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A B S T R A C T

Glioblastoma (GBM) continues to be the most aggressive cancer of the brain. The dismal prognosis is largely
attributed to the microenvironment surrounding tumor cells. Astrocytes, the main component of the GBM mi-
croenvironment, play several fundamental physiological roles in the central nervous system. During the de-
velopment of GBM, tumor-associated astrocytes (TAAs) directly contact GBM cells, which activate astrocytes to
form reactive astrocytes, facilitating tumor progression, proliferation and migration through multiple well-un-
derstood signaling pathways. Notably, TAAs also influence GBM cell behaviors via suppressing immune re-
sponses and enhancing the chemoradiotherapy resistance of tumor cells. These new activities are closely linked
with the treatment and prognosis of GBM. In this review, we discuss recent advances regarding new functions of
reactive astrocytes, including TAA-cancer cell interactions, mechanisms involved in immunosuppressive reg-
ulation, and chemoradiotherapy resistance. It is expected that these updated experimental or clinical studies of
TAAs may provide a promising approach for GBM treatment in the near future.

1. Introduction

Glioblastoma (GBM) has continued to be the most lethal devastating
tumor arising in the brain [1]. While multiple studies have aimed to
explore potential treatments through molecular mechanisms,

radiotherapy combined with chemotherapy is still the standard treat-
ment for postoperative GBM patients and has dismal outcomes [2,3].
The median survival remains less than approximately 15 months after
diagnosis [4].

Given the poor efficacy of TMZ, researchers have been dedicated to
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finding new therapeutic strategies using new substances against GBM.
However, most of these substances are not capable of crossing the
blood–brain barrier (BBB). This complex barrier receives support from
glial cells such as astrocytes [5]. The compromised BBB during GBM
progression promotes neuroinflammation by permitting the entrance of
immune cells from the blood, inducing the activation of astrocytes. The
subsequently released interleukins (ILs) consequently disrupt the as-
trocyte–BBB junctions [6].

Notably, stromal cells in the GBM tumor microenvironment (TME)
have been found to promote tumor progression and growth [7,8].
Among the various cells of the GBM TME, astrocytes are the most
common cells that interact with GBM cells [9] and manipulate GBM
behaviors via diverse mechanisms. The biology and functions of as-
trocytes have long been well established, with more details regarding
their role in the immunosuppressive microenvironment of GBM coming
to light [10].

Thus, studying the correlation between astrocytes and GBM is cru-
cial in understanding additional targets for therapy optimization.
Targeting astrocytes within the TME as a means of inhibiting GBM
progression is an attractive and revolutionary idea with regard to pa-
tient treatment and outcome [11].

2. The microenvironment of glioblastoma

The TME is composed of both the noncancerous cells and biomo-
lecules inside the tumor as well as the extracellular matrix (ECM).
Noncancerous cells constituting the TME include normal and reactive
astrocytes, GBM stem cells (GSCs), fibroblasts, vascular pericytes, im-
mune cells, microglia/macrophages and endothelial cells (ECs) (Fig. 1).
Biomolecules produced by noncancerous cells include cytokines, che-
mokines, hormones, and nitric oxide (NO). The TME is thought to
regulate everything in the GBM and the brain tissue adjacent to the
tumor, and the close interaction between GBM and the TME in the CNS

is essential for tumor development [12]. The concept of niches in GBM
was originally developed to describe the primary location of GSCs in the
tumor and where the TME exerts its maximum influence [13]. Conse-
quently, niches are the main source for the detection and demonstration
of the TME.

One notable characteristic of GBM is hypoxia occurring in the whole
tumor with variable intensity within the TME. Hypoxia is considered to
be an efficient hallmark of GBM [14] that activates and upregulates
hypoxia-inducible factors (HIFs) that induce the expression of onco-
genes and transcription factors, as well as proangiogenic factors such as
angiopoietins, transforming growth factor β (TGF-β), and vascular en-
dothelial growth factor (VEGF), which are involved in GSC self-re-
newal, maintenance, expansion and invasion properties [15]. Hypoxia
also contributes to metabolic programming and recruitment of macro-
phages and microglia, which form the inflammatory niche, in which
macrophages secrete TGF-β and IL-6, facilitating the expansion of the
GSC population [16]. Maintaining the stemness of GSCs also relies on
biomolecules such as NO and cyclic guanosine monophosphate released
by ECs [17]. Recent studies have revealed that fibroblast growth factor
(FGF-2) plays a significant role in regulating GBM and is important in
preserving the stemness of GSCs, eliciting one promising area for fur-
ther exploration on the influence of basic FGF-2 on GSCs [18]. Studies
have assumed that GSCs represent a rare subset of cells within GBM
with the ability to generate new tumors [19], which is highly re-
sponsible for the cellular heterogeneity of GBM [20].

