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Abstract
Introduction Recently discovered molecular alterations in pediatric low-grade glioma have helped to refine the classifica-
tion of these tumors and offered novel targets for therapy. Genetic aberrations may combine with histopathology to offer 
new insights into glioma classification, gliomagenesis and prognosis. Therapies targeting common genetic aberrations in 
the MAPK pathway offer a novel mechanism of tumor control that is currently under study.
Methods We have reviewed common molecular alterations found in pediatric low-grade glioma as well as recent clinical 
trials of MEK and BRAF inhibitors.
Results In this topic review, we examine the current understanding of molecular alterations in pediatric low-grade glioma, 
as well as their role in diagnosis, prognosis and therapy. We summarize current data on the efficacy of targeted therapies 
in pediatric low-grade gliomas, as well as the many unanswered questions that these new discoveries and therapies raise.
Conclusions The identification of driver alterations in pediatric low-grade glioma and the development of targeted therapies 
have opened new therapeutic avenues for patients with low-grade gliomas.
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Introduction

Recent scientific advances have redefined the biological 
landscape of pediatric low-grade gliomas (pLGG). The 
identification of molecular alterations, most commonly in 
the MAPK pathway, that drive tumor growth in many of 
these tumors has led to novel classification of many of these 
tumors based on the combination of histopathology and 
genetic abnormalities. These advances have paved the way 
for targeted therapies that have significantly expanded the 
therapeutic options for children with pLGG and may change 
the standard management of these diseases in the future.

Epidemiology and clinical management

Low-grade gliomas account for roughly one-third of all pedi-
atric brain tumors and are the most common brain tumor in 
children [1, 2]. pLGG frequently arise in the posterior fossa 
but may develop throughout the brain and spine particularly 
in supratentorial or midline structures. Although histologi-
cally similar, low-grade gliomas occurring in children are 
biologically distinct from their adult counterparts.

Outcomes following treatment of pLGG are generally 
excellent, with 10-year overall survival of 96% for pilocytic 
astrocytoma and 85% for other low-grade gliomas [3]. How-
ever, despite the excellent prognosis, patients are frequently 
left with residual deficits caused by either their tumors or 
tumor-targeting therapies. These may include neurosensory 
deficits, endocrinopathies, motor weakness, and difficulty 
with coordination or cognition [4]. As a result, current ther-
apy is designed to maintain this excellent prognosis while 
enhancing functional outcomes and reducing therapy-related 
complications.

Complete surgical resection, when feasible, may be cura-
tive for pLGG, but even incomplete resection may lead to 
prolonged tumor dormancy [5]. For gliomas that cannot be 
treated with surgery alone, additional therapy may be used 
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to halt tumor progression. Radiotherapy for pLGG results 
in excellent 5-year progression free and overall survival of 
87% and 96% [6]; however, radiotherapy is often avoided in 
young children with low-grade glioma due to substantial late 
effects and risk of second malignancy [6–8]. Instead, chemo-
therapy is frequently used in young children with progressive 
or incompletely resected low-grade glioma to delay or obvi-
ate the need for radiotherapy. Carboplatin-based regimens 
are frequently relied upon as frontline therapy and have dem-
onstrated 3-year progression free survival between 52 and 
83% [9–11]. Alternative chemotherapy regimens, including 
vinblastine or the combination of thioguanine, procarbazine, 
lomustine and vincristine (TPCV), among others, have also 
been used with similar efficacy [12–16]. Although survival 
remains excellent for children with pLGG, recurrent or pro-
gressive tumors may require multiple treatment regimens 
which may lead to cumulative adverse events and deficits.

