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Abstract
Nearly thirty thousand incidences of primary and 300 thousand incidences of metastatic brain cancer are diagnosed in the 
USA each year. It has a high mortality rate and is often unresponsive to the standard of care, which includes surgical resec-
tion, radiation, and chemotherapy. These treatment strategies are also hindered by their invasiveness and toxic effects on 
healthy cells and tissues. Furthermore, the blood–brain/tumor barrier severely limits delivery of anti-cancer therapeutics 
administered intravenously to brain tumors, resulting in poor tumor response to the treatment. There is a critical need to 
develop new approaches to brain cancer therapy that can overcome these limitations. Focused ultrasound has emerged as 
a modality that addresses many of these limitations and has the potential to alter the treatment paradigm for brain cancer. 
Ultrasound transmitted through the skull can be focused on tumors and used for targeted ablation or opening the vascular 
barriers for drug delivery. This review provides insight on the current status of these unique ultrasound techniques, different 
strategies of using this technique for brain cancer, experience in preclinical models, and potential for clinical translation. We 
also debate the safety perspective of these techniques and discuss potential avenues for future work in noninvasive planning, 
monitoring, and evaluation of the ultrasonic neurointervention.
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Introduction

Brain tumors have proven extremely difficult to treat and 
patients have a poor prognosis. The standard of care for brain 
cancer patients with newly diagnosed primary brain tumors 
consists of surgery, radiation, and chemotherapy. However, 
not all brain tumors are operable and the recurrence rate can 
be extremely high (Adib et al., 2019; Faustino et al., 2020). 
While radiation can be effective, the cumulative exposure 
dose is limited due to neurotoxic effects (Kim et al., 2008; 
Shaw et al., 1996; Smart, 2017). The effectiveness of anti-
cancer agents administered systemically is hindered by the 
blood–brain/tumor barrier (BBB), which severely limits 
molecular transport into the brain (Abbott & Romero, 1996; 
Abbott et al., 2006, 2010; Arvanitis et al., 2020; Blumling Iii 

& Silva, 2012; van Vliet et al., 2014). Due to the high recur-
rence rate and the lack of treatment options, most patients 
diagnosed with primary brain tumors succumb to the dis-
ease within 2 years (Gilbert et al., 2013, 2014; Ostrom et al., 
2017; Stupp et al., 2005, 2009). Thus, there is a critical need 
for novel methods that can effectively treat brain tumors and 
significantly reduce the mortality rate.

Focused ultrasound (FUS) has emerged as a treatment 
modality for brain cancer that may be leveraged to over-
come the shortcomings that hinder conventional treatment 
options. For example, transcranial FUS can be used to ther-
mally ablate brain tissue noninvasively with millimeter pre-
cision. A commercial MRI-guided transcranial FUS system 
has been approved by the FDA for treating essential tremor 
by thermally ablating the thalamus (Abrahao et al., 2019; 
Elias et al., 2016; Lipsman et al., 2013). Thermal ablation 
using MR-guided FUS can be used to debulk brain tumors 
without a craniotomy, thus reducing the risk of infection 
(McDannold et al., 2010). Additionally, transcranial FUS 
can be used to open the BBB reversibly, which could enable 
pharmaceutical intervention of various neurological condi-
tions (Aryal et al., 2014; Meng et al., 2019). While the BBB 
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in brain tumors is leaky, studies have shown that ultrasound-
mediated BBB opening does improve the delivery and effi-
cacy of chemotherapy (McDannold et al., 2019; Treat et al., 
2012). Herein we review these emerging ultrasound-based 
treatment strategies for brain cancer in greater detail and dis-
cuss the technological and methodological advances needed 
for clinical translation.