The number of glioma-associated microglia/macrophages (GAMs) is
almost equal to the number of tumor cells. Compelling evidence has
proven that GAMs favor tumor progression, since GAMs together with
other myeloid cells are strictly related to the immunological features of
gliomas [21]. For instance, GAMs secrete TGF-β that promotes GBM
cells release of versican, MMP2 and MMP9, the matrix metalloproteases
critical for the degradation of ECM components such as collagen and
elastin to enhance the invasiveness of GBM [22]. On the other hand,

Fig. 1. TAAs and desmoplastic TME. During oncogenesis, TAAs largely contribute to the fibrotic microenvironment, which is a major characteristic of GBM. The
desmoplastic TME consists of glioma cells and numerous stromal components, such as MDSCs, microglia, and macrophages.
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TGF-β promotes the polarization of microglia/macrophages into an
immunosuppressive M2 phenotype, promoting tumor progression via
enhancing the capacity of GAMs to inhibit T cell proliferation [23].

The interaction between pericytes, ECs and GSCs forms the sig-
naling networks that contribute to tumor angiogenesis [24]. Specifi-
cally, pericyte-EC interactions are responsible for the formation of en-
dothelial junctions, which recruit macrophages that are closely
associated with the tumor vasculature [25]. Pericytes promote vascular
maturation by expressing neural glial antigen 2 (NG2), chondroitin
sulfate proteoglyacan 4 (CSPG4) and α-smooth muscle actin (α-SMA).
NG2/CSPG4, serving as a component of both tumor and stromal cells,
promotes tumor growth [26]. In GBM neoangiogenesis, the increased
pericytes, which are an essential element of the neovascular unit, to-
gether with the disruption of the BBB are regarded as a good marker of
neovascularization [27].

ECM constitutes the noncellular component of the microenviron-
ment and functions as a source of biochemical signals, contributing to
the normal physiology of the CNS [28]. The dynamic ECM makes up
approximately 20 % of brain volume [29]. During development, in-
teractions between GBM cells and the ECM regulate tumor cell inva-
sion, malignancy and migration. Under pathological conditions in GBM,
ECM agrin is partially lost from the basal lamina of blood vessels and is
then replaced with tenascin [30]. ECM-binding proteins such as hya-
luronic acid (HA), CD44, MMP9 and hyaluronidases 1/2/3 (Hyal 1/2/
3) all have a direct impact on ECM remodeling, which facilitates the
invasiveness and infiltration of GBM.

3. The function of astrocytes

Astrocytes account for approximately half of the cells in the human
brain and play an important physiological role in the CNS (Table 1).

3.1. Roles in physiology

Astrocytes express both potassium and sodium channels, which
exhibit evoked inward currents [31]. Astrocytes are not physiologically
silent, since regulated increases in intracellular calcium concentration
are exhibited in astrocytes, and the regulated increases in calcium are
functionally significant in the communication between astrocytes and
neurons [32]. Notably, calcium signaling enables astrocytes to directly
play a role in synaptic transmission [33]. Furthermore, astrocytes are
essential in maintaining fluid homeostasis in the healthy CNS via den-
sely clustered aquaporin 4 (AQP4) water channels [34]. Different
means of proton shuttling located on the astrocyte membranes, such as
the Na+/H+ exchanger and the vacuolar-type proton ATPase, play a
critical role in regulating ion homeostasis in the healthy CNS [35].

It is noteworthy that astrocyte processes at synapses also maintain
transmitter homeostasis of the synaptic interstitial fluid by expressing
high levels of transporters for neurotransmitters, including glutamate,

GABA, and glycine, serving to clear the neurotransmitters from the
synaptic space [36].

Additionally, Astrocytes exert functions during the development of
neurons in many CNS regions, including forming molecular boundaries
guiding the migration of developing axons and certain neuroblasts [37].
Moreover, Astrocytes produce various molecular mediators that can
increase or decrease blood vessel diameter in the CNS. Moreover, in
response to changes in neuronal activity, astrocytes serve as the pri-
mary mediators of alterations in CNS blood flow [38].

3.2. Roles in synaptic activity and plasticity

As mentioned above, astrocytes regulate the release of glio-
transmitters, such as GABA, in response to changes in synaptic activity,
which involves astrocyte excitability [39]. Astrocytes are also able to
efficiently remove neurotransmitters from the synaptic cleft [40].
Therefore, astrocytes play a pivotal role in regulating the balance be-
tween inhibitory and excitatory transmission, which is the basis of
normal brain function [41]. Growing evidence also indicates that as-
trocytes are essential in the development and maintenance of neural
circuits [42], in which astrocytes promote cell-cell communication with
other neural cells through membrane processes, allowing for the re-
cycling of neurotransmitters [43]. Astrocytes are responsible for the
formation of developing synapses by releasing thrombospondin [44]. In
addition, astrocytes can potentially exert long-term influences on sy-
naptic function and synaptic remodeling through the release of growth
factors and related cytokines such as tumor necrosis alpha (TNFα)
[45–47].

3.3. Roles in metabolism

Compelling evidence has demonstrated that neuronal activity
during hypoglycemia and periods of high neuronal activity can be
maintained via astrocytic glycogen utilization [48], in which the as-
trocyte glycogen content is modulated by transmitters [49]. Further-
more, glucose metabolites pass across gap junctions that are regulated
by transmitters as well as neuronal activity [50]. Other research in-
dicates that astrocyte glycogen breaks down to lactate, which is trans-
ferred to adjacent neural synapses and axons to meet the demand for
energy during hypoglycemia [49,51].

3.4. Astrocytes in the blood brain barrier

The BBB is mainly formed by its two central units, the endothelial
cells and pericytes [52], lining cerebral microvessels and maintaining a
precisely regulated microenvironment for the central nervous system
(CNS).