pLGG morphology

pLGGs exhibit a broad spectrum of histopathologies gener-
ally characterized by glial or mixed glial-neuronal morpho-
logical features. The vast majority lack overtly high-grade 
findings such as necrosis, elevated mitotic activity, or glo-
meruloid microvascular proliferation, and accordingly are 
classified as either WHO grade I or II [17]. Specific histo-
pathological patterns that have historically corresponded to 
WHO-defined disease entities include pilocytic and pilo-
myxoid astrocytoma, which together represent the most 
common pLGGs, along with pleomorphic xanthoastrocy-
toma (PXA), ganglioglioma, and dysembryoplastic neuroep-
ithelial tumor (DNET) [18] (Fig. 1a–f). Recent integrated 
molecular profiling has facilitated the delineation of addi-
tional diagnostic subclasses such as angiocentric glioma, 
polymorphous low-grade neuroepithelial tumor of the young 
(PLNTY; Fig. 1g), and isomorphic diffuse glioma [19–21]. 
Nevertheless, equivocal and/or overlapping histological pat-
terns can hamper definitive morphologic classification [22], 
even at the level of distinguishing classically circumscribed 
lesions (e.g. pilocytic astrocytoma, ganglioglioma) from 
their more infiltrative counterparts (e.g. PLNTY, isomor-
phic diffuse glioma, diffuse glioma). Descriptive terms, such 
as low-grade glioma, low-grade astrocytoma, or low-grade 
glioneuronal tumor are often employed in these contexts. 
Moreover, infiltrative pLGG variants (e.g. low-grade diffuse 
gliomas), particularly in adolescents and young adults, must 
be effectively distinguished from their more prognostically 
ominous adult counterparts, the diffuse astrocytoma and oli-
godendroglioma, to ensure appropriate clinical management.

These considerations underscore the singular impor-
tance of molecular markers for the optimal classification 
pLGGs and clinical management of affected patients. As in 

many other areas of cancer biology, comprehensive molec-
ular profiling has greatly clarified the molecular patho-
genesis of different pLGG variants, while also revealing 
avenues for therapeutic development [23]. We describe 
the most clinically impactful pLGG-associated molecular 
alterations below. As we shall see, many exhibit notable 
and even disease-defining levels of enrichment in asso-
ciation with specific histopathological patterns (Table 1). 
However, few if any are entirely restricted to one mor-
phological entity. As such, precise pairings of molecular 
alterations and cellular histiogeneses likely underlie the 
biological distinctions delineating pLGG entities.

BRAF abnormalities

Abundant work has repeatedly implicated mitogen-acti-
vated protein kinase (MAPK) pathway alterations as 
central to the pathogenesis of multiple pLGG variants 
[24, 25]. Among other functions, the MAPK signaling 
network conveys cellular growth and proliferation cues 
from receptor tyrosine kinases (RTKs) to downstream 
transcriptional and metabolic effectors [26], and genes 
encoding many of its core components are recurrently 
altered across the broad spectrum of human neoplasia [27]. 
The B-Raf proto-oncogene (BRAF) encodes the MAPK 
pathway constituent most frequently altered in pLGG, 
with two specific gene abnormalities predominating over 
all others. The activating valine to glutamic acid muta-
tion (BRAF V600E) exhibits notable promiscuity in its 
strong associations with PXA (> 60%) [28, 29], gangli-
oglioma (18–45%) [28, 30, 31], and other pLGG entities 
(e.g. pilocytic astrocytoma, PLNTY) [20, 28, 30]. Onco-
genic fusions coupling the constitutively active C-terminal 
domain of BRAF with KIAA1549 represent a second highly 
recurrent pLGG-associated BRAF alteration, arising in 
the majority of pilocytic astrocytomas [32, 33]. As such, 
although primarily restricted to this one histopathological 
pattern, KIAA1549-BRAF fusions are the single most fre-
quent molecular alteration impacting pLGG. A variety of 
“non-canonical” fusions coupling BRAF with alternative 
partners have also been described, albeit at much lower 
frequency [23]. While these fusions are thought to have 
similar biological consequences to KIAA1549-BRAF and 
also arise primarily in pilocytic astrocytoma, the precise 
anatomical localization, patient age distribution, and his-
topathological pattern exhibited by their associated tumors 
are somewhat more variable than those seen in canonical 
pilocytic astrocytoma. Above and beyond BRAF V600E 
and BRAF fusions, rare pLGG cases documenting BRAF 
duplications and alternative point mutations have also 
been reported [34, 35].
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FGFR abnormalities