Reversible BBB Opening

The BBB impedes the delivery of most drugs to the brain, 
thus inhibiting their effectiveness against serious neuro-
pathologies. Scientists have explored different approaches 
to opening the vascular barrier temporarily, and the use of 
focused ultrasound combined with stabilized microbub-
bles has emerged as the most promising. FUS-mediated 
blood–brain barrier opening was pioneered by Prof. Kull-
ervo Hynynen and his group in the early 2000s (Hynynen 
et al., 2001). This brain drug delivery method consists of 
three components: the low-intensity FUS, an intravenous 
administration of encapsulated microbubbles, and a drug of 
interest. The microbubbles that are used for BBB opening 
are currently FDA-approved as ultrasound contrast agents. 
These microbubbles are micrometer-sized particles that typi-
cally consist of a shell made of either lipid or protein, which 
encapsulates a gaseous core, typically perfluoropropane or 
sulfur hexafluoride. During the BBB opening process, FUS 
transmits acoustic waves through the skull, which oscillate 
circulating microbubbles in targeted regions of the brain as 
shown in Fig. 1A. The BBB is subjected to forces generated 
by the oscillating microbubbles, which can create defects 
in the endothelial cell layer and promote vesicle formation 
within the endothelial cells (Sheikov et al., 2004). As a 
result of these reversible cellular changes, the permeability 
of the BBB is increased temporarily. The extent and dura-
tion of FUS-mediated BBB opening have been explored 
using computational modeling as well as various imaging 
modalities, including magnetic resonance imaging, optical 
imaging, and positron emission tomography. It was reported 
that cavitating microbubbles open the BBB immediately and 
can reseal within four hours depending upon the FUS param-
eters (Cho et al., 2011; Marty et al., 2012; Park et al., 2012; 
Samiotaki et al., 2012; Ye et al., 2018a). The method has 
been utilized to enable the delivery of various molecules 
to the brain, including fluorescent dextrans (Alonso et al., 
2013; Burgess et al., 2011; H. Chen & Konofagou, 2014; 
Kaushik et al., 2019; Liu et al., 2010; McDannold et al., 
2012; Thévenot et al., 2012), nanoparticles, and biologics 
(peptides ~ 3 kDa, antibodies ~ 150 kDa, and viruses ~ 2 
MDa) (Aryal et al., 2015a; Chen et al., 2010; Diaz et al., 
2014; Etame et al., 2012; Fan et al., 2013a; Nance et al., 
2014; Wang et al., 2012). The overwhelming evidence that 

FUS and microbubbles can open the BBB reversibly and 
selectively has motivated its use for improving the deliv-
ery of anticancer agents to brain tumors. The delivery and 
efficacy of temozolomide (TMZ) to glioblastoma tumors in 
mice have been improved by the FUS-mediated opening of 
the BBB (Liu et al., 2014; Wei et al., 2013). FUS-mediated 
BBB opening also has been used to facilitate the delivery 
of an  O6-methylguanine-DNA methyltransferase (MGMT) 
inhibitor to TMZ-resistant gliomas in mice (Papachristo-
doulou et al., 2019). Combining TMZ with FUS-mediated 
delivery of the liposomal MGMT inhibitor led to a reduction 
in tumor burden and prolonged animal survival significantly. 
FUS-mediated BBB opening has been used to increase the 
delivery of nanoparticles loaded with other anticancer 
agents, including doxorubicin (Aryal et al., 2013; Treat 
et al., 2012) and cisplatin (Coluccia et al., 2018; Timbie 
et al., 2017). Furthermore, a study reported that multiple 
sessions of chemotherapy combined with FUS-mediated 
BBB opening increased the volume of drug distribution in 
brain tumors and killed cancer cells completely in most of 
the treated animals (Aryal et al., 2013; Fan et al., 2013b; 
McDannold et al., 2019; Wei et al., 2013). Importantly, the 
safety of opening the BBB repeatedly with FUS has been 
demonstrated in preclinical models including non-human 
primates (Abrahao et al., 2019; Aryal, et al., 2015a, 2015b; 
Lipsman et al., 2018; McDannold et al., 2012; Rezai et al., 
2020) and currently is being investigated clinically (Abrahao 
et al., 2019; Lipsman et al., 2018; Mainprize et al., 2019; 
Rezai et al., 2020). While transcranial ultrasound has been 
used predominantly for noninvasive disruption of the vas-
cular barrier, an implantable ultrasound device has been 
developed to improve the spatial control of BBB opening 
(Goldwirt et al., 2016). The safety and effectiveness of the 
device are being investigated in clinical trials in Europe and 
the USA (Asquier et al., 2019; Beccaria et al., 2020; Idbaih 
et al., 2019; Zhang et al., 2020). To date, nineteen clinical 
trials are underway across the globe to explore the feasibil-
ity and safety of ultrasound-mediated BBB opening in brain 
cancer and other neurological diseases (Table 1). 