Endothelial cells, forming tight junctions and surrounded by a basal
lamina, perivascular pericytes, and astrocyte end-feet, control the

Table 1
Biological comparison of quiescent astrocytes and reactive astrocytes.

Biological behaviors or functions Specific biomarkers

quiescent astrocytes -maintaining the fluid homeostasis AQP4 [34]
-maintaining the transmitter homeostasis GABA [39]
-developing synapse Thrombospondin [44]
-exert long-term influences on synaptic function and synaptic remodeling TNFa [45,46,47]
-play a role in BBB maintenance by interacting with both endothelial cells and pericytes
-forming molecular boundaries guiding the migration of developing axons and certain
neuroblasts

Albumin [56]

-primary mediators of alterations in CNS blood flow Insulin [56]
-regulating the balance between inhibitory and excitatory transmission
-maintaining high neuronal activity via astrocytic glycogen utilization

reactive astrocytes -exacerbating the neuroinflammatory responses CCL2, IL-6
-forming a functional barrier termed as “glial scar” GFAP [58]
-support tissue repair nestin, vimentin, c-MET, STAT-3, BDNF, GDF-15, CD44 [57]
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transport of essential molecules such as energy metabolites from the
blood into the brain and the transport of metabolic waste products from
brain into the blood by expressing multiple substrate-specific transport
systems, indicating that BBB serves as a key homeostatic site connecting
the CNS and systemic circulation. Pericytes share a basement mem-
brane with endothelial cells and also contribute to the integrity of the
BBB [53].

Astrocytes directly interact with both endothelial cells [52] and
pericytes [54], contributing to a variety of dynamic regulations in the
nervous system. Astrocytes are also necessarily associated with en-
dothelial cells and pericytes in vitro, indicating that astrocytes can in-
duce BBB properties in cerebral as and related epithelial cells [55].
Astrocytes and endothelial cells mutually influence each other by se-
creting a wide range of chemical agents, such as albumin and insulin,
leading to a two-way induction that enhances the growth and differ-
entiation of astrocytes and endothelial cells [56].

Therefore, given that astrocytes play a role in BBB maintenance,
additional studies are needed to identify potential molecular mediators
that induce BBB properties and clarify the related roles of astrocytes in
BBB function.

4. Astrocyte in glioblastoma

4.1. Astrogliosis in CNS pathologies

In certain CNS pathologies, such as GBM, astrocytes undergo mo-
lecular, cellular, and functional changes and are transformed into re-
active astrocytes through a process called astrogliosis that is char-
acterized by hypertrophy, as well as activation of cell proliferation at
the lesion site. Most importantly, astrogliosis is associated with the
upregulation of intermediate filaments composed of nestin, vimentin,
signaling receptors (c-MET), transcription factors (STAT-3), growth
factors (brain derived neurotrophic factor (BDNF) and growth/differ-
entiation factor 15 (GDF-15)), cell adhesion proteins (CD44), and ex-
tracellular matrix components (collagens and versican) and supports
tissue repair [57]. Furthermore, reactive astrocytes release in-
flammatory cytokines (C-C motif chemokine ligand 2 (CCL2) and in-
terleukin 6 (IL-6)) and NO, thereby exacerbating neuroinflammatory
responses (Table 1).

Notably, reactive astrocytes in acute brain injuries promote the
upregulation of glial fibrillary acidic protein (GFAP), forming a func-
tional barrier termed a “glial scar” [58], which restricts and regulates
inflammation, isolating the lesion from the surrounding tissues [59],
facilitating the regulation and repairment of the BBB [60], enhancing
synaptic plasticity, and initiating neuronal circuit reorganization.
Consequently, reactive astrocytes may increase clinical stabilization
and improve patients survival [61].

4.2. Tumor-associated astrocytes in the GBM microenvironment

Using an intersectional fluorescence-activated cell sorting-based
strategy, astrocytes have been proven to consist of five heterogeneous
subpopulations with distinct morphological, molecular, and functional
properties from three CNS regions [62].

Brain region-specific gene signatures revealed by distinct astrocyte
subpopulations were found to be linked to glioma that harbor distinct
genomic alterations, suggesting that astrocytes play specific roles in the
interactions with the surrounding GBM microenvironment [63]. In a
similar study, the results identified unique gene expression patterns
between populations of tumor-associated astrocytes (TAAs), in which
certain stromal astrocytes in the tumor microenvironment expressed a
GBM-specific gene signature and the majority of these stromal astrocyte
genes predicted survival in the human disease [64].

One recent study also demonstrated that intrinsic astrocyte het-
erogeneity significantly contributes to glioma pathogenesis [65]. The
diverse subpopulations of astrocytes have different functions, and dif-
ferent astrocyte phenotypes are also separately correlated with different
GBM subtypes, providing new insights for understanding GBM pro-
gression dynamics [62].

5. The Crosstalk between glioma and astrocytes

As mentioned above, the GBM microenvironment is crucial in the
progression of tumors, and the parenchymal and non-malignant cells
adjacent to the mass facilitates the development and growth of GBM
[25].

