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Abstract

Nearly thirty thousand incidences of primary and 300 thousand incidences of metastatic brain cancer are diagnosed in the
USA each year. It has a high mortality rate and is often unresponsive to the standard of care, which includes surgical resec-
tion, radiation, and chemotherapy. These treatment strategies are also hindered by their invasiveness and toxic effects on
healthy cells and tissues. Furthermore, the blood—brain/tumor barrier severely limits delivery of anti-cancer therapeutics
administered intravenously to brain tumors, resulting in poor tumor response to the treatment. There is a critical need to
develop new approaches to brain cancer therapy that can overcome these limitations. Focused ultrasound has emerged as
a modality that addresses many of these limitations and has the potential to alter the treatment paradigm for brain cancer.
Ultrasound transmitted through the skull can be focused on tumors and used for targeted ablation or opening the vascular
barriers for drug delivery. This review provides insight on the current status of these unique ultrasound techniques, different
strategies of using this technique for brain cancer, experience in preclinical models, and potential for clinical translation. We
also debate the safety perspective of these techniques and discuss potential avenues for future work in noninvasive planning,
monitoring, and evaluation of the ultrasonic neurointervention.
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Introduction

Brain tumors have proven extremely difficult to treat and
patients have a poor prognosis. The standard of care for brain
cancer patients with newly diagnosed primary brain tumors
consists of surgery, radiation, and chemotherapy. However,
not all brain tumors are operable and the recurrence rate can
be extremely high (Adib et al., 2019; Faustino et al., 2020).
While radiation can be effective, the cumulative exposure
dose is limited due to neurotoxic effects (Kim et al., 2008;
Shaw et al., 1996; Smart, 2017). The effectiveness of anti-
cancer agents administered systemically is hindered by the
blood-brain/tumor barrier (BBB), which severely limits
molecular transport into the brain (Abbott & Romero, 1996;
Abbott et al., 2006, 2010; Arvanitis et al., 2020; Blumling Tii
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& Silva, 2012; van Vliet et al., 2014). Due to the high recur-
rence rate and the lack of treatment options, most patients
diagnosed with primary brain tumors succumb to the dis-
ease within 2 years (Gilbert et al., 2013, 2014; Ostrom et al.,
2017; Stupp et al., 2005, 2009). Thus, there is a critical need
for novel methods that can effectively treat brain tumors and
significantly reduce the mortality rate.

Focused ultrasound (FUS) has emerged as a treatment
modality for brain cancer that may be leveraged to over-
come the shortcomings that hinder conventional treatment
options. For example, transcranial FUS can be used to ther-
mally ablate brain tissue noninvasively with millimeter pre-
cision. A commercial MRI-guided transcranial FUS system
has been approved by the FDA for treating essential tremor
by thermally ablating the thalamus (Abrahao et al., 2019;
Elias et al., 2016; Lipsman et al., 2013). Thermal ablation
using MR-guided FUS can be used to debulk brain tumors
without a craniotomy, thus reducing the risk of infection
(McDannold et al., 2010). Additionally, transcranial FUS
can be used to open the BBB reversibly, which could enable
pharmaceutical intervention of various neurological condi-
tions (Aryal et al., 2014; Meng et al., 2019). While the BBB
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in brain tumors is leaky, studies have shown that ultrasound-
mediated BBB opening does improve the delivery and effi-
cacy of chemotherapy (McDannold et al., 2019; Treat et al.,
2012). Herein we review these emerging ultrasound-based
treatment strategies for brain cancer in greater detail and dis-
cuss the technological and methodological advances needed
for clinical translation.