Abnormalities involving fibroblast growth factor receptor 
(FGFR) genes represent highly recurrent molecular altera-
tions across a broad spectrum of pLGG [24]. FGFR fam-
ily genes (FGFR1-4) encode highly conserved receptor 

tyrosine kinases (RTKs) that signal through the MAPK as 
well as phosphoinositide-3-kinase (PI3K) molecular net-
works downstream [36]. Fusions coupling the extracellular 
N-terminus of FGFR with the intracellular C-terminus of 
several different partner genes (e.g. TACC1, TACC2, TACC3, 
CTNNA3, KIAA1598), characterize multiple pLGG variants, 

Fig. 1  Morphological fea-
tures of pediatric low-grade 
glioma. Pilocytic astrocytomas 
exhibit biphasic architecture, 
with packed “piloid” regions 
consisting of bipolar astrocytic 
tumor cells (a) admixed with 
more loosely arranged areas in 
which tumor cells demonstrate 
more stellate morphology (b). 
Eosinophilic granular bodies 
(arrowheads) and Rosenthal 
fibers are characteristic. 
Gangliogliomas exhibit vari-
able combinations of glial and 
neuronal morphologies (c–d). 
Gangliocytic forms (arrows) 
and eosinophilc granular bodies 
(arrowheads) are characteristic. 
PXAs consist of pleomorphic 
astrocytic tumor cells (e–f) that 
often exhibit xanthomatous 
vacuolization (arrow) along 
with eosinophic granular bodies 
(arrowhead). While variable in 
their histopathology, PLNTYs 
typically exhibit features similar 
to low-grade oligodendroglio-
mas with round to oval nuclear 
monomorphism and perinuclear 
halos (g). MVNTs character-
istically demonstrate areas of 
gangliocyte-like cells with 
abundant eosinophilc cytoplasm 
and neuronal nuclear morphol-
ogy loosely arranged within a 
vacuolated background (h)
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and are thought to function through enhanced dimerization 
of the chimeric receptor, which in turn activates downstream 
signaling [37]. FGFR3 fusions (most commonly FGFR3-
TACC3), are recurrent alterations in IDH-wild type high-
grade gliomas [38], but have also been reported in PLNTYs, 
as have multiple distinct FGFR2 fusions (FGFR2-KIAA1598 
and FGFR2-CTNNA3) [20]. FGFR2-CTNNA3, in particular, 
has thus far only been identified as a potential oncogenic 
driver in PLNTY. Analogous fusions involving FGFR1 
are primarily associated with pilocytic astrocytomas [24], 
as well as low-grade neuroepithelial tumors classified as 
extraventricular neurocytomas [39]. Tyrosine kinase domain 
point mutations in FGFR1 (N546K and N656E) are most 
commonly seen in DNET, glioneuronal tumors, and extrac-
erebellar and midline variants of pilocytic astrocytoma, a 
subset of which may arise in association with the neurocu-
taneous syndrome encephalocraniocutaneous lipomatosis 
[40–43]. Early evidence suggests that FGFR1-mutant and 
FGFR1-fused pilocytic astrocytomas behave unfavorably 
relative to BRAF-altered counterparts [44]. FGFR1 point 
mutations also represent defining molecular alterations in 
the rare rosette forming glioneuronal tumor (RGNT) [40]. 
Finally, genetic duplications of the FGFR1 tyrosine kinase 
domain (FGFR1-TKDD) have been reported in low-grade 
diffuse gliomas as well as pLGGs with DNET, pilocytic 
astrocytoma, PXA, or even RGNT architecture [24, 41, 42, 
45, 46].

Other MAPK pathway abnormalities

A variety of other molecular alterations involving MAPK 
constituents also serve to upregulate pathway signaling in 
the context of pLGG. NF1 encodes a negative regulator of 
Ras GTPases (e.g. KRAS, HRAS, NRAS) [47], important 
drivers of MAPK signaling. Germline loss-of-function 
mutations in NF1 cause the tumor predisposition syndrome 
Neurofibromatosis Type I, which can feature both pilocytic 

and diffuse pLGG [48–51]. These gliomas have a predilec-
tion for the optic pathway and characteristically exhibit 
indolent behavior. Germline and sporadic NF1 mutations are 
also associated with high-grade glioma, though the biology 
and mutational profile of these lesions appears to be distinct 
from their low-grade counterparts [48].