Astrocytes, one main component of the GBM microenvironment,
display a reactive phenotype when they contact tumor cells. A large
amount of growth factors, chemokines, cytokines and other soluble
substances secreted by reactive astrocytes serve as essential inter-
mediators orchestrating continued astrocyte activation and signaling
transfer between stroma and epithelial GBM cells. For instance, the
astrocyte phenotype triggered by glioma-astrocyte interactions ex-
presses a high concentration of GFAP and connexin 43 (CX43), favoring
a more permissive environment for glioma cell invasion [66].

The upregulation of MMP2 expressed by GBM via the TGF-β1 sig-
naling pathway and reactive astrocytes during glioma-astrocyte inter-
actions aid the parenchymal infiltrative capacity of GBM cells [22].
Furthermore, stromal cell-derived factor-1 (SDF1) secreted by reactive
astrocytes stimulates uncontrolled proliferation of GBM cells [67].
Therefore, reactive astrocytes are an important source of secretions in
the TME of GBM, augmenting GBM malignancy by causing aberrant cell
proliferation and triggering a malignant transformation in the tumor
microenvironment [11]. Several pathways involved in the interaction
between GBM and reactive astrocytes will be discussed below (Table 2).

Table 2
TAAs mainly involved pathways and their functions.

Signaling pathways Mediators Functional roles

NF-κB signaling pathway RANKL, LPS • Activating astrocytes to secret various factors regulating glioma cell invasion and progression [68,69]

• Enhancing the proliferation of GBM [70,71]
SHH signaling pathway SHH protein • Sustaining TAAs activation and proliferation [74,75]

• Tumor migration and invasion [77]
P53 signaling pathway p53 • Modulating the expression of tumor cells’ secreted proteins [81]

• Leading to an increased expression of laminin, fibronectin, N-cadherin and vimentin, facilitating apoptosis evasion [82,83]

• Favoring cancer malignancy and proliferation [83,84]
IL-6/JAK/STAT signaling pathway IL-6 • Increasing aggressive behavior of GBM [87]

• Enhancing the invasiveness of GBM through the degradation of extracellular matrix [89,90]

• Facilitating angiogenesis in GBM [86]
PI3K/Akt signaling pathway GDNF • Enhancing the proliferation and the invasiveness of GBM [25,97,99]

• Favoring cancer malignancy and migration [93]

• Enhancing the invasiveness of GBM through the degradation of extracellular matrix [101]

• Inhibiting the apoptosis of GBM cells [98]
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5.1. NF-κB signaling pathway

The number of activated astrocytes is markedly increased in the
periphery of invasive tumors that highly express receptor activator of
nuclear factor kappa-B ligand (RANKL). RANKL, produced by GBM
cells, activates astrocytes through nuclear factor kappa-B (NF-κB) sig-
naling, and these astrocytes in turn secrete various factors regulating
glioma cell invasion. Among them, TGF-β signaling is markedly in-
creased [68]. Similarly, fibulin-3 released by GBM cells drives onco-
genic NF-κB and increases NF-κB activation in peritumoral astrocytes,
which is linked to tumor progression [69].

Lipopolysaccharide (LPS), another activator of NF-κB signaling, is
suppressed by tetrandrine (TET), whose suppressive effects might result
from the inhibition of NF-κB activation through downregulating phos-
phorylation of IkappaB kinases (IKKs) [70]. Thus, targeting RANKL and
LPS can prevent the transformation of astrocytes into the reactive
phenotype.

Additionally, astrocyte-derived chemokine C-C motif ligand 20
(CCL20) combines with chemokine C-C motif receptor (CCR6), stimu-
lating the NF-κB signaling pathway, which reinforces the upregulation
of HIF-1α under hypoxia and further enhances the proliferation of GBM
[71].

5.2. Sonic hedgehog (SHH) signaling pathway

Neuron-derived SHH regulates the molecular and functional profile
of astrocytes [72]. Two populations of SHH-producing stromal cells,
namely, astrocytes and endothelial cells, are highly concentrated in the
perivascular niche of gliomas [73].

It is clear that SHH protein, which is secreted by GBM cells, serves as
a hedgehog (HH) pathway ligand. SHH signaling is mediated by HH
ligand binding to the membrane-localized receptor patched (PTCH) on
TAAs, which relieves the inhibitory effect on the smoothened (SMO)
receptor. Derepressed SMO then leads to a cascade of cytoplasmic
events in TAAs that facilitates the activation of GLI family zinc finger
transcription factors, modulating targeted gene expression and even-
tually resulting in TAA activation [74,75]. One previous study showed
that deregulation of SHH-Gli signaling resulted in hyperproliferation of
precursor cells and may initiate brain tumors [76]. Furthermore, an-
other study demonstrated that suppression of the SHH-Gli pathway
markedly inhibited glioma cell migration and invasion [77]. Analysis of
nonstem glioblastoma cells revealed that glioma stem cells differen-
tially respond to SHH ligand, demonstrating a highly efficient single-
cell killing therapeutic strategy for targeting glioma stem cells.

Consequently, SHH-Gli signaling facilitates the activation of astro-
cytes in the perivascular niche surrounding gliomas, which in turn fa-
vors the invasion of gliomas.