Reversible BBB Opening

The BBB impedes the delivery of most drugs to the brain,
thus inhibiting their effectiveness against serious neuro-
pathologies. Scientists have explored different approaches
to opening the vascular barrier temporarily, and the use of
focused ultrasound combined with stabilized microbub-
bles has emerged as the most promising. FUS-mediated
blood-brain barrier opening was pioneered by Prof. Kull-
ervo Hynynen and his group in the early 2000s (Hynynen
et al., 2001). This brain drug delivery method consists of
three components: the low-intensity FUS, an intravenous
administration of encapsulated microbubbles, and a drug of
interest. The microbubbles that are used for BBB opening
are currently FDA-approved as ultrasound contrast agents.
These microbubbles are micrometer-sized particles that typi-
cally consist of a shell made of either lipid or protein, which
encapsulates a gaseous core, typically perfluoropropane or
sulfur hexafluoride. During the BBB opening process, FUS
transmits acoustic waves through the skull, which oscillate
circulating microbubbles in targeted regions of the brain as
shown in Fig. 1A. The BBB is subjected to forces generated
by the oscillating microbubbles, which can create defects
in the endothelial cell layer and promote vesicle formation
within the endothelial cells (Sheikov et al., 2004). As a
result of these reversible cellular changes, the permeability
of the BBB is increased temporarily. The extent and dura-
tion of FUS-mediated BBB opening have been explored
using computational modeling as well as various imaging
modalities, including magnetic resonance imaging, optical
imaging, and positron emission tomography. It was reported
that cavitating microbubbles open the BBB immediately and
can reseal within four hours depending upon the FUS param-
eters (Cho et al., 2011; Marty et al., 2012; Park et al., 2012;
Samiotaki et al., 2012; Ye et al., 2018a). The method has
been utilized to enable the delivery of various molecules
to the brain, including fluorescent dextrans (Alonso et al.,
2013; Burgess et al., 2011; H. Chen & Konofagou, 2014;
Kaushik et al., 2019; Liu et al., 2010; McDannold et al.,
2012; Thévenot et al., 2012), nanoparticles, and biologics
(peptides ~ 3 kDa, antibodies ~ 150 kDa, and viruses ~2
MDa) (Aryal et al., 2015a; Chen et al., 2010; Diaz et al.,
2014; Etame et al., 2012; Fan et al., 2013a; Nance et al.,
2014; Wang et al., 2012). The overwhelming evidence that
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FUS and microbubbles can open the BBB reversibly and
selectively has motivated its use for improving the deliv-
ery of anticancer agents to brain tumors. The delivery and
efficacy of temozolomide (TMZ) to glioblastoma tumors in
mice have been improved by the FUS-mediated opening of
the BBB (Liu et al., 2014; Wei et al., 2013). FUS-mediated
BBB opening also has been used to facilitate the delivery
of an O%-methylguanine-DNA methyltransferase (MGMT)
inhibitor to TMZ-resistant gliomas in mice (Papachristo-
doulou et al., 2019). Combining TMZ with FUS-mediated
delivery of the liposomal MGMT inhibitor led to a reduction
in tumor burden and prolonged animal survival significantly.
FUS-mediated BBB opening has been used to increase the
delivery of nanoparticles loaded with other anticancer
agents, including doxorubicin (Aryal et al., 2013; Treat
et al., 2012) and cisplatin (Coluccia et al., 2018; Timbie
et al., 2017). Furthermore, a study reported that multiple
sessions of chemotherapy combined with FUS-mediated
BBB opening increased the volume of drug distribution in
brain tumors and killed cancer cells completely in most of
the treated animals (Aryal et al., 2013; Fan et al., 2013b;
McDannold et al., 2019; Wei et al., 2013). Importantly, the
safety of opening the BBB repeatedly with FUS has been
demonstrated in preclinical models including non-human
primates (Abrahao et al., 2019; Aryal, et al., 2015a, 2015b;
Lipsman et al., 2018; McDannold et al., 2012; Rezai et al.,
2020) and currently is being investigated clinically (Abrahao
et al., 2019; Lipsman et al., 2018; Mainprize et al., 2019;
Rezai et al., 2020). While transcranial ultrasound has been
used predominantly for noninvasive disruption of the vas-
cular barrier, an implantable ultrasound device has been
developed to improve the spatial control of BBB opening
(Goldwirt et al., 2016). The safety and effectiveness of the
device are being investigated in clinical trials in Europe and
the USA (Asquier et al., 2019; Beccaria et al., 2020; Idbaih
et al., 2019; Zhang et al., 2020). To date, nineteen clinical
trials are underway across the globe to explore the feasibil-
ity and safety of ultrasound-mediated BBB opening in brain
cancer and other neurological diseases (Table 1).