Activating mutations in KRAS and fusions involving the 
BRAF homologue CRAF arise in small minorities of pilo-
cytic astrocytomas, and appear to function through MAPK 
pathway activation [24, 32, 42, 52–54]. Fusions involving 
the RTK-encoding genes NTRK1-3 have been also reported 
in rare instances of pLGG [24, 42, 55], with their under-
lying biology reminiscent of FGFR-fused disease variants 
[56]. Finally, activating mutations in the MAPK pathway 
constituent MAP2K1 are highly recurrent in multinodular 
vacuolating neuronal tumor (MVNT; Fig. 1h)[57], an unu-
sual ganglioglioma variant [58]. Interestingly, a minority of 
MVNTs harbor unusual BRAF point mutations and FGFR 
fusions [57], highlighting once more the importance of 
MAPK signaling in pLGG pathogenesis.

MYB/MYBL1 abnormalities

The myb proto-oncogene and myb-proto-oncogene like 1 
genes (MYB and MYBL1) encode related transcription fac-
tors that regulate proliferation and differentiation in a variety 
of progenitor cell lineages [59]. Activating MYB abnormal-
ities include 3′ fusion events, most commonly MYB-QKI, 
and whole gene amplification [21, 24]; both mechanisms 
have the effect of increasing levels of the transcribed MYB 
protein. By contrast, MYBL1 is altered primarily by partial 
genetic duplication with truncation of the C-terminal regula-
tory domain [60]. pLGGs harboring MYB and MYBL1 altera-
tions tend to arise in young children and localize primarily 
to the cerebral hemispheres [61]. Histopathologically, MYB 
fusions and amplifications are defining molecular altera-
tions in angiocentric glioma and both MYB and MYBL1 

Table 1  Molecular alterations commonly found in pediatric low-grade glioma

Molecular alteration Commonly associated diagnosis

BRAF V600 Pleomorphic Xanthroastrocytoma, Ganglioglioma, pilocytic astrocytoma, PLNTY
KIAA1549BRAF and other BRAF fusion Pilocytic astrocytoma
FGFR fusions and point mutations Pilocytic astrocytoma, PLNTY, extraventricular neurocytoma, DNET, glioneu-

ronal tumors, rosette forming glioneuronal tumor
NF1 Pilocytic astrocytoma, diffuse astrocytoma, frequently of the optic pathway
KRAS mutations Pilocytic astrocytoma
CRAF fusions Pilocytic astrocytoma
MAP2K1 activating mutations Multinodular vacuolating neuronal tumor
MYB fusions and amplifications Angiocentric glioma
MYB and MYBL1 abnormalities Diffuse astrocytoma and isomorphic diffuse astrocytoma
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abnormalities are enriched in low-grade diffuse astrocyto-
mas [24, 55], a subset of which likely represent the recently 
described isomorphic diffuse glioma [19].

Other abnormalities of prognostic relevance

While most pLGGs behave indolently, specific subsets 
exhibit a more aggressive clinical course associated with 
recurrence and malignant progression. Recent work has 
revealed a defined set of molecular abnormalities enriched in 
these poorly performing subpopulations. An aggressive vari-
ant of pilocytic astrocytoma, termed anaplastic astrocytoma 
with piloid features (AAP), shares driving MAPK pathway 
activation with its low-grade counterpart [62]. However, its 
landscape of molecular alterations differs somewhat, fea-
turing higher levels of NF1 mutations at the expense of the 
BRAF and FGFR1 abnormalities more commonly seen in 
conventional pilocytic astrocytoma. Moreover, AAPs are 
highly enriched in deletions involving cyclin dependent 
kinase inhibitor 2A (CDKN2A) and loss-of-function muta-
tions in α-thalassemia mental retardation X-linked (ATRX) 
[62, 63]. The CDKN2A locus encodes two tumor suppres-
sors, INK4A and ARF, that regulate the crucial retinoblas-
toma and p53 networks respectively [64], and ATRX inac-
tivation has been repeatedly associated with pathological 
telomere maintenance, enabling cellular immortality [65, 
66]. That both alterations confer aggressive behavior in pilo-
cytic astrocytoma is not surprising, given their established 
associations with a variety of malignancies within and out-
side of the central nervous system (CNS) [67]. CDKN2A 
deletions are also highly recurrent features of anaplastic 
PXAs, where they invariably pair with driving BRAF alter-
ations, most commonly BRAF V600E [68]. Interestingly, 
while ATRX mutations are relatively infrequent in anaplas-
tic PXAs, activating alterations in TERT, either promoter 
mutations or amplification events, are highly recurrent. 
TERT encodes the catalytic core component of telomerase, 
the enzymatic activity chiefly responsible for adding DNA 
repeat sequences to telomeres [69, 70]. As such, enhanced 
TERT expression essentially phenocopies ATRX inactiva-
tion, promoting telomere maintenance and enabling unregu-
lated cell division.

Epigenetics

Comprehensive genomic characterization has in many can-
cers revealed a hitherto unappreciated prevalence of molec-
ular alterations directly impacting the cellular epigenome 
[71], an amalgamation of DNA modifications, histones and 
their associated marks, and other chromatin binding factors 
that together directly regulate underlying gene expression. 

Epigenomic dysfunction has been implicated as a driving 
factor in multiple primary brain tumors, including glio-
mas [72]. Mutations involving isocitrate dehydrogenase 1 
and 2 (IDH1 and IDH2) and the H3.3 histone encoding 
genes H3F3A and HIST1H3B are particularly notable in 
this regard. IDH mutations induce a global DNA and his-
tone hypermethylation phenotype, through the production 
of the oncometabolite 2-hydroxyglutarate [73, 74], while 
H3.3 mutations directly impact associated histone marks, 
chromatin accessibility, and underlying gene expression 
[75, 76]. While the results of these disruptive events are 
complex and cell type specific, a fundamental rewiring of 
normal developmental programs appears to underlie at least 
a significant portion of their gliomagenic sequelae. Despite 
the central roles played by IDH and H3.3 mutations in the 
biology of adult and/or high-grade glioma variants, these 
molecular alterations are only infrequently associated with 
pLGG. Specifically, recent reports have identified H3.3 
K27M mutations in small subsets pilocytic astrocytoma 
and glioneuronal tumor [63, 77–79], all of which appear 
to behave more aggressively than non H3.3-mutant coun-
terparts. Nevertheless, these pLGG variants are associated 
with more extended patient survival than typically seen in 
H3.3-mutant high-grade glioma.

More generally, epigenomic profiles have come to rep-
resent key disease markers in pLGG and across the spec-
trum of primary CNS neoplasia. In particular, global DNA 
methylation profiling delineates unique “fingerprints” that, 
in many cases, define brain tumor entities and have laid the 
groundwork for the systematic classification of pLGG [80]. 
Indeed, recent work has employed global methylation pro-
filing in the characterization of isomorphic diffuse glioma 
[19], PLNTY [20], and AAP [62]. We expect that analogous 
strategies will continue to clarify the precise taxonomy of 
pLGGs in the coming years.

Novel targeted therapies for pLGG

The discovery of driving genetic alterations in pLGG has 
led to targeted therapies, particularly focused on the MAPK 
pathway that is frequently altered in these tumors.

