
The Current Landscape of
Immune Checkpoint

Blockade in Glioblastoma

Oluwatosin O. Akintola, MBBS, MSa,*, David A. Reardon, MDb
KEYWORDS

� Glioblastoma (GBM) � Immunotherapy � Immune checkpoint inhibitor (ICI)
� Immune checkpoint blockade � Programmed cell death receptor 1 (PD-1)
� Programmed cell death ligand 1 (PD-L1) � Cytotoxic T- lymphocyte–associated protein 4 (CTLA-4)

KEY POINTS

� Immune checkpoint blockade has revolutionized the management of many solid malignancies.

� Similar positive results have not been duplicated in the treatment of glioblastoma with immune
checkpoint blockade.

� There are ongoing studies to further evaluate the potential role of immune checkpoint blockade in
the management of glioblastoma.

� Multimodal immunotherapy for glioblastoma is under active investigation, and results are expected
to direct the future role of immunotherapy in glioblastoma.

� Identification of reliable biomarkers of response to immunotherapy treatment is essential to opti-
mizing response in patients with glioblastoma.
BACKGROUND immune activation associated with CNS infections
Outcomes for patients with glioblastoma remains
one of the poorest in oncology. Despite the emer-
gence of multimodal therapies, prognosis is poor,
with fewer than 50% of patients surviving for
1 year, and only 5% surviving beyond 5 years.1

Immunotherapy focused on immune checkpoint
blockade (ICB) has proven to be a successful
approach in the management of patients with
many different oncology indications. Despite
tremendous interest in immunotherapies for high-
grade gliomas, disease response has been low in
clinical studies thus far. The theory of a largely
immunosilent central nervous system (CNS) milieu
as originally defined by Medawar’s skin allograft
transplantation studies2 has been contested in
more recent work documenting active lymphatics
in the CNS3,4 and is not consistent with known
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and neuroinflammatory conditions.
Multilayered immunosuppressive mechanisms

deployed by glioblastoma cells complicate the
quest to attack these tumors with immuno-
therapy. High-grade glioma cells express CD95
(Fas/apoptosis antigen 1) ligand, which induces
apoptosis and T-cell suppression in the glioma
microenvironment.5,6 Similarly, the ligand for Pro-
grammed Death-1 (PD-L1) is upregulated in the
glioblastoma microenvironment and has been
shown to suppress T-cell recruitment and in-
duces T-cell apoptosis.7–9 Activation of the
PD-1/PD-L1 pathway leads to a cascade of
immunosuppressive mechanisms, including inhi-
bition of tumor cell apoptosis, peripheral T
effector cell exhaustion, and conversion of T
effector cells to regulatory T cells (Tregs).10 Multi-
ple studies have shown that Treg cells also
ute, Massachusetts General Hospital Cancer Center,
enter for Neuro-Oncology, Dana-Farber Cancer Insti-
ston, MA 02215-5450, USA

ne
ur
os
ur
ge
ry
.th

ec
li
ni
cs
.c
o

mailto:oluwatosin_akintola@dfci.harvard.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nec.2020.12.003&domain=pdf
https://doi.org/10.1016/j.nec.2020.12.003
http://neurosurgery.theclinics.com


Akintola & Reardon236
accumulate in the glioblastoma microenvironment
to prevent the antiglioma immune response.11–13

In addition, high-grade glioma cells secrete
immunosuppressive factors, such as interleukin-
10 (IL-10) and transforming growth factor-b
(TGF-b).14,15 Furthermore, the microenvironment
of GBM tumors is characterized by a dominant
population of myeloid cells, which can account
for up to 40% of GBM tumors, and are pro-
grammed to exhibit a highly immunosuppressive
phenotype.16–18 Combined, these protective stra-
tegies form sophisticated escape routes from im-
mune surveillance, thereby contributing to the
development and progression of glioblastoma tu-
mors. These immune escape mechanisms are
discussed extensively in later sections.
Despite the emerging challenges associated

with the immunosuppressed glioblastoma micro-
environment, the efficacy of ICB in other cancers
continues to fuel interest to further investigate
these agents in neurooncology. Numerous immu-
notherapy approaches to glioblastoma are under
evaluation, including immunomodulation with im-
mune checkpoint inhibitors (ICIs; cytotoxic
T-lymphocyte–associated antigen [anti-CTLA-4],
anti–PD-1, anti–PD-L1 monoclonal antibodies);
tumor antigen-specific and tumor-associated
vaccines; adoptive T-cell therapies (chimeric anti-
gen receptor T cells and bispecific T-cell engag-
ers); and oncolytic virus therapies.19
Fig. 1. Costimulatory immune modulatory proteins
expressed by T cells to enhance T-cell activation
(green). Coinhibitory immune modulatory proteins
expressed following the interaction of the antigen
pMHC complex with the TCR to produce attenuation
of T-cell activity (red).
THE BIOLOGICAL BASIS FOR IMMUNE
CHECKPOINT INHIBITION