For clinical translation, scientists recognize that a strategy
by which the ultrasound output can be adjusted to ensure
the safe and reliable opening of the BBB is critical. As
mentioned previously, cavitating microbubbles are the pri-
mary mechanism for ultrasound-mediated BBB opening;
therefore, methods to monitor and control the cavitation
activity have been pursued. During ultrasound forced oscil-
lations, the cavitating microbubbles emit acoustic signals
that can be detected passively with single-element transduc-
ers, known as passive cavitation detection (PCD). Based on
spectroscopic analysis of the PCD signal, researchers have
determined that microbubbles that have sustained nonlin-
ear oscillations characterized by strong harmonic and sub-
harmonic signals are most effective at reversibly opening
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Fig. 1 Noninvasive, targeted, and transient opening of blood—brain/
tumor barrier (BBB) in brain tumor patients using clinical MR-
guided transcranial focused ultrasound system. The transient loosen-
ing of the vascular barrier allows drugs and biological agents from
cerebral vasculature to extravasate into the brain tissue and helps to
treat a wide range of neurological diseases and disorders. A Sche-
matic of ultrasonic beam penetration through the skull to reach the
desired region of the brain (left), characteristics of ultrasonic waves
(low intensity in pulse mode (top-right)), and cavitation-induced
opening of the BBB within the targeted zone after the low-intensity
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pulse (bottom-right). B Contrast-enhanced T1-weighted MR-images
of brain tumor patient before ultrasound treatment. The tumor is
visible within the hypointense zone. C Images after the ultrasonic
intervention. White arrows in T1-weighted images show gadolinium
leakage after BBB opening. T2*-weighted image indicates there is
no microhemorrhage from the treatment. D T1-weighted images with
gadolinium indicate that the opening of the BBB is resolved within a
day (Mainprize et al., 2019). B-D Modified from Sci Rep. 2019; 9:
321.; Copyright © 2019, The Author(s)

Table 1 FUS-based BBB

. . . . Brain tumor
opening clinical trial for brain

Conditions

Alzheimer’s disease Parkinson’s disease Amyotrophic lateral sclerosis

tumors, Alzheimer’s disease,
Parkinson’s disease, and
amyotrophic lateral sclerosis

NCT Numbers NCT04063514
NCT02343991
NCT03551249
NCT03616860
NCT03714243
NCT04440358
NCT04417088
NCT03712293
NCT03626896
NCT04446416

NCT04526262
NCT04118764
NCT02986932
NCTO03739905
NCTO03119961
NCT03671889

NCT04370665
NCT03608553

NCT03321487
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the BBB (Arvanitis et al., 2012; McDannold et al., 2012;
O’Reilly & Hynynen, 2012). This observation inspired the
development of PCD-based feedback control strategies to
adjust the ultrasound output and maintain nonlinear oscil-
lations of cavitating microbubbles in a predefined range
to achieve the safe and predictable opening of the BBB
(O’Reilly & Hynynen, 2012; Sun et al., 2017). However, it
was recognized that translating the feedback control strat-
egy would require monitoring the cavitating bubbles in
multiple dimensions, which was beyond the capability of
single-element PCD systems. To meet this need, scientists
have utilized multielement transducer arrays to detect and
map cavitating bubbles in two dimensions, a process that
is known as passive cavitation mapping or imaging (PCI)
(Choi et al., 2014; Haworth et al., 2017; Salgaonkar et al.,
2009). Innovative hemispherical transcranial ultrasound
phased arrays that enable driving and imaging cavitation in
multiple dimensions have been constructed for brain applica-
tions (Crake et al., 2018; Deng et al., 2016; O’Reilly et al.,
2014). Briefly, a dual-mode hemispherical sparse array was
constructed from 5% 0.4 mm piezoceramic disc elements
arranged in pseudorandom fashion on a low-profile laser-cut
acrylic frame. The sparse array was designed to fit between
the therapeutic elements of a 230-kHz clinical transcranial
ultrasound transducer array (InSightec ExAblate 4000),
within the bore of a 3 Tesla clinical MRI scanner. With the
use of thickness and radial resonance modes of the piezo
discs, the sparse array is capable of both B-mode imaging
at 5 MHz for skull localization, as well as passive recep-
tion of acoustic emissions from cavitating (i.e., nonlinearly
oscillating and collapsing) microbubbles. The transmit and
receive zones for the sparse array can be steered throughout
a volume of tissue, thus allowing for 3D B-mode imaging
and volumetric passive cavitation mapping (O’Reilly et al.,
2014). The hemispherical array was combined with contrast-
enhanced MRI to guide cavitation-induced opening of the
BBB in a volume of brain tissue (Jones et al., 2018). This
achievement must not be overlooked as co-registration of the
passive cavitation images and contrast-enhanced MR-images
in multiple dimensions are not trivial. The next step will
be incorporating closed-loop feedback control of cavitation
activity into the hemispherical phased array system, which
will bring ultrasound-mediated BBB opening closer to clini-
cal translation for brain cancer therapy.