Selumetinib (AZD6244) is one orally available MEK1/2 
inhibitor which has been extensively studied in pLGG. In 
a phase 1 study of selumetinib in 38 children with recur-
rent and refractory pLGG, the recommended phase 2 dose 
(R2PD) was determined to be 25 mg/m2/dose twice daily 
[81]. Among 25 patients treated at the RP2D, 5 (20%) had 
a partial response and 2-year PFS was 69%. This data led 
to an ongoing phase 2 trial of selumetinib in children with 
progressive/recurrent glioma among six biologically and 
histologically-defined strata. Some data from this trial is 
now available. Among children with progressive/recurrent 
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pilocytic astrocytoma not associated with NF1 but with a 
BRAF alteration (KIAA1549BRAF fusion or BRAFV600 
point mutation), 36% achieved a sustained partial response 
and the 2-year progression-free survival was 70%. Among 
children with NF1 and recurrent/progressive low-grade 
glioma, 40% achieved a sustained partial response and the 
2-year progression free survival was 96% [82]. The most 
frequent grade 3/4 adverse events included elevated CPK 
(10%) and rash (10%). Strata containing tumors without 
BRAF alterations among children without NF1 have not 
been reported, but have demonstrated sufficient responses 
(≥ 2 responses among 16 subjects) to expand this cohort. 
These early reports suggest that MEK inhibitors may be 
effective in patients without commonly identified BRAF 
aberrations, potentially due to unidentified mutations 
that accelerate the MAPK pathway and are amenable to 
MEK inhibition. As a result of these studies, the Chil-
dren’s Oncology Group is conducting two phase 3 studies 
investigating selumetinib as frontline therapy for pLGG 
(ACNS1831 (clinicaltrials.gov identifier NCT03871257) 
and ACNS1833 (NCT04166409) which include children 
with and without NF1, respectively).

Trametinib, binimetinib, and cobimetinib are among 
other MEK inhibitors currently being investigated for use 
in pLGG [83, 84]. Published experience with these agents 
in low-grade glioma is more limited. However in early 
clinical trials of trametinib and binimetinib that included 
children with low-grade glioma, partial response and sta-
ble disease were frequently reported [83, 84]. Most MEK 
inhibitors seem to share common adverse events, includ-
ing maculopapular or acneiform rash, paronychia, and 
diarrhea. MEK inhibitors have also been associated with 
cardiac dysfunction and ocular toxicities, although these 
have been observed mostly in adults [81, 85]. It is unclear 
how the frequency and severity of individual toxicities 
may differ between agents, or which agent will prove most 
efficacious against pLGG.

Direct inhibitors of BRAF, such as dabrafenib and 
vemurafenib, may be another promising therapy for pLGG. 
These agents are potent and selective inhibitors of BRAF 
kinases, and dramatic responses have been reported in 
pLGG that contain  BRAFV600 mutations [86, 87]. Ongo-
ing studies are currently investigating the use of BRAF 
inhibitors for BRAF mutant pLGG (NCT02684058, 
NCT01748149). First-generation BRAF inhibitors (such as 
dabrafenib and vemurafenib) that target monomeric forms 
of BRAF should not be used for tumors with BRAF fusion 
where paradoxical activation may occur [88]. Fortunately, 
second-generation BRAF inhibitors bypass this effect and 
may be used for BRAF fusions or mutations. Early clini-
cal trials with these agents are ongoing (NCT 03429803, 
NCT02428712) but may show promise [89].

Conclusion

As our understanding of molecular drivers of pLGG 
expands, many questions of how best to treat these tumors 
remain unanswered. Current studies will develop our under-
standing of MEK inhibitors, as well as the management of 
related toxicities. Because pLGG may be associated with 
significant morbidity, it will be important that these studies 
compare not only radiographic progression but also quality 
of life, toxicities and functional outcomes between conven-
tional and targeted regimens to maximize these outcomes for 
patients. Understanding late effects of novel targeted thera-
pies will be equally important as most children will survive 
their disease. Many pLGG will recur once targeted therapies 
are discontinued, prompting the question of how durable 
remissions can be achieved and how prolonged therapy may 
affect developing children. Finally, while many tumors may 
respond to MEK inhibition, new therapies or combinations 
outside the MAPK pathway may be required as novel tumor 
drivers are identified. The identification of driving altera-
tions in pLGG and the development of targeted therapies 
have changed the treatment of childhood glioma. However, 
we have just begun to explore the new landscape of pLGG 
and what it may mean for future therapies.
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