Evasion of the immune system by tumor cells is a
major determinant of the proliferation and growth
of malignant cells. At tumorigenesis, the immune
system attempts to eliminate malignant cells
beginning with presentation of tumor antigens by
antigen-presenting cells (APC) to T cells. Antigen
presentation triggers multiple sequential steps,
including T-cell priming, clonal selection of
antigen-specific T cells, activation and prolifera-
tion in secondary lymphoid tissues, trafficking of
T cells to tumor sites, initiation of effector functions
at target sites, and recruitment of other effector
immune cells via cytokines and membrane ligand
signaling.20 Each step is coordinated by a balance
between costimulatory/agonistic and antago-
nistic/inhibitory signals known as immune check-
point proteins (checkpoints such as CTLA-4, PD-
1, BTLA, VISTA, TIM-3, LAG3, and CD47; costimu-
latory molecules such as CD 28, CD137, OX40,
and GITR) (Fig. 1). Inhibitory checkpoint proteins
normally function physiologically as reins that
dampen the amplitude and potency of T-cell–
mediated responses.21 This balance is essential
for the prevention of autoimmunity. Nonetheless,
tumor cells can exploit this normally protective
mechanism by dysregulated expression of im-
mune checkpoint proteins that can provide a
mechanism of immune evasion.
The authors focus here on the classical inhibitory

immune checkpoint molecules for which multiple
therapeutic targets have been developed: CTLA-4
and the PD-1 pathway.

Cytotoxic T-Lymphocyte–Associated Antigen-
4

CTLA-4 was identified as a major immune modu-
lator after the discovery that CD28 costimulation
plays a critical role in the activation of T cells.22,23

Presentation of antigen proteins alone is insuffi-
cient to trigger T-cell activation because costimu-
latory signals in addition to T-cell receptor (TCR)
engagement of foreign peptide antigen–major his-
tocompatibility complexes (MHC) are needed to
trigger T-cell activation, priming, and clonal
expansion. The primary costimulatory signal is
the interaction of CD28 expressed on T cells with
B7-1 (CD80) and B7-2 (CD86) expressed on the
surface of specialized APC.24 B7-1 and B7-2 pro-
vide positive costimulatory signals through CD28
(Fig. 2). CTLA-4 is a homolog of CD28 that binds
both B7-1 and B7-2 with greater affinity than
CD28.25,26 CTLA-4 is upregulated following TCR-
tumor peptide bound MHC complex (pMHC) bind-
ing. Its expression by T cells is most active 2 to
3 days following TCR engagement.27,28 CTLA-4
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hinders TCR signaling by competing with the cos-
timulatory CD28 molecule for the B7 ligands B7-1
and B7-2 (see Fig. 2). Because CTLA-4 has higher
avidity and affinity for CD80 and CD86, it outcom-
petes CD28 in binding both ligands.29,30 CTLA-4
binding limits CD28 downstream signaling (primar-
ily mediated by PI3K and AKT), thereby damp-
ening the stimulation of T cells.31,32 In addition,
CTLA-4 downregulates the expression of B7 li-
gands on APC through modulating cytokines,
such as IL-10 or TGF-b, or via transendocytosis.33

Thus, CTLA-4 primarily functions to attenuate
T-cell activity at sites of T-cell priming in lymphatic
tissues. Because of its central role in regulating
T-cell activation, inhibition by CTLA4 is normally
critical for self-tolerance and avoidance of
autoimmunity.

Once the role of CTLA-4 as a negative regulator of
T-cell responseswas established, the possibility that
blockade of immune inhibition engineered by CTLA-
4 and B7-1/B7-2 interactions might augment T-cell
responses to tumor cells and enhance antitumor im-
munity was explored. Leach and colleagues34 pro-
vided early evidence that CTLA-4 blockade using
antibodies enhanced antitumor immune responses
in vivo. In mice transfected with colon carcinoma
cells who were treated with anti-CTLA-4 or anti-
CD28 injections, anti–CTLA-4–treated mice showed
significant reduction in tumor growth.

Currently, ipilimumab is the only human CTLA-
4-blocking antibody currently approved by the
Food and Drug Administration (FDA).35,36 Other
CTLA-4 targeting agents, such as tremelimumab
(a fully human monoclonal antibody against
CTLA-4), are also under investigation in multiple
cancer types.37
Programmed Death-1 and Programmed Death
Ligand 1/2 Pathway

PD-1 or CD279 is another inhibitory molecule
secreted during T-cell priming and activation. It is
a cell surface receptor encoded by the Pdcd1
gene. PD-1 is expressed by T lymphocytes, B
cells, dendritic cells, macrophages, and natural
killer cells. Its immunosuppressive activity is multi-
fold. In chronic inflammatory states (eg, chronic in-
fections and malignancies), persistent PD-1
expression causes T cells to enter into a state of
metabolic exhaustion.38,39 Like CTLA-4, PD-1
also counteracts the stimulatory signal induced
by TCR engagement with CD28 via its ligands.40