For clinical translation, scientists recognize that a strategy 
by which the ultrasound output can be adjusted to ensure 
the safe and reliable opening of the BBB is critical. As 
mentioned previously, cavitating microbubbles are the pri-
mary mechanism for ultrasound-mediated BBB opening; 
therefore, methods to monitor and control the cavitation 
activity have been pursued. During ultrasound forced oscil-
lations, the cavitating microbubbles emit acoustic signals 
that can be detected passively with single-element transduc-
ers, known as passive cavitation detection (PCD). Based on 
spectroscopic analysis of the PCD signal, researchers have 
determined that microbubbles that have sustained nonlin-
ear oscillations characterized by strong harmonic and sub-
harmonic signals are most effective at reversibly opening 
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Fig. 1  Noninvasive, targeted, and transient opening of blood–brain/
tumor barrier (BBB) in brain tumor patients using clinical MR-
guided transcranial focused ultrasound system. The transient loosen-
ing of the vascular barrier allows drugs and biological agents from 
cerebral vasculature to extravasate into the brain tissue and helps to 
treat a wide range of neurological diseases and disorders. A Sche-
matic of ultrasonic beam penetration through the skull to reach the 
desired region of the brain (left), characteristics of ultrasonic waves 
(low intensity in pulse mode (top-right)), and cavitation-induced 
opening of the BBB within the targeted zone after the low-intensity 

pulse (bottom-right). B Contrast-enhanced T1-weighted MR-images 
of brain tumor patient before ultrasound treatment. The tumor is 
visible within the hypointense zone. C Images after the ultrasonic 
intervention. White arrows in T1-weighted images show gadolinium 
leakage after BBB opening. T2*-weighted image indicates there is 
no microhemorrhage from the treatment. D T1-weighted images with 
gadolinium indicate that the opening of the BBB is resolved within a 
day (Mainprize et al., 2019). B–D Modified from Sci Rep. 2019; 9: 
321.; Copyright © 2019, The Author(s)

Table 1  FUS-based BBB 
opening clinical trial for brain 
tumors, Alzheimer’s disease, 
Parkinson’s disease, and 
amyotrophic lateral sclerosis

Conditions Brain tumor Alzheimer’s disease Parkinson’s disease Amyotrophic lateral sclerosis

NCT Numbers NCT04063514
NCT02343991
NCT03551249
NCT03616860
NCT03714243
NCT04440358
NCT04417088
NCT03712293
NCT03626896
NCT04446416

NCT04526262
NCT04118764
NCT02986932
NCT03739905
NCT03119961
NCT03671889

NCT04370665
NCT03608553

NCT03321487
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the BBB (Arvanitis et al., 2012; McDannold et al., 2012; 
O’Reilly & Hynynen, 2012). This observation inspired the 
development of PCD-based feedback control strategies to 
adjust the ultrasound output and maintain nonlinear oscil-
lations of cavitating microbubbles in a predefined range 
to achieve the safe and predictable opening of the BBB 
(O’Reilly & Hynynen, 2012; Sun et al., 2017). However, it 
was recognized that translating the feedback control strat-
egy would require monitoring the cavitating bubbles in 
multiple dimensions, which was beyond the capability of 
single-element PCD systems. To meet this need, scientists 
have utilized multielement transducer arrays to detect and 
map cavitating bubbles in two dimensions, a process that 
is known as passive cavitation mapping or imaging (PCI) 
(Choi et al., 2014; Haworth et al., 2017; Salgaonkar et al., 
2009). Innovative hemispherical transcranial ultrasound 
phased arrays that enable driving and imaging cavitation in 
multiple dimensions have been constructed for brain applica-
tions (Crake et al., 2018; Deng et al., 2016; O’Reilly et al., 
2014). Briefly, a dual-mode hemispherical sparse array was 
constructed from 5 × 0.4 mm piezoceramic disc elements 
arranged in pseudorandom fashion on a low-profile laser-cut 
acrylic frame. The sparse array was designed to fit between 
the therapeutic elements of a 230-kHz clinical transcranial 
ultrasound transducer array (InSightec ExAblate 4000), 
within the bore of a 3 Tesla clinical MRI scanner. With the 
use of thickness and radial resonance modes of the piezo 
discs, the sparse array is capable of both B-mode imaging 
at 5 MHz for skull localization, as well as passive recep-
tion of acoustic emissions from cavitating (i.e., nonlinearly 
oscillating and collapsing) microbubbles. The transmit and 
receive zones for the sparse array can be steered throughout 
a volume of tissue, thus allowing for 3D B-mode imaging 
and volumetric passive cavitation mapping (O’Reilly et al., 
2014). The hemispherical array was combined with contrast-
enhanced MRI to guide cavitation-induced opening of the 
BBB in a volume of brain tissue (Jones et al., 2018). This 
achievement must not be overlooked as co-registration of the 
passive cavitation images and contrast-enhanced MR-images 
in multiple dimensions are not trivial. The next step will 
be incorporating closed-loop feedback control of cavitation 
activity into the hemispherical phased array system, which 
will bring ultrasound-mediated BBB opening closer to clini-
cal translation for brain cancer therapy.