Thermal Therapy

Focused ultrasound waves can be absorbed by solid tumors
and converted to heat, resulting in a local temperature
rise that can be leveraged for thermal therapy as shown in
Fig. 2A. Thermal therapy can be divided into two catego-
ries: thermal ablation and hyperthermia. Thermal ablation
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is achieved by raising the local temperature beyond the
threshold for protein denaturation and thermal coagulation
(>56 °C), which results in lesion formation at the transducer
focus within seconds (Guthkelch et al., 1991). Hyperthermia
is characterized by lower temperatures than thermal ablation
(i.e., 42—45 °C) and has been leveraged for localized drug
delivery in brain tumors. The use of noninvasive methods
for monitoring and mapping the local temperature changes,
such as magnetic resonance thermometry, has made ultra-
sound-mediated thermal therapy a viable option for treating
solid tumors. Focused ultrasound is showing a great prom-
ise to achieve these thermal therapies and becoming one
of the cost-effective and less toxic treatment modalities as
compared to others such as microwave, radiofrequency, and
electroporation.

Thermal Ablation

While FUS-induced thermal ablation is being explored as a
treatment strategy for brain cancer, numerous clinical trials
have proven its effectiveness against other types of cancer,
including cancer of the breast, liver, and kidney (Cheung
et al., 2013; Furusawa et al., 2007; Guan & Xu, 2016; Hsiao
et al., 2016; Nabi et al., 2010; Orsi et al., 2010; Wu et al.,
2003; Zavaglia et al., 2013; Zhao & Wu, 2010). The method
has been approved by the FDA for the treatment of uterine
fibroids for many years and recently garnered approval for
prostate cancer therapy (Hesley et al., 2008; Hu et al., 2016;
Laughlin-Tommaso et al., 2019; Lyon et al., 2020; Macek
et al., 2020; Machtinger et al., 2013; Stewart et al., 2006;
Sundaram et al., 2017; Verpalen et al., 2020). Compared
to the aforementioned cancers, ultrasound-mediated ther-
mal ablation of brain tumors is challenging due to the effect
of the skull on ultrasound wave propagation (Hynynen &
McDannold, 2004; McDannold et al., 2010). In addition to
absorbing energy from the transmitted wave, the skull dis-
torts the beam resulting in a change in the location and shape
of the focus (Fry & Barger, 1978; Martin & McElhaney,
1971, Pinton et al., 2012). Scientists have demonstrated
that this beam distortion, known as phase aberration, can be
resolved with the use of ultrasound phased arrays. A beam
with a distorted wavefront is generated intentionally by the
phased array, which is “corrected” by the skull to achieve
the desired focal shape and location in the brain. Phased
arrays also allow for steering the transducer focus electroni-
cally, which increases the accuracy of focal placement in
the brain. The FDA has approved phased array technol-
ogy and noninvasive thermal ablation of the thalamus (i.e.,
thalamotomy) for the treatment of essential tremors (Elias
et al., 2016; Ghanouni et al., 2015; Lipsman et al., 2013).
Technological advancements in magnetic resonance-guided
transcranial focused ultrasound system with electronic beam
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Fig.2 Noninvasive thermal ablation in brain tumor patients using a
clinical MR-guided focused ultrasound system. A Schematic of ultra-
sonic beam penetration through the skull to reach the desired region
of the tumor (left), characteristics of the ultrasonic waves (high inten-
sity in continuous mode) to achieve desire thermal dose (top-right),
and expected tissue coagulation within the targeted tumor zone after
the ultrasonic exposure (bottom-right). B-F Contrast-enhanced

Coagulated Zone Acoustic Pressure

+Vve
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- Continuous mode
- Expected temperature rise ( ~ 60 0 C)