PD-L1 engages with PD-1 to provide inhibitory sig-
nals to suppress activated CD41, CD81 cells and
to induce T-cell apoptosis.41 When PD-1 engages
with its ligands PD-L1 (B7-H1) and PD-L2 (B7-H2),
dephosphorylation of protein tyrosine phospha-
tases (PTPs), such as SHP2, occurs.42 PTP
dephosphorylation leads to antagonism of positive
signals typically mediated by TCR and CD28, and
the inhibition of downstream signaling pathways
(Fig. 3). The result is decreased T-cell activation,
proliferation, survival, and cytokine production.40

Although PD-L1 is expressed primarily by tumor
cells and myeloid cells (such as macrophages),
PD-L2 is nearly exclusively expressed some
myeloid cells. This myeloid activity is essential to
the inhibition of immunity, as myeloid cell expres-
sion of PD-L1/2 contributes to the inhibition of T
cells in the tumor microenvironment.43

Altogether, the PD-1 and PD-L1/2 pathway trig-
gers immunosuppressive mechanisms, including
cytokines that lead to the inhibition of tumor cell
apoptosis, peripheral T effector cell anergy, and
conversion of T effector cells to Tregs.44–46

PD-L1 staining has been reported in glioblas-
toma tissues to varying extents and expression
differs in molecular glioblastoma subtypes. Bergh-
off and colleagues7 reported prominent expres-
sion of PD-L1 by glioma cells in most of their
human glioblastoma samples. They reported low
PD-L1 expression in proneural glioblastoma sub-
types; meanwhile, high PD-L1 expression was
observed in the mesenchymal glioblastoma
Fig. 2. CTLA-4 inhibits TCR signaling,
thereby limiting interleukin produc-
tion, T-cell priming, and survival.
Anti-CTLA antibodies act to block
this pathway.



Fig. 3. PD-1/PD-L1 interaction inhibits
TCR signaling to impair T-cell prolifer-
ation and to induce T-cell exhaustion.
Anti–PD-1 and anti–PD-L1 antibodies
act to block this pathway.
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subtypes. Similarly, Heiland and colleagues47

showed that PD-L1 expression was elevated in
high-grade gliomas compared with lower-grade
gliomas. They also reported increased PD-L1
expression in mesenchymal glioma types. PD-L1
presence in the glioblastoma microenvironment
was associated with activation of the MAPK
pathway. Finally, Nduom and colleagues48

showed that most GBM tumors (61%) demon-
strated PD-L1 expression as defined by detection
among �1% of cells.
Therapeutic antibodies against PD-L1 (atezoli-

zumab, avelumab, and durvalumab) and PD-1
(nivolumab, pembrolizumab, and cemiplimab)
have been developed. These agents have demon-
strated varying levels of efficacy in different cancer
types (Table 1).

Beyond the Cytotoxic T-Lymphocyte–
Associated Antigen-4, Programmed Death-1/
Programmed Death Ligand-1 Pathways

T cells recruited into the glioblastoma tumor envi-
ronment tend to overexpress PD-1, CTLA-4, and
other inhibitory regulators (TIM-3, LAG-3, CD160,
2B4, TIGIT, CD39, and BTLA).49,50 The immuno-
suppressive glioblastoma microenvironment is
further enhanced by the expression of PD-L1 by
microglia. PD-L1 expression by microglial cells is
amplified when in close proximity to GBM cells,
which in turn may promote apoptosis of cytotoxic
T cells, thereby sparing glioma cells from T-cell–
mediated killing.51

Tumor-infiltrating myeloid cells (TIM) further
enhance immune resistance in the tumor microen-
vironment. Myeloid cells derived from healthy tis-
sues typically express immunostimulatory
cytokines to stimulate the proliferation and anti-
tumor function of T cells and natural killer cells.
In contrast, tumor-associated macrophages
(TAMs) have poor antigen-presenting capability
and produce factors that suppress T-cell prolifera-
tion and activity. Mantovani and Sica52 showed
that exposure to IL-4 and IL-10 in tumors may
induce TAMs to develop an immunosuppressive
polarized type II phenotype, and these are referred
to as M2 macrophages.
TAMs markedly infiltrate the tumor microenvi-

ronment. Macrophage differentiation, growth,
and infiltration are regulated by several growth fac-
tors, including colony stimulating factor-1 (CSF-1).
Treatments such as radiation, chemotherapy, and
immunotherapies induce CSF-1 secretion from tu-
mor cells, which promotes the influx of myeloid
cells into the tumor microenvironment.43 Overex-
pression of CSF-1 and chemokine (C-C motif)
ligand 2 (CCL2), regulatory molecules for macro-
phages, has been associated with poor prognosis
in multiple solid malignancies,53 including glial tu-
mors. Ding and colleagues54 showed that M2-
type macrophages were present in all glioma
grades with higher expression levels associated
with higher-grade gliomas. Flow cytometry studies
demonstrate that tumor-infiltrating monocytes/
macrophages from patients with GBM exhibit
increased expression of PD-L1 (B7-H1).55

Although PD-L1 was previously understood to be
secreted by glioma cells, studies suggest that
TIMs may in fact be the major source of PD-L1 in
the glioma microenvironment.43,56 Therefore,
TIMs form a critical component of glioma immuno-
suppression that is influenced by many factors,
including PD-1/PD-L1 pathway.