5.3. p53 signaling pathway

An important intermediator in the crosstalk between GBM and as-
trocytes is the tumor suppressor gene p53, mutated in 87 % of GBM
cases [78], which missense mutation has been demonstrated to be the
main mutation type [79].

The primary function of p53 is to be activated in the nucleus, in-
itiating cell death or growth arrest and maintaining homeostasis under
healthy conditions. However, the apoptosis mechanism is completely
inhibited in cancerous p53-/- cells. p53 also regulates the expression of
proteins that are secreted to stimulate adjacent cells [80]. Particularly
in the ECM of GBM, p53 modulates the expression of tumor cell-se-
creted proteins [81].

Thus, p53 can potentially modulate the ECM composition. The ECM
of p53+/- astrocytes had a greater presence of laminin and fibronectin,
which are known to trigger the epithelial to mesenchymal transition
(EMT), compared to that of the ECM of p53+/+ astrocytes [82],
through which tumor cells acquire a more migratory and invasive

phenotype that can facilitate apoptosis evasion and promote the sur-
vival of GBM cells [83].

One similar study demonstrated an increased expression of N-cad-
herin and vimentin when GBM cells were cultured in the ECM of
p53+/- astrocytes, and these two markers are responsible for a me-
senchymal phenotype associated with increased resistance to apoptosis
[84].

Culturing the U87 GBM cell line on ECM from p53+/- astrocytes
reduced their apoptotic rate, which further confirmed that the specific
TME formed by the neighboring p53+/- astrocytes promotes GBM
survival. Additionally, compelling evidence has proven that GBM cells
inhibit astrocytic p53 expression, favoring cancer malignancy [83].
Thus, a synergistic relationship exists between GBM cells and the cells
in the TME, in which GBM cells hinder p53 expression in astrocytes to
predispose cells to aberrant cell proliferation, while dysfunctional p53
induces a permissive environment for GBM cells.

Recent targeted therapy based on p53 reactivation reduced both
GBM cell growth and resistance to temozolomide, indicating a pro-
mising role for p53 in the future treatment of GBM [85].

5.4. IL-6/JAK/STAT signaling pathway

Recent findings demonstrated that tumor-associated astrocytes se-
crete IL-6 to promote the progression and increase the malignancy of
GBM in an astrocyte-glioma coculture system [86].

In particular, IL-6 in the TME activates downstream JAK/STAT
signaling via binding to cognate surface receptors, which dimerize and
thereby activate the receptor-associated tyrosine kinase JAK, which
phosphorylates the receptor cytoplasmic portion. Tyrosine-phosphory-
lated receptors provide docking sites for the recruitment of cytoplasmic
monomeric STAT3 protein, and the activation of STAT3 is linked with
clinically more aggressive behavior of GBM [87,88]. IL-6 increases
MMP2 and MMP9 expression through the activation of the IL-6/STAT3
mechanistic pathway, enhancing the invasiveness of GBM through the
degradation of extracellular matrix [89,90]. Additionally, IL-6 also in-
duces the upregulation of MMP-14, further enhancing the invasiveness
of GBM [86].

STAT3 is also a direct transcriptional activator of the VEGF gene,
which is the most potent angiogenesis-inducing signal, facilitating an-
giogenesis in GBM [91]. Suppression of apoptosis is mediated through
the expression of various survival genes that are regulated by STAT3,
such as Bcl2l1, Bcl-2, and Mcl-1. Thus, inhibition of STAT3 in GBM cells
leads to downregulation of survival-related genes and apoptosis [92].

5.5. PI3K/Akt signaling pathway

Reactive astrocytes secrete glial cell line-derived neurotrophic
factor (GDNF), which binds to the receptor tyrosine kinase (RET)/glial
cell line-derived neurotrophic factor family receptor 1 (GFR1) receptor
and activates the PI3K/Akt pathway to induce GBM migration [93]. In
human glioma, PI3K/Akt pathway activation is often associated with
(phosphatase and tensin homolog deleted on chromosome ten) PTEN
alterations such as mutation, promotor methylation [94] and loss of
heterozygosity, and PTEN has been proven to be a significant tumor
suppressor [95].

Following activation of the PI3K/Akt pathway, Akt positively reg-
ulates the survival gene Mcl-1 [96]. Akt also leads to the activation of
the NF-κB pathway by mediating phosphorylation of the inhibitor of
NF-κB kinase subunit alpha (IKKa), increasing inhibitor of apoptosis
(IAP) gene transcription and further enhancing GBM cell survival [97].
Akt phosphorylates mouse double minute 2 homolog (MDM2) and in-
duces the translocation of MDM2 into the nucleus, inhibiting p53
apoptosis functions [98]. Moreover, Akt directly phosphorylates the
apoptotic protein caspase-9 and decreases its protease activity, favoring
GBM survival [99].

Activation of the PI3K/Akt pathway also increases epidermal
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growth factor receptor (EGFR) expression. Mutant receptors, especially
the EGFRvIII variant, which is constitutively activated in GBM and in-
duces radioresistance in GBM, can give rise to constitutive activation of
the Akt pathway [100]. MMPs, particularly MMP-9 that promotes in-
vasiveness, are also regulated through the Akt pathway [101]. More-
over, astrocyte elevated gene-1 (AEG-1) enhances the proliferation and
invasiveness of GBM by modulating the PI3K/Akt [25].