Time

T1-weighted MR-images of brain tumor patients before (B-D)
and after (E-G) ultrasound-mediated thermal ablation. A tumor
(enhanced area in B, C, D) and the successful ablation of the peri-
tumoral zone (arrow indicating in E, F, G) are visualized in all three
different planes of MRI (Coluccia et al., 2014). B-F Modified from
J Ther Ultrasound. 2014; 2: 17.; Copyright © 2015, Fandino et al.;
licensee BioMed Central Ltd
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steering capability helped to achieve tumor ablation with-
out neurological deficits or adverse effects in a patient with
recurrent glioblastoma for the first time (Coluccia et al.,
2014), Fig. 2B-F. Currently, clinical trials evaluating the
safety and feasibility of thermal ablation therapy in brain
tumors are ongoing such as NCT01698437, NCT00147056,
NCTO01473485, and NCT03028246 (Table 2) but the results
of these trials have yet to be released.

Hyperthermia

Ultrasound-mediated hyperthermia describes thermal
therapy where the local temperature is raised within
the range of 42-45 °C. Destroying solid tumors at these
temperatures would require heating for tens of minutes,
which is not ideal clinically. However, the temperature
range is ideal for triggering drug release from temper-
ature-sensitive liposomes, a biocompatible, biodegrad-
able drug carrier. This approach for localized delivery of
chemotherapeutic agents in solid tumors has been studied
extensively in preclinical models (de Smet et al., 2010;
Kneidl et al., 2014; Kong et al., 2000; Needham et al.,
2000; Ta & Porter, 2013) and now has entered into the
clinical trials for liver tumor (Amin et al., 2020; de Smet
et al., 2011; Hynynen, 1991; Lyon et al., 2017; Santos
et al., 2017; Staruch et al., 2015). In addition to triggering
drug release, ultrasound-induced hyperthermia can pro-
mote relevant changes in the tumor micro-environment
that could enhance tumor responsiveness to anti-cancer
drugs. For example, hyperthermia can stimulate cancer
cells to produce heat shock proteins, reduce the interstitial
fluid pressure within solid tumors, increase tumor perfu-
sion, change vessel permeability, and improve the delivery
efficacy of anti-cancer agents in extracranial tumor mod-
els. Due to the effectiveness of the hyperthermia treatment
in combination with temperature-sensitive liposomes, it is
of interest for brain cancer. Recently, preclinical studies
have reported that the hyperthermia-mediated delivery of
an anti-cancer agent that was encapsulated within the tem-
perature-sensitive carrier enhances the drug uptake within
a targeted brain tumor model and holds a great promise

for hyperthermia-mediated brain drug delivery (Arvani-
tis et al., 2019). Furthermore, hyperthermia can sensitize
solid tumors to radiotherapy, thus reducing the cumula-
tive radiation dose and mitigating radiotoxicity (Franckena
et al., 2009; Prosnitz & Jones, 2002). Additional research
is required to define the thermal dose needed for each of
the aforementioned hyperthermia-induced bioeffects. This
knowledge combined with MR thermometry for guidance
could enable the use of ultrasound-mediated hyperthermia
against brain cancer clinically.

Nonthermal Ablation: Mechanical
Destruction of Tumor Tissue

The newest addition to the portfolio of ultrasound-
based cancer treatment methods is non-thermal ablation.
Whereas thermal ablation depends on tissue absorption
of propagating ultrasound waves, non-thermal ablation
results from damage caused by cavitation (i.e., oscilla-
tions and collapses of microbubbles driven by ultrasound).
Several exogenous agents have been used to nucleate
cavitation in vivo upon ultrasound exposure, including
ultrasound contrast agents and liquid perfluorocarbon
nanodroplets (McDannold et al., 2013, 2016; Peng et al.,
2019; Sutton et al., 2015). The stresses generated by cavi-
tation can disrupt blood flow within tumors, which can
result in local ischemia and lesion formation (Peng et al.,
2019). This treatment strategy is very appealing for clini-
cal translation because it needs slightly higher pressure
than the BBB opening threshold but lower than the acous-
tic intensity required for thermal ablation. Thus, there
is less risk for skull heating and thermal damage, which
reportedly can occur during thermal ablation of bulk brain
tissue (McDannold et al., 2013, 2016). At much higher
pressures, it is possible to drive intense cavitation activity
and mechanically destroy target tissue, a process known as
histotripsy (Cain et al., 2016; Kim et al., 2014; Sukovich
et al., 2020; Tran et al., 2003). Preclinical data suggest that
histotripsy with very short pulses (<20 ps) transmitted
through the skull can liquefy targeted brain tissue with

