevitable challenge.

Clinical studies of combination therapy

Clinical studies have provided valuable information about 
combination therapies. Table 1 also includes essential informa-
tion from combinational clinical trials. The phase 3 clinical 
trial Checkmate 49858 focused on newly diagnosed, MGMT 

unmethylated GBM. Preliminary published results showed that 
compared to TMZ + RT therapy (without TMZ), nivolumab + 
RT treatment did not meet the main endpoint of prolonged 
OS. The phase 2 trial Checkmate 54859 focused on newly 
diagnosed, MGMT methylated GBM and reported that com-
pared to TMZ + RT treatment, the PFS of patients treated with 
nivolumab + TMZ + RT was not extended, and the OS has not 
been reported. At the 2019 ASCO conference, optimistic data 
were released. Patients with newly diagnosed MGMT 
unmethylated GBM were treated with durvalumab + RT after 
surgery followed by durvalumab monotherapy. Among 40 
patients, the median OS was 15.1 months (12.0–18.4 months), 
and 8 (20%) patients remained alive when the abstract was 
published, with ongoing survival ranging from 15.7 to 
34.9 months.60 Initial trials did not demonstrate significantly 
improved efficacy after combination with standard therapy, 
and further studies have been pursued. On the other hand, 
due to optimistic data reported from small-scale studies, and 
several ongoing clinical trials, the combination with standard 
therapy should not be totally negated. The failure of combina-
tion studies to date should not detract from future attempts, 
but that the ideal drug pairings and patient population require 
careful consideration.

Several clinical trials of bevacizumab combination therapy 
have published preliminary results. A phase 2 clinical trial 
involving bevacizumab naïve patients with recurrent GBM 
reported primary data at the 2018 ASCO conference: compared 
with pembrolizumab monotherapy, combination with bevaci-
zumab did not show superiority with regard to survival time 
(median OS of 10.3 months vs 8.8 months, 6-month PFS of 
6.7% vs 26%).61 Two phase 2 trials reported that the combina-
tion of pembrolizumab and bevacizumab could benefit tumor 
control and prolong survival time.62,63 Another phase 2 clinical 
trial treated bevacizumab refractory recurrent GBM with dur-
valumab + continuing bevacizumab.64 Eight patients (36%) 
exhibited an OS ≥22 weeks, and 11 patients (50%) had a PFS 
≥8 weeks. The results suggested that durvalumab + bevacizu-
mab exhibited preliminary activity. The results of these studies 
indicate that bevacizumab combination therapy may be effec-
tive, and further investigations are warranted.

The results of clinical studies in combination with other 
immunotherapies are limited, but multiple clinical trials are in 
progress (shown in Table 1). Nivolumab + ipilimumab combi-
nation treatment for melanoma showed improved PFS com-
pared with monotherapy,65 but due to differences in tumor 
conditions, the efficacy of this combination for GBM is limited 
by safety and tolerability. In the Checkmate 143 trial, in the 
nivolumab + ipilimumab group, 40% of patients were forced to 
discontinue treatment due to intolerance.66 Several trials of 
combinations with vaccines, oncolytic viruses, and CAR-T 
therapies are in progress, and further results are anticipated.

Safety and tolerability

PD-1 inhibitors are generally well tolerated.67,68 According to 
the National Comprehensive Cancer Network (NCCN)69,70 

and European Society for Medical Oncology (ESMO)71 guide-
lines, the overall incidence of adverse events (AEs) caused by 
PD-1 antibodies was 26.8%, the incidence of high-level AEs 
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was 6.1%, and no significant differences in AEs were observed 
between the PD-1 and PD-L1 antibody groups.72The 
Checkmate 14366 trial showed that the most common AEs 
associated with nivolumab included fatigue, diarrhea, head-
ache, elevated lipase, and nausea. Patients had a greater toler-
ance for nivolumab than ipilimumab, and the incidence of AEs 
increased with the ipilimumab dosage. For neurological AEs, 
the overall incidence was 6.1%,72 with a highly heterogeneous 
clinical spectrum. The most commonly reported AEs were 
grade 1–2, included headaches, encephalopathies and 
meningitis.72 In Checkmate 143, headaches and seizures 
occurred most frequently among neurological AEs, which 
were also well tolerated.73 There was also brain specific CI- 
related pseudo-progression reported. Pseudo-progression is 
due to a locally stimulated immune response, which can 
mimic the radiologic features of progression including 
enhancement and edema.74 Therefore, imaging features of 
tumor deterioration at the initial stage of immunotherapy 
cannot exclude subsequent clinical benefit according to the 
Immunotherapy Response Assessment in Neuro-Oncology 
(iRANO) criteria.75 In clinical practice, it is necessary to cor-
rectly distinguish pseudo-progression from true progression 
and determine treatment failure.

CI-related AEs need to be discovered in a timely manner 
and closely monitored. With prompt intervention, most can be 
effectively managed.76 Glucocorticoids can reverse nearly all 
immune-related AEs and are suggested for grade 3–4 or pro-
longed grade 2 AEs.77 Prolonged use of glucocorticoids may 
have benefits in preventing the recurrence of AEs, especially 
pneumonia and hepatitis. Glucocorticoids are widely used in 
GBM patients to reduce tumor-related cerebral edema and 
radiation necrosis.78,79 Nonetheless, the impact of glucocorti-
coids on patients with GBM treated with CIs has not been fully 
investigated. Evidence has shown that glucocorticoids do not 
reduce the efficacy of immunotherapy, but pre-administration 
before treatment may be associated with 
immunosuppression.80,81 The impact of glucocorticoids on 
OS also remains conflicting.66,79,82 Thus, in clinical practice 
with patients with GBM, the clinical beneficial effect, immune 
suppressing effect, CI-related AEs reversing effect, and survival 
effect of steroids must be balanced. Additionally, oral myco-
phenolate, intravenous infliximab (anti-TNFa mAb), plasma 
exchange, and infusion of anti-thymocyte immunoglobulin 
can be considered for severe AEs.69 Resuming immunotherapy 
after severe AEs requires cautiousness, and follow-up monitor-
ing is necessary.76

Conclusion

At present, the use of anti-PD-1/PD-L1 CIs for GBM has 
received attention, but the overall efficacy is still unsatisfactory. 
Due to the unique properties of GBM, many challenges still 
need to be overcome before reaching a ‘breakthrough’. Some 
studies have supported that screening specific patient sub-
groups may result in the possibility of greater benefits. 
Neoadjuvant administration, as a new treatment strategy, 
needs more clinical studies to assess its safety and efficacy. 
Data from large-scale clinical trials focusing on CIs combina-
tion therapies are limited, and most of the published results 

were negative, demonstrating no significant survival benefits. 
However, some small-scale studies and subgroups from large- 
scale studies reported varying degrees of benefits, indicating 
that detracting certain combination strategies still needs con-
sideration. Furthermore, multiple clinical trials are under 
investigation, and the results are highly anticipated. Further 
studies surmounting challenges, such as investigating immu-
notherapy endpoints, identifying biomarkers for personalized 
treatment, and developing useful imagination evaluation cri-
teria, are still being pursued.57 In conclusion, CIs for GBM 
have multiple challenges and potential, and more in-depth 
studies and clinical trials are needed.
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