PRECLINICAL STUDIES

In a study of mice injected with malignant glioma
cells (SMA560), CTLA-4 blockade using a mono-
clonal antibody to CTLA-4 produced long-term
survival in some treated mice. In addition, CD41

T-cell activity was restored and Treg-mediated
immunosuppression was ameliorated.57 In a sub-
sequent study, combining anti–CTLA-4 blockade
with granulocyte-macrophage colony-stimulating
factor (GM-CSF) expressing whole glioma cell
vaccination was shown to successfully increase



Table 1
Selected Food and Drug Administration–approved immune checkpoint blockade agents for solid
malignanciesa

Tumor Type ICB Agent

Immune
Checkpoint
Target

Year of
FDA
Approval

Melanoma

Melanoma (unresectable or metastatic) Ipilimumab CTLA-4 2011

Melanoma (progressed following treatment with
ipilimumab)

Nivolumab PD-1 2014

Melanoma (unresectable or metastatic) Pembrolizumab PD-1 2014

Melanoma (BRAF wild type) Ipilimumab 1
nivolumab

CTLA-4 1 PD-1 2015

Melanoma (adjuvant) Ipilimumab CTLA-4 2015

Melanoma (any BRAF status) Ipilimumab 1
nivolumab

CTLA-4 1 PD-1 2016

Lung/pleural malignancies

Non–small cell lung cancer Nivolumab PD-1 2015

Non–small cell lung cancer Pembrolizumab PD-1 2015

Non–small cell lung cancer Atezolizumab PD-L1 2016

Non–small cell lung cancer Durvalumab PD-L1 2018

Small cell lung cancer (extensive) Atezolizumab PD-L1 2019

Mesothelioma Nivolumab 1
ipilimumab

PD-1 1 CTLA-4 2020

Genitourinary carcinomas

Renal cell carcinoma Nivolumab PD-1 2015

Urothelial carcinoma Atezolizumab PD-L1 2016

Urothelial carcinoma Avelumab PD-L1 2017

Urothelial carcinoma Durvalumab PD-L1 2017

Urothelial carcinoma Nivolumab PD-1 2017

Urothelial carcinoma Pembrolizumab PD-1 2017

Renal cell carcinoma Ipilimumab 1
nivolumab

CTLA-4 1 PD-1 2018

Gastrointestinal tract/hepatobiliary tumors

MSI-high, MMR-deficient metastatic colorectal
cancer

Nivolumab PD-1 2017

Microsatellite instability (MSI)-high or Mismatch
repair (MMR)-deficient solid tumors of any
histology

Pembrolizumab PD-1 2017

Hepatocellular carcinoma Nivolumab PD-1 2017

Gastric and gastroesophageal carcinoma Pembrolizumab PD-1 2017

Other cutaneous cancers

Merkel cell carcinoma Avelumab PD-L1 2017

Merkel cell carcinoma Pembrolizumab PD-1 2018

Advanced cutaneous squamous cell carcinoma Cemiplimab PD-1 2018

a Summary of FDA approval for selected immune checkpoint blockade therapies granted as of October 2020.
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survival in glioma-injected mice.58 Another murine
experiment showed that mice harboring an intra-
cranial GL-261 glial tumor had improved survival
when treated with single-agent or combination
monoclonal antibodies against PD-1, PD-L1, and
CTLA with the greatest benefit reported in mice
treated with the combination of PD-1 plus CTLA-
4 blockade.59
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Additional studies investigated combining ICB
with standard therapies, such as radiation. Zeng
and colleagues treated mice inoculated with GL-
261 glioma tumors with anti–PD-1 antibody only
or radiation plus anti–PD-1 antibody. They re-
ported no significant survival benefit in the
antibody-alone arm (27 days), but longer survival
was noted in the radiation plus anti–PD-1 antibody
arm (53 days).60 They also reported increased gli-
oma infiltration by CD81 effector cells and down-
regulation of Tregs.60 These results suggested
that immune checkpoint blockade could work syn-
ergistically with radiation to create a proinflamma-
tory tumor environment against glioma cells.
Although these preclinical studies promised sig-