Activation of the PI3K/Akt pathway has been correlated with the
grade of malignancy according to WHO classification, suggesting that
high pAkt expression is associated with a poor prognosis in GBM pa-
tients [102].

6. Astrocytes are involved in GBM proliferation

Multiple studies have demonstrated that reactive astrocytes secrete
high levels of factors such as TNF-α, TGF-β, IL-6, and insulin growth
factor-1 (IGF-1) in response to CNS injury. Apart from brain-metastatic
breast or lung cancer cells [103], these factors also significantly in-
crease the in vitro proliferation of primary brain tumors such as GBM
[104]. Exposure of astrocytes to extracellular vesicles (EVs) derived
from GBM generate a medium loaded with fibroblast growth factor
(FGF), human growth factor (HGF), VEGF, chemokines, and ILs that
stimulate the proliferation of GBM cells [105].

Other potent substances in the medium, such as Cx43, are upregu-
lated by astrocytes and modulate the levels of Bcl-2 and Bax2 in GBM
cells, inhibiting the mitochondrial apoptotic response. Cx43 expression
further prevents GBM cells from undergoing apoptosis via blocking
cytochrome C release from mitochondria [106]. GBM cells express
protocadherin 7 (PCDH7) to favor the assembly of GBM-TAA gap
junctions composed of Cx43, which allows the transfer of the second
messenger 2′3′-cyclic GMP-AMP (cGAMP) from GBM cells to TAAs.
cGAMP further stimulates the STING pathway, an innate immune re-
sponse pathway, promoting GBM cell production and the resulting as-
trocyte production of factors such as TNF and interferon (IFN)-α in the
GBM microenvironment. The release of these two factors in turn acti-
vates NF-κB and STAT-1 in GBM cells, consequently supporting tumor
cell proliferation and invasion [107,108].

L-glutamine (Gln) is involved in the balance of carbon and nitrogen
requirements of neural tissue. Gln starvation, which is considered one
type of metabolic dysfunction, hinders GBM cell proliferation. Gln
produced by GBM cells themselves is not sufficient to satisfy the me-
tabolic needs of the tumor cells. Interestingly, one astrocyte-glioma
coculture system showed that astrocytes synthesize and secrete Gln to
facilitate this requirement, and the Gln supplemented by the astrocytes
was subsequently taken up by the GBM cells [109].

Similarly, GDF-15, a divergent member of the TGF-β superfamily, is
overexpressed in reactive astrocytes. Initially, GDF-15 has antitumor
properties because it induces the phosphorylation of Smad3 (a tumor
suppressor protein) and apoptosis via the intrinsic mitochondrial
pathway, inhibiting tumor cell division [110,111]. As the tumor pro-
gresses, GDF-15 no longer phosphorylates Smad3 [112]. GDF-15 also
increases the activation of the PI3K-PKB pathway, which increases the
viability of GBM cells [110]. In addition, GDF-15 disrupts p53 function
in vascular cells and increases HIF-1α and VEGF expression, causing
angiogenesis in GBM under hypoxia [113]. GDF-15 increases GBM cell
proliferation in vitro, and the depletion of GDF-15 inhibits GBM cell
growth in vivo [114]. Overexpression of GDF-15 in GBM patients seems
to correlate with poorer survival of patients [112].

Overall, astrocytes surrounding GBM are responsible for the over-
expression of multiple factors that are conducive to the proliferation of
tumor cells (Fig. 2).

7. Astrocytes are involved in the invasion and migration of GBM

The major obstacle to curing malignant tumors such as GBM is
diffuse invasion, which enables tumors to escape complete surgical

resection and chemoradiotherapy. GBM uses the extracellular routes of
migration that are travelled by immature neurons and stem cells and
frequently uses blood vessels as guides, taking advantage of the ECM to
support the invasive process. GBM cells repurpose ion channels to dy-
namically adjust their cell volume to accommodate narrow spaces and
breach the blood-brain barrier through disruption of astrocytic endfeet.

As discussed above, astrocytes facilitate the remodeling of ECM by
releasing IL6, which activates the expression of MMPs, including
MMP2, MMP9 and MMP14, consequently favoring GBM invasion. The
interaction between GBM cells and the surrounding astrocytes also
activates MMP2 via the uPA-plasmin cascade [115]. Astrocytes also
directly induce the interaction between the urokinase plasminogen
activator (uPA) and its receptor uPAR in GBM cells in vitro, which in
turn enhances the activation of plasmin, a serine protease that cleaves
and activates MMP2 [115]. GDF-15 induces an increase in uPA and
uPAR [116]. Additionally, the adhesion of GBM cells is mediated by
integrins [117], and GDF-15 may interfere with integrin activation
[118].

Moreover, IL-6 secreted by astrocytes promotes the in vitro invasive
property of GBM cells by upregulating the expression of fascin-1, an
actin-bundling protein that is involved in forming cellular protrusions
that support cell migration [89]. Astrocytes also directly increase the
expression of VEGF or induce the upregulation of VEGF through the
STAT signaling pathway, and VEGF is responsible for angiogenesis and
further invasion of GBM.