Table 2 FUS-based thermal ablation clinical trials for brain tumor treatment

Clinical Trials Conditions

Locations

NCT01698437 Malignant Brain Tumors
NCT00147056 Brain Tumor
NCT01473485 Glioma

Metastatic Brain Cancer
NCT03028246 Benign Centrally Located

Intracranial Tumors

MR-Center, University Children's Hospital Zurich, Switzerland

Brigham and Women's Hospital Boston, Massachusetts, USA
Swedish Medical Center Seattle, Washington, USA

Sunnybrook Health Sciences Centre Toronto, Ontario, Canada

Miami Children's Research Institute - Nicklaus Children's
Hospital Miami, Florida, USA
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minimal heat deposition within the intact skull. A non-
thermal ablation is an attractive option for destroying brain
tumors and warrants additional exploration particularly to
evaluate tumor response to the treatment.

Technological Challenges for Clinical
Translation of Ultrasound-Mediated Brain
Cancer Therapy

The potential of emerging ultrasound-based methods for
treating brain cancer has been demonstrated in numerous
preclinical models. Clinical translation of these methods
will require techniques to guide, monitor, and evaluate
their effectiveness noninvasively. While MR thermometry
can be used to quantify a thermal dose during ultrasound-
mediated thermal therapy, methods to evaluate the out-
come of the applied thermal dose are needed. For exam-
ple, noninvasive techniques to assess tumor response to
thermal ablation will facilitate clinical translation. Treat-
ment strategies that depend on cavitation will benefit tre-
mendously by the inclusion of methods to monitor and
map the cavitation activity. Passive cavitation imaging
is a breakthrough, but the technology needed to enable
its use in brain applications is in its infancy. The sparse
hemispherical phased arrays that are being developed sig-
nificantly reduce the cost and complexity of the hardware
needed for PCI in the brain. Combined with closed-loop
feedback control algorithms, PCI and phased array tech-
nology will enable spatiotemporal control of cavitation
with unprecedented accuracy. This can be leveraged for
targeted BBB opening for enhanced delivery of anti-
cancer agents or noninvasive debulking of brain tumors
via mechanical ablation. Treatment evaluation involves
confirmation of BBB opening; assessment of BBB open-
ing volume; evaluation of any potential damage within
treatment zone as well as along the ultrasonic beam path;
quantification of drug transport from the vasculature
into the brain parenchyma; and prediction of drug pen-
etration, retention, distribution, and clearance. Different
imaging modalities such as MRI, PET, and optical have
been used to evaluate molecular transport through the
BBB after ultrasound-mediated disruption (Burgess et al.,
2014; Cho et al., 2011; Hynynen et al., 2001; Ye et al.,
2018b; Zhu et al., 2018). Contrast-enhanced MRI does
not require a craniotomy or radiolabeled tracers and thus
is used most frequently for confirming ultrasound-medi-
ated BBB opening as was noted in Fig. 1B-D. Dynamic
contrast-enhanced MRI can be used to measure K,
the permeability transfer coefficient of molecules from
blood plasma to the brain parenchyma, thus quantify-
ing the change in BBB permeability. Furthermore, T2*-
weighted MR-images can be used to assess the tissue

damage. Numerous preclinical studies have demonstrated
the utility of MRI-based imaging methods for evaluating
changes in BBB permeability qualitatively and quantita-
tively, which has paved the way for clinical trials.

Conclusion

Thus far, different ultrasound-based approaches for brain
cancer treatment have been investigated, including thermal
ablation, hyperthermia, non-thermal ablation, and mechan-
ical disruption of BBB for drug delivery. To date, BBB
opening has entered into Phase 0/1 clinical trials for cancer
treatments. Further studies are needed to determine the
actual drug delivery efficacy, including the drug distribu-
tion, retention, pharmacokinetic, and clearance at tissue-
levels, as well as its effects on tumor growth and patient
prognosis in a personalized manner. The techniques hold
great promise for the treatment of a wide range of neu-
rological disorders. Advancements in technology and
methodology for closed-loop feedback control of the ultra-
sound-induced bioeffects and evaluation of tumor response
to treatment are on the horizon, which will bring these
emerging treatment strategies closer to clinical translation.

Funding This study was funded by National Institutes of Health with
Grant No. R21EB027506.
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