Thermal Therapy

Focused ultrasound waves can be absorbed by solid tumors 
and converted to heat, resulting in a local temperature 
rise that can be leveraged for thermal therapy as shown in 
Fig. 2A. Thermal therapy can be divided into two catego-
ries: thermal ablation and hyperthermia. Thermal ablation 

is achieved by raising the local temperature beyond the 
threshold for protein denaturation and thermal coagulation 
(> 56 °C), which results in lesion formation at the transducer 
focus within seconds (Guthkelch et al., 1991). Hyperthermia 
is characterized by lower temperatures than thermal ablation 
(i.e., 42–45 °C) and has been leveraged for localized drug 
delivery in brain tumors. The use of noninvasive methods 
for monitoring and mapping the local temperature changes, 
such as magnetic resonance thermometry, has made ultra-
sound-mediated thermal therapy a viable option for treating 
solid tumors. Focused ultrasound is showing a great prom-
ise to achieve these thermal therapies and becoming one 
of the cost-effective and less toxic treatment modalities as 
compared to others such as microwave, radiofrequency, and 
electroporation.

Thermal Ablation

While FUS-induced thermal ablation is being explored as a 
treatment strategy for brain cancer, numerous clinical trials 
have proven its effectiveness against other types of cancer, 
including cancer of the breast, liver, and kidney (Cheung 
et al., 2013; Furusawa et al., 2007; Guan & Xu, 2016; Hsiao 
et al., 2016; Nabi et al., 2010; Orsi et al., 2010; Wu et al., 
2003; Zavaglia et al., 2013; Zhao & Wu, 2010). The method 
has been approved by the FDA for the treatment of uterine 
fibroids for many years and recently garnered approval for 
prostate cancer therapy (Hesley et al., 2008; Hu et al., 2016; 
Laughlin-Tommaso et al., 2019; Lyon et al., 2020; Macek 
et al., 2020; Machtinger et al., 2013; Stewart et al., 2006; 
Sundaram et al., 2017; Verpalen et al., 2020). Compared 
to the aforementioned cancers, ultrasound-mediated ther-
mal ablation of brain tumors is challenging due to the effect 
of the skull on ultrasound wave propagation (Hynynen & 
McDannold, 2004; McDannold et al., 2010). In addition to 
absorbing energy from the transmitted wave, the skull dis-
torts the beam resulting in a change in the location and shape 
of the focus (Fry & Barger, 1978; Martin & McElhaney, 
1971; Pinton et al., 2012). Scientists have demonstrated 
that this beam distortion, known as phase aberration, can be 
resolved with the use of ultrasound phased arrays. A beam 
with a distorted wavefront is generated intentionally by the 
phased array, which is “corrected” by the skull to achieve 
the desired focal shape and location in the brain. Phased 
arrays also allow for steering the transducer focus electroni-
cally, which increases the accuracy of focal placement in 
the brain. The FDA has approved phased array technol-
ogy and noninvasive thermal ablation of the thalamus (i.e., 
thalamotomy) for the treatment of essential tremors (Elias 
et al., 2016; Ghanouni et al., 2015; Lipsman et al., 2013). 
Technological advancements in magnetic resonance-guided 
transcranial focused ultrasound system with electronic beam 
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Fig. 2  Noninvasive thermal ablation in brain tumor patients using a 
clinical MR-guided focused ultrasound system. A Schematic of ultra-
sonic beam penetration through the skull to reach the desired region 
of the tumor (left), characteristics of the ultrasonic waves (high inten-
sity in continuous mode) to achieve desire thermal dose (top-right), 
and expected tissue coagulation within the targeted tumor zone after 
the ultrasonic exposure (bottom-right). B–F Contrast-enhanced 