As a part of the neuron-glial network, astrocytes also facilitate in-
teractions with GBM in the TME via ion channels and ion transporters.
Astrocytes can participate in two-way communication with other cells
by receiving and sending neurotransmitters such as glutamate and γ-
aminobutyric acid (GABA) [119]. Various mechanisms involved in
gliotransmission include Ca2+-regulated vesicular exocytosis and re-
lease via plasma membrane ion channels, and exosomes transport
miRNAs and proteins that promote the progression and invasion of
GBM [120]. Proinflammatory cytokines such as IL-6, IL-10, STAT, TGF-
β, bFGF, EGF, and MMP secreted by glioma cells stimulate astrocyte
reactivity, disrupt ion homeostasis and regulate the expression of ion
channels in glioma-associated stromal cells such as microglia
[121,122].

Furthermore, reactive astrocytes release abundant chemokines into
the tumor microenvironment, which further promote the tumorigen-
esis, aggression, and invasion of GBM. Ion channels in the plasma
membrane of reactive astrocytes are involved in regulating secretion.
For instance, activation of Ca2+ channels induces the secretion of en-
dothelin-1 by astrocytes [123]. Therefore, ion transporters play dual
roles in communication between astrocytes and glioma, as well as in
glioma invasion (Fig. 2).

8. The astrocyte-mediated immunosuppressive microenvironment
in anticancer immunity

Despite continuous progress in understanding the immune regula-
tion of GBM and the development of immunotherapies [124], ther-
apeutic advances have been insufficient. Elucidating a method to en-
hance antitumor immunity and develop promising immunotherapy
seem to be huge challenges in GBM treatment. It has been thoroughly
illustrated that the immune system becomes immediately activated as
cancer cells develop and can fight the developing tumor with the ac-
tivation of natural killer (NK) cells and T lymphocytes [125].

However, cancer cells become easily resistant to the natural im-
mune reaction via immune evasion. Immune evasion and T lymphocyte
dysfunction are a major hurdle for immune responses and are mediated
by various mechanisms, including the immunosuppressive micro-
environment in GBM patients, in which GBM cells interact with in-
filtrated immune cells and stromal components [9,126].

Currently, although there is no direct evidence that astrocytes are
involved in the GBM immunosuppressive microenvironment, reactive
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astrocytes secrete factors such as tenascin-C, which has been linked to
mechanisms implicated in immune protection of GBM cells by paral-
yzing T cell migration [127]. In addition, IL-10, an immunomodulatory
cytokine secreted by astrocytes with anti-inflammatory properties, has
also been shown to promote tumorigenesis via inhibiting the expression
of proinflammatory mediators, including Class II (major histocompat-
ibility complex) MHC and IFN-γ [128]. Class II MHC is involved in the
antigen-presenting ability of monocytes, and IFN-γ induces the synth-
esis of IL-6, which further induces alternative macrophage activation to
facilitate the immune eradication of GBM cells [129,130].

Moreover, STAT-3 is upregulated in reactive astrocytes and is es-
sential in inducing angiogenesis, immunosuppression, and tumor in-
vasion [87,131]. STAT-3 expression recruits and promotes the pro-
liferation of regulatory T (Treg) cells [132], which in turn have
suppressive activity toward CD8+ effector T cells [133]. The upregu-
lation of STAT3 has also been associated with the expansion of T-helper
17 cells (Th17 cells), which are characterized by the expression of IL-17
[134,135]. Emerging evidence has suggested that the T-helper cell re-
sponse toward Th17 differentiation silences the antitumor Th1 re-
sponse, facilitating tumor progression [136]. STAT3 also promotes the
expansion of tumor-associated myeloid-derived suppressor cells
(MDSCs) [137] which inhibit CD4+ and CD8 + T cell activation as
well as innate immune responses [138]. Several astrocyte-regulated

factors associated with the STAT signaling pathway, including IL-6 and
VEGF, regulate tumor-associated MDSC accumulation [139].

Notably, an extensive study showed that STAT-3 inhibits the acti-
vation of microglia and macrophages both in vitro and in vivo, inducing
tumor growth [140]. The STAT-3-expressing subpopulation of reactive
astrocytes has been shown to modulate the immune process in the CNS
during GBM metastasis, thus promoting tumor cell survival [141].

GDF-15, which is elevated in reactive astrocytes, also causes tumor
immune evasion. GDF-15 reduces IL-2 synthesis and increases the
synthesis of immunosuppressive IL-10. A study showed that GDF-15
impairs NK cell function and reduces the infiltration of macrophages
and T cells in GBM [114]. In addition, GDF-15 causes dendritic cell
function abnormalities. It reduces the synthesis of IL-12 and increases
the synthesis of TGF-β, which strongly disrupts immune function [142].