nificant efficacy of immune checkpoint blockade in
gliomas, this promise has not been achieved in clin-
ical studies. One reason for the disconnect between
preclinical and clinical experiences is that GL-261,
the most widely used syngeneic mouse orthotopic
glioma cell line used in murine ICI experi-
ments,57,59,61 exhibits robust immunogenicity and
capacity to propagate an immune response. This
murine tumor has been shown to possess a striking
tumor mutational burden,62 whereas human malig-
nant glioma tumors typically exhibit a low tumor
mutational burden (TMB).63 The low mutational
load in humanGBM tumors has been demonstrated
to be a prognosticator of poor response to ICB ther-
apies.64Genoud and colleagues65 introduced amu-
rine glioma model (SB28) with a low mutational
burden and poor immunogenic activity, which is
more comparable to human glioma tumors. Murine
GBMmodels that are less intrinsically immunogenic
may be more informative to guide immunotherapy
drug development for GBM patients.
CLINICAL STUDIES

Several anti–CTLA-4, anti–PD-1, and anti–PD-L1
antibodies have been tested in the context of brain
tumors and in other solid tumors, including a num-
ber that have received approval by the FDA (see
Table 1). Ipilimumab, a fully humanizedmonoclonal
antibody that inactivates CTLA4, was first approved
by the FDA for unresectable, advanced (stage III or
IV) melanoma in 2011.66 Multiple studies have also
demonstrated activity of ipilimumab against brain
metastases, including an open-label phase 2 trial,
which reported a 24% response rate to ipilimumab
among corticosteroid-naı̈ve patients with brain me-
tastases treated with ipilimumab.67

Clinical trials investigating blockade of the PD-1/
PD-L1 pathway have shown efficacy in the treat-
ment of many solid cancers. PD-1/PD-L1 pathway
inhibition has also shown encouraging activity for
some patients with brain metastases.68
Programmed Death-1/Programmed Death
Ligand-1 Blockade in Glioblastoma

Nivolumab
Results of the first randomized phase 3 trial to
evaluate immune checkpoint inhibition in patients
with glioblastoma (CheckMate-143) were recently
reported.69 In this open-label trial, patients with
first recurrence of glioblastoma after standard
chemoradiation therapy were randomized 1:1 to
3 mg/kg of nivolumab (n 5 184) or 10 mg/kg of
bevacizumab (n 5 185) every 2 weeks. Median
overall survival (OS) was similar in both groups at
9.8 months (95% confidence interval [CI], 8.2–
11.8 months) with nivolumab versus 10.0 months
(95% CI, 9.0–11.8 months) with bevacizumab
(hazard ratio [HR], 1.04; 95% CI, 0.83–1.30;
P 5 .76). However, a planned subgroup analysis
demonstrated that patients with MGMT methyl-
ated tumors and no baseline steroid use showed
improved survival with nivolumab with a median
OS of 17 months (n 5 31) versus 10.1 months for
bevacizumab (n5 25). Mean progression-free sur-
vival (PFS) disfavored nivolumab (1.5 months for
nivolumab and 3.5 months for bevacizumab;
P< .001). Similarly, the objective response rate
(ORR) in evaluable patients in the nivolumab
(n 5 153) arm versus bevacizumab (n 5 156) arm
was 7.8% and 23%, respectively. Notably in those
who achieved response, the effect was more dura-
ble for nivolumab (11.1 months) versus bevacizu-
mab (5.3 months). Steroid use seemed to
confound the clinical benefit picture, as patients
in the nivolumab cohort who were on steroids at
baseline had a median OS of 7 months compared
with 12.6 months among patients without baseline
steroid use. Similar rates of grade 3 or 4 treatment-
related adverse effects (TRAEs) were observed in
both arms: nivolumab (18.1%) and bevacizumab
(15.2%).69

CheckMate-49870 is an open-label, randomized
phase 3 study that compares the OS of nivolumab
or temozolomide (TMZ), each in combination with
radiotherapy and then after radiotherapy, in pa-
tients with newly diagnosed MGMT-
unmethylated GBM. Data from CheckMate-498
remain unpublished at this time. However, in May
2019, Bristol-Myers Squibb (BMS) announced
that CheckMate-498 did not meet its primary
endpoint of OS on final analysis.71

CheckMate-548 is a placebo-controlled,
blinded, randomized phase 3 study evaluating
nivolumab combined with concurrent standard
chemoradiation versus standard of care in patients
with newly diagnosed MGMT-methylated glioblas-
toma. BMS announced that the trial did not meet
one of its primary endpoints, PFS, in September
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2019.72 Outcome for the primary endpoint of me-
dian OS has not been released.

Pembrolizumab
Keynote-028 is a basket study of pembrolizumab
for various tumor types that included an arm for
recurrent glioblastoma (n 5 26). Patients received
pembrolizumab 10 mg/kg every 2 weeks for up to
24 months. The primary end point was ORR per
RECIST v. 1.1 guidelines. Among GBM patients,
there was 1 partial response (n 5 25; ORR, 4.0%,
95% CI, 0.1–20.4); 12 patients (48.0%) had stable
disease. Median PFS was 2.8 months (95% CI,
1.9–9.1), and median OS was 14.4 months (95%
CI, 10.3–not reached). TRAEs were reported in 19
(73.1%) patients, most commonly fatigue and rash
(n 5 6 each, 23.1%). Four (15.4%) patients experi-
encedgrade3 or 4 TRAEs (lymphopenia, type 2dia-
betes mellitus, arthritis, and syncope). None of the
patients died or discontinued pembrolizumab
because of a treatment-related adverse event.73

Another phase 2 study (NCT02337491) investi-
gated the use of pembrolizumab (200 mg intrave-
nously [IV] every 3 weeks) with bevacizumab
(cohort A) or without (cohort B) bevacizumab
(10mg/kg IV every 2weeks), in bevacizumab-naı̈ve
patients at first or second recurrence of glioblas-
toma.74 The primary endpoint was PFS at 6 (PFS-
6) months per RANO guidelines for each cohort.
PFS-6 was 26% (95% CI, 16.3–41.5) in cohort A
and 6.7% (95% CI, 1.6–25.4) in cohort B. Median
OS was 8.8 months (95% CI, 7.7–14.2) in cohort A
and 10.3 months (95% CI, 8.5–12.5) in cohort B.
There were no grade 4 or 5 TRAEs reported. Grade
2 or 3 TRAEs occurred in�10% patients, including
cohort A, hypertension (50%), fatigue (18%), head-
ache (16%), infection (14%), and proteinuria (14%);
cohort B, headache (30%) and fatigue (17%).

Atezolizumab
Atezolizumab is a humanized monoclonal anti-
body directed against PD-L1. It is approved in
the treatment of patients with advanced metasta-
tic urothelial carcinoma after the failure of
platinum-based chemotherapy and the treatment
of patients with metastatic non–small cell lung car-
cinoma.75,76 There are multiple ongoing phase 1/2
studies evaluating atezolizumab for GBM,
including combinations with (1) standard chemo-
radiation (NCT03174197); (2) D2C7-IT, a dual-
specific EGFRwt/EGFRvIII monoclonal antibody
(NCT04160494); and (3) ipatasertib, a selective in-
hibitor of AKT isoforms 1/2/3 (NCT03673787). The
results of these trials have not been released.

Durvalumab
Durvalumab is a humanized monoclonal antibody
directed against PD-L1 approved for the treatment
of patients with advanced urothelial carcinoma.77

Preliminary results of a phase 2 study of durvalu-
mab (NCT02336165) that includes 1 arm of newly
GBM diagnosed patients and 4 arms of recurrent
GBM patients showed overall acceptable tolera-
bility of thedrug. The study is ongoing, and finalized
data on efficacy are expected in the near future.78

Avelumab
Avelumab is a PD-L1 inhibitor approved for the
treatment of metastatic Merkel-cell carcinoma,
metastatic urothelial carcinoma, and advanced
renal cell carcinoma.79 NCT03341806 is an
ongoing phase 1 study evaluating avelumab com-
bined with laser interstitial thermal therapy (LITT) in
patients with recurrent glioblastoma.

Cytotoxic T-Lymphocyte–Associated Antigen-
4 Blockade in Glioblastoma

In an exploratory phase 1 cohort of CheckMate-
143, the tolerability and efficacy of nivolumab
and ipilimumab in recurrent glioblastoma were
tested. In a small cohort, the addition of ipilimu-
mab to nivolumab did not appear to improve OS,
and nivolumab monotherapy was better tolerated
when compared with combination therapy.80 In a
case series of 20 patients with recurrent glioblas-
toma treated with ipilimumab and bevacizumab,
31% of patients showed a partial response, 31%
had stable disease, and 38% had disease pro-
gression.81 There are limited studies testing
ipilimumab or CTLA-4 blockade in glioblastoma.
The Ipi-Glio trial testing adjuvant ipilimumab with
temozolomide versus temozolomide alone was
recently announced.82 NCT02794883 is an active
phase 2 trial designed to test tremelimumab
(anti–CTLA-4 monoclonal antibody) and durvalu-
mab (anti–PD-L1 antibody) as monotherapies
and combination therapies among patients with
recurrent malignant glioma.

MULTIMODAL IMMUNOTHERAPIES IN
GLIOBLASTOMA

Given the heterogeneity of glioblastoma tumors
and the multiple immune escape mechanisms
deployed by these tumors, combinatorial treat-
ment approaches will likely be required to achieve
meaningful therapeutic benefit. Current strategies
include combining immune checkpoint inhibitors,
cytotoxic therapy, including radiation therapy,
antiangiogenesis agents, targeted therapies, and
other immunotherapy modalities (Table 2).

Combination with Oncolytic Viruses

There are multiple clinical trials underway that are
currently evaluating oncolytic viruses combined



Table 2
Selected active, recruiting clinical trials of immune checkpoint blockade in high-grade gliomasa

Clinical Trial
Number Intervention Combinational Strategy Phase Disease

Primary
Outcome
Measure

NCT03367715 Nivolumab
1 Ipilimumab
1 Short-course radiotherapy

Anti-PD-1
1 Anti–CTLA-4
1Radiation therapy

2 Newly diagnosed,
MGMT unmethylated
glioblastoma

OS

NCT04396860 Ipilimumab
1 Nivolumab 1 radiation vs
standard chemoradiation

Anti–CTLA-4
1 Anti–PD-1
1 Radiation therapy

2/3 Newly diagnosed,
MGMT unmethylated
glioblastoma

PFS
OS

NCT04013672 Pembrolizumab 1 SurVaxM Anti-PD-1
1 Tumor-specific antigen

vaccine

2 Recurrent glioblastoma PFS

NCT03018288 Radiation 1 temozolomide 1
pembrolizumab

� Heat shock protein peptide-
complex (HSPPC-96)

Anti-PD-1
1 Chemoradiation
1 Tumor-derived peptide

vaccine

2 Newly diagnosed
glioblastoma

OS

NCT04479241 PVSRIPO and pembrolizumab Anti-PD-1
1 Oncolytic virus

1 Recurrent glioblastoma Safety and
tolerability

NCT03341806 Avelumab
1 LITT

Anti-PD-L1
1 Laser interstitial

thermotherapy

1 Recurrent glioblastoma ORR
Dose-limiting
toxicity

NCT04160494 Atezolizumab
1 D2C7-IT

Anti-PD-L1
1 EGFRwt/vIII

immunotoxin

1 Recurrent (World Health
Organization)
grade IV malignant
glioma

Tolerability

NCT02866747 Durvalumab
1 Hypofractionated stereotactic
radiotherapy

Anti-PD-L1
1 Radiation therapy

1/2 Recurrent
glioblastoma

OS
Dose-limiting
toxicity

a Selected active, recruiting clinical trials as of October 2020.
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with checkpoint inhibitors. Oncolytic viruses
induce immunogenic cell death leading to
increased tumor antigen release. Coadministration
of anti–PD-1 or anti–CTLA 4 antibody will decrease
compensatory enhanced expression of inhibitory
immune checkpoints in this setting, thereby allow-
ing the development of a robust immune
response. The CAPTIVE trial (NCT02798406) is
an ongoing phase 2 study investigating the onco-
lytic adenovirus DNX-2401 and pembrolizumab
in patients with recurrent glioblastoma.83

Combination with Vaccines

Integrating tumor vaccines with immune check-
point inhibitors has been shown to improve
long-term survival in murine glioma studies.58,84

NCT02287428 is an ongoing phase 1 study eval-
uating a personalized neoantigen cancer vaccine
derived from glioma-specific protein-coding mu-
tations in combination with pembrolizumab and
radiation therapy. An autologous tumor lysate-
loaded dendritic cell vaccine is being tested in
combination with ICB in a phase 1 clinical trial
among patients with recurrent glioblastoma
(NCT04201873).

CHALLENGES OF IMMUNE CHECKPOINT
INHIBITION THERAPY

Biomarkers that may predict response to ICB are
emerging for many cancers, but their utility for
GBM patients is not well understood. High-
tumor mutational variance has been associated
with an increased rate of immunogenic neoanti-
gens that could trigger a robust immune
response.85 However, glioblastoma tumors
exhibit a relatively small tumor mutational vari-
ance compared with other solid tumors.86 Temo-
zolomide, a cornerstone of glioblastoma
treatment, is myelosuppressive and has been
shown to increase the proportion of exhausted
T cells in mice.86 T-cell exhaustion can reduce
the response to checkpoint blockade, suggesting
that baseline T-cell exhaustion may be a negative
biomarker of response. Immunophenotyping of
the glioblastoma microenvironment has shown a
paucity of immune-effector cells.87 TAM and
Tregs are immunosuppressive cells that are prev-
alent in glioblastoma tissues.88,89

Furthermore, molecular genetic abnormalities of
GBM tumors may lead to immunomodulation of
the GBM TME and may contribute to differenti-
ating ICB responders from nonresponders. In their
retrospective analysis of 66 patients with recurrent
GBM who received anti–PD-1 therapy, Zhao and
colleagues90 identified distinct molecular genetic
signatures in 17 patients who were responders
(14 months OS) versus 49 patients who were non-
responders (10 months OS). Genomic and tran-
scriptomic analysis of both cohorts revealed
PTEN mutations to be associated with immuno-
suppressive gene signatures that were more
enriched in nonresponders, whereas there was
enrichment of MAPK pathway alterations
(PTPN11, BRAF) in responders. Interestingly,
studies in melanoma have shown that loss of
PTEN function in tumor cells correlates with
decreased T-cell recruitment, decreased T-cell–
mediated cell death, and poorer outcomes with
PD-1 inhibitor therapy.91 Furthermore, Zhao and
colleagues90 also demonstrated that failure of im-
mune checkpoint therapy may occur because of
posttreatment genetic immune-editing. In their
analysis of the clonal alterations of mutations after
treatment, they found 3 missense mutations
(MYPN R409H, UBQLN3 R159W, CYP27B1
G194E) that were present before anti–PD-1 ther-
apy but were not detectable after immune check-
point therapy. These results suggest that immune
checkpoint therapy may lead to immune editing
and loss of immunogenic mutations as a mecha-
nism of treatment resistance.

In addition, questions about the optimal timing
of ICB for patients with glioblastoma remain
unanswered. Data suggest that cytoreductive
surgery may increase efficacy by reducing resid-
ual tumor burden to be attacked by the mounted
anticancer immune response. However, the best
opportunity window (ie, before resection of recur-
rent tumor or after resection of recurrent tumor)
remains unclear. Cloughesy and colleagues92

conducted a randomized trial comparing 2 arms
of pembrolizumab: before (neoadjuvant) and after
(adjuvant) surgery versus adjuvant therapy only in
35 patients with recurrent, surgically resectable
glioblastoma. Patients who received the neoadju-
vant pembrolizumab arm (n 5 16) had signifi-
cantly improved OS (13.7 vs 7.5 months,
P 5 .04) and PFS (3.3 vs 2.4 months, P 5 .03)
compared with the adjuvant pembrolizumab
(n 5 19) only. The investigators also reported an
increase in transcription of genes related to
T-cell expansion and interferon-g responsiveness
in patients treated with neoadjuvant pembrolizu-
mab. These findings support the hypothesis that
neoadjuvant use of immune checkpoint inhibitors
may enhance immune responses and improve ef-
ficacy of ICB.

Clinically, corticosteroids for the management
of symptomatic cerebral edema among patients
with glioblastoma present another potential
challenge to immunotherapy. Corticosteroids,
which are routinely used to decrease cerebral
edema in patients with brain tumors, are



� Immune checkpoint blockade in patients with
glioblastoma has yielded disappointing re-
sults thus far.

� Results of ongoing clinical trials are expected
to clarify the future role of immune check-
point blockade and other immunotherapies
in the management of glioblastoma.

� Corticosteroids are frequently prescribed to
glioblastoma patients to treat symptomatic
cerebral edema. However, these agents have
immunosuppressive effects that may limit ef-
ficacy of immunotherapy approaches in pa-
tients with glioblastoma.
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immunosuppressive. Data on the impact of ste-
roids on ICB in solid malignancies have been
mixed, with some studies showing reduced effi-
cacy93,94 and other studies reporting no significant
effect.95,96

Immune-related adverse events (irAEs) are the
primary toxicities of ICIs. These side effects are
generally more severe when combined CTLA-4
and PD-1/PD-L1 inhibition therapies are used
and less prevalent with PD-1/PD-L1 monotherapy.
They can affect multiple organs simultaneously
and may become life-threatening if not addressed.
Some of the most commonly reported irAEs
include colitis, pneumonitis, hepatitis, myocarditis,
hypophysitis, and encephalitis.97 For these rea-
sons, patients receiving ICIs are regularly moni-
tored for treatment-related complications.
� Immune checkpoint inhibitors may cause
immune-related adverse events, which range
from mild to marked in severity that require
proactive monitoring to mitigate as well as
specialized care.
FUTURE DIRECTIONS

Identification of reliable biomarkers of response to
immune checkpoint blockade and other immuno-
therapies is critical to the success of these ap-
proaches in patients with glioblastoma. The
spectrum of possible predictive biomarkers is
wide, and the expression of these biomarkers is
highly variable with conflicting data on the strength
of their associationwith survival.98,99Studies inves-
tigating other mechanisms of immune evasion,
such as downregulated expression of MHC class
I and II molecules100,101 in the glioma environment,
should also be considered. Given the number of
molecules involved in the T-cell activation pathway
(inhibitory molecules, such as BTLA, VISTA, TIM-3,
LAG3, and CD47; co-stimulatory molecules, such
as CD137, OX40, and GITR), the potential for
combinatorial immunotherapy strategies in cancer
and glioma treatment is promising.
SUMMARY

The management of hematologic and solid ma-
lignancies with immunotherapies, such as im-
mune blockade, has yielded remarkably
favorable results. In contrast, clinical studies
investigating ICB in patients with glioblastoma
have yielded disappointing results thus far.
Nevertheless, several exciting immunothera-
peutic approaches, including combinatorial regi-
mens, are being investigated to overcome
challenges associated with the dominantly
immunosuppressive tumor microenvironment in
order to generate effective antiglioma responses.
Results of ongoing clinical trials are expected to
clarify the future role of immune checkpoint
blockade and other immunotherapies in the
management of glioblastoma.
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