T1-weighted MR-images of brain tumor patients before (B–D) 
and after (E–G) ultrasound-mediated thermal ablation. A tumor 
(enhanced area in B, C, D) and the successful ablation of the peri-
tumoral zone (arrow indicating in E, F, G) are visualized in all three 
different planes of MRI (Coluccia et al., 2014). B–F Modified from 
J Ther Ultrasound. 2014; 2: 17.; Copyright © 2015, Fandino et  al.; 
licensee BioMed Central Ltd
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steering capability helped to achieve tumor ablation with-
out neurological deficits or adverse effects in a patient with 
recurrent glioblastoma for the first time (Coluccia et al., 
2014), Fig. 2B–F. Currently, clinical trials evaluating the 
safety and feasibility of thermal ablation therapy in brain 
tumors are ongoing such as NCT01698437, NCT00147056, 
NCT01473485, and NCT03028246 (Table 2) but the results 
of these trials have yet to be released.

Hyperthermia

Ultrasound-mediated hyperthermia describes thermal 
therapy where the local temperature is raised within 
the range of 42–45 °C. Destroying solid tumors at these 
temperatures would require heating for tens of minutes, 
which is not ideal clinically. However, the temperature 
range is ideal for triggering drug release from temper-
ature-sensitive liposomes, a biocompatible, biodegrad-
able drug carrier. This approach for localized delivery of 
chemotherapeutic agents in solid tumors has been studied 
extensively in preclinical models (de Smet et al., 2010; 
Kneidl et al., 2014; Kong et al., 2000; Needham et al., 
2000; Ta & Porter, 2013) and now has entered into the 
clinical trials for liver tumor (Amin et al., 2020; de Smet 
et al., 2011; Hynynen, 1991; Lyon et al., 2017; Santos 
et al., 2017; Staruch et al., 2015). In addition to triggering 
drug release, ultrasound-induced hyperthermia can pro-
mote relevant changes in the tumor micro-environment 
that could enhance tumor responsiveness to anti-cancer 
drugs. For example, hyperthermia can stimulate cancer 
cells to produce heat shock proteins, reduce the interstitial 
fluid pressure within solid tumors, increase tumor perfu-
sion, change vessel permeability, and improve the delivery 
efficacy of anti-cancer agents in extracranial tumor mod-
els. Due to the effectiveness of the hyperthermia treatment 
in combination with temperature-sensitive liposomes, it is 
of interest for brain cancer. Recently, preclinical studies 
have reported that the hyperthermia-mediated delivery of 
an anti-cancer agent that was encapsulated within the tem-
perature-sensitive carrier enhances the drug uptake within 
a targeted brain tumor model and holds a great promise 

for hyperthermia-mediated brain drug delivery (Arvani-
tis et al., 2019). Furthermore, hyperthermia can sensitize 
solid tumors to radiotherapy, thus reducing the cumula-
tive radiation dose and mitigating radiotoxicity (Franckena 
et al., 2009; Prosnitz & Jones, 2002). Additional research 
is required to define the thermal dose needed for each of 
the aforementioned hyperthermia-induced bioeffects. This 
knowledge combined with MR thermometry for guidance 
could enable the use of ultrasound-mediated hyperthermia 
against brain cancer clinically.

Nonthermal Ablation: Mechanical 
Destruction of Tumor Tissue

The newest addition to the portfolio of ultrasound-
based cancer treatment methods is non-thermal ablation. 
Whereas thermal ablation depends on tissue absorption 
of propagating ultrasound waves, non-thermal ablation 
results from damage caused by cavitation (i.e., oscilla-
tions and collapses of microbubbles driven by ultrasound). 
Several exogenous agents have been used to nucleate 
cavitation in vivo upon ultrasound exposure, including 
ultrasound contrast agents and liquid perfluorocarbon 
nanodroplets (McDannold et al., 2013, 2016; Peng et al., 
2019; Sutton et al., 2015). The stresses generated by cavi-
tation can disrupt blood flow within tumors, which can 
result in local ischemia and lesion formation (Peng et al., 
2019). This treatment strategy is very appealing for clini-
cal translation because it needs slightly higher pressure 
than the BBB opening threshold but lower than the acous-
tic intensity required for thermal ablation. Thus, there 
is less risk for skull heating and thermal damage, which 
reportedly can occur during thermal ablation of bulk brain 
tissue (McDannold et al., 2013, 2016). At much higher 
pressures, it is possible to drive intense cavitation activity 
and mechanically destroy target tissue, a process known as 
histotripsy (Cain et al., 2016; Kim et al., 2014; Sukovich 
et al., 2020; Tran et al., 2003). Preclinical data suggest that 
histotripsy with very short pulses (≤ 20 µs) transmitted 
through the skull can liquefy targeted brain tissue with 

Table 2  FUS-based thermal ablation clinical trials for brain tumor treatment

Clinical Trials Conditions Locations

NCT01698437 Malignant Brain Tumors MR-Center, University Children's Hospital Zurich, Switzerland
NCT00147056 Brain Tumor Brigham and Women's Hospital Boston, Massachusetts, USA

Swedish Medical Center Seattle, Washington, USA
NCT01473485 Glioma

Metastatic Brain Cancer
Sunnybrook Health Sciences Centre Toronto, Ontario, Canada

NCT03028246 Benign Centrally Located
Intracranial Tumors

Miami Children's Research Institute - Nicklaus Children's 
Hospital Miami, Florida, USA
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minimal heat deposition within the intact skull. A non-
thermal ablation is an attractive option for destroying brain 
tumors and warrants additional exploration particularly to 
evaluate tumor response to the treatment.

Technological Challenges for Clinical 
Translation of Ultrasound‑Mediated Brain 
Cancer Therapy

The potential of emerging ultrasound-based methods for 
treating brain cancer has been demonstrated in numerous 
preclinical models. Clinical translation of these methods 
will require techniques to guide, monitor, and evaluate 
their effectiveness noninvasively. While MR thermometry 
can be used to quantify a thermal dose during ultrasound-
mediated thermal therapy, methods to evaluate the out-
come of the applied thermal dose are needed. For exam-
ple, noninvasive techniques to assess tumor response to 
thermal ablation will facilitate clinical translation. Treat-
ment strategies that depend on cavitation will benefit tre-
mendously by the inclusion of methods to monitor and 
map the cavitation activity. Passive cavitation imaging 
is a breakthrough, but the technology needed to enable 
its use in brain applications is in its infancy. The sparse 
hemispherical phased arrays that are being developed sig-
nificantly reduce the cost and complexity of the hardware 
needed for PCI in the brain. Combined with closed-loop 
feedback control algorithms, PCI and phased array tech-
nology will enable spatiotemporal control of cavitation 
with unprecedented accuracy. This can be leveraged for 
targeted BBB opening for enhanced delivery of anti-
cancer agents or noninvasive debulking of brain tumors 
via mechanical ablation. Treatment evaluation involves 
confirmation of BBB opening; assessment of BBB open-
ing volume; evaluation of any potential damage within 
treatment zone as well as along the ultrasonic beam path; 
quantification of drug transport from the vasculature 
into the brain parenchyma; and prediction of drug pen-
etration, retention, distribution, and clearance. Different 
imaging modalities such as MRI, PET, and optical have 
been used to evaluate molecular transport through the 
BBB after ultrasound-mediated disruption (Burgess et al., 
2014; Cho et al., 2011; Hynynen et al., 2001; Ye et al., 
2018b; Zhu et al., 2018). Contrast-enhanced MRI does 
not require a craniotomy or radiolabeled tracers and thus 
is used most frequently for confirming ultrasound-medi-
ated BBB opening as was noted in Fig. 1B–D. Dynamic 
contrast-enhanced MRI can be used to measure  Ktrans, 
the permeability transfer coefficient of molecules from 
blood plasma to the brain parenchyma, thus quantify-
ing the change in BBB permeability. Furthermore, T2*-
weighted MR-images can be used to assess the tissue 

damage. Numerous preclinical studies have demonstrated 
the utility of MRI-based imaging methods for evaluating 
changes in BBB permeability qualitatively and quantita-
tively, which has paved the way for clinical trials.

Conclusion

Thus far, different ultrasound-based approaches for brain 
cancer treatment have been investigated, including thermal 
ablation, hyperthermia, non-thermal ablation, and mechan-
ical disruption of BBB for drug delivery. To date, BBB 
opening has entered into Phase 0/1 clinical trials for cancer 
treatments. Further studies are needed to determine the 
actual drug delivery efficacy, including the drug distribu-
tion, retention, pharmacokinetic, and