As a recent research hotspot, programmed death ligand-1 (PD-L1)
leads to cancer immune evasion via inhibition of T cell function through
binding to programmed cell death protein-1 (PD1) [143]. Astrocytes
govern the activity of brain-infiltrating CD8 + T lymphocytes through
the upregulation of PD-L1 expression, which is mediated by EVs derived
from GBM [144]. One recent study indicated that a distinct reactive
astrocytic subtype marked by JAK/STAT pathway activation and PD-L1
expression is mediated by high concentrations of anti-inflammatory
IL10 and TGFβ, contributing substantially to the properties of an

Fig. 2. TAAs in the proliferation and invasion of GBM. Exposure of astrocytes to EVs derived from GBM generates FGF, HGF, VEGF, chemokines, and ILs, stimulating
the proliferation of GBM cells. Cx43 modulates the levels of Bcl-2 and Bax2 in GBM cells, inhibiting the mitochondrial apoptotic response. Gln metabolism is a major
carbon source for tumor cell survival. GDF-15 induces phosphorylation of Smad3 and apoptosis via the intrinsic mitochondrial pathway, inhibiting tumor cell
division. Astrocytes facilitate the remodeling of ECM by releasing IL6, which activates the expression of MMPs, favoring the invasion of GBM. Astrocytes induce the
interaction between uPA and uPAR, which in turn enhances the activation of plasmin to activate MMP2.
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immunologically “cold” tumor environment [11].
Altogether, these reports highlight the potential of reactive astro-

cytes to protect GBM cells against anticancer immune reactions by se-
creting several well-described immunomodulatory factors (Fig. 3).

9. Reactive astrocytes and resistance to chemoradiotherapy
treatment

Traditional clinical treatment modalities include surgery, radiation
therapy (RT), and chemotherapy. Concomitant adjuvant temozolomide
(TMZ) chemotherapy and radiotherapy with the median overall sur-
vival (OS) of 16 months is the current standard care for GBM patients
[145]. Tumor treating field (TTF), approved by the United States Food
and Drug Administration (FDA), could significantly increase the median
OS of GBM patients by 2.8 months [146]. Although promising in pre-
clinical experiments, the therapeutic effects of other novel treatments,
including boron neutron capture therapy (BNCT), antiangiogenic
therapy, immunotherapy, epigenetic therapy, oncolytic virus therapy
and gene therapy are still either uncertain or have discouraging clinical
results [124].

Thus far, no monotherapy for GBM is sufficient to prevent tumor
recurrence. Compelling evidence has suggested that the interaction
between tumor cells and their microenvironment triggers the tumor cell
resistance to therapy, and astrocytes are thought to play an essential
role in this interaction [104,147].

It has been suggested that gap junction communication (GJC) be-
tween glioma cells and astrocytes decreases the sensitivity of tumor
cells to TMZ chemotherapy [148]. The glioma-astrocyte gap junctions
modulate the invasive property of glioma by mediating microRNA
signaling, and microRNAs transferred between glioma cells and astro-
cytes may enhance the chemoresistance of glioma cells [149]. More-
over, the gap junction protein Cx43 in glioma cells, which is upregu-
lated by astrocytes during the glioma-astrocyte interaction, is
responsible for TMZ resistance [106]. Moreover, knockdown of Cx43 in
astrocytes increases TMZ-induced apoptosis of glioma cells [150]. In
combination with the Cx43 property of promoting proliferation and
migration of glioma cells, TMZ could potentially increase its

effectiveness in combating GBM via artificially downregulating Cx43
protein.

Another standard option for the treatment of GBM is radiotherapy.
After coculturing GSCs with astrocytes, researchers discovered that the
presence of astrocytes diminished the sensitivity of glioma cells to
radiotherapy. The initial level of radiation-induced γH2AX foci, which
indicate breaks double-stranded DNA in GSCs, was reduced, suggesting
that astrocytes influence the induction and repair of DNA double-strand
breaks (DSBs) caused by radiotherapy. The study further identified
significantly different gene expression profiles, including STAT3 in
GSCs grown in astrocyte-mediated coculture, suggesting several po-
tential targets for GSC radiosensitization. Consistent with these results,
the JAK/STAT3 inhibitor WP1066 enhanced the radiosensitivity of
GSCs [151]. Moreover, expression of active Akt accelerates DNA repair,
suggesting that the PI3K/Akt pathway is also involved in the radio-
resistance of GBM cells [152]. Importantly, targeting Akt resulted in
increased residual unrepaired DNA DSBs following irradiation of U251
GBM cells [153].

Given the pivotal role of astrocytes in GBM resistance to chemor-
adiotherapy treatment [154], more studies are needed to further elu-
cidate the potential mechanisms involved in the interactions between
astrocytes and glioma cells that induce GBM resistance to treatment.

10. Conclusion

As a powerful tumor contributor, there is accumulating evidence
supporting the multiple roles of TAAs in the establishment of the TME,
such as regulating environmental homeostasis and supporting tumor
survival, proliferation, immune evasion, invasion and therapeutic re-
sistance. The interplay between tumor cells and TAAs is increasingly
recognized as a main driver for GBM progression. Although the devel-
opment of basic studies and therapeutic strategies targeting TAAs have
been revealed, more details on TAAs and GBM treatments remain to be
illustrated. Further understanding of mechanisms involved in the
crosstalk between TAAs and GBM will open new avenues for transla-
tional medicine and more meaningful clinical therapies for GBM.

Fig. 3. The immunosuppressive modulator role of TAAs. Astrocytes secrete multiple factors with immunosuppressive effects, such as paralyzing T cell migration,
inhibiting the expression of proinflammatory mediators and suppressing CD4+ and CD8 + T cell activation. GDF-15 causes tumor immune evasion by regulating the
expression of ILs and impairs the function of NK and dendritic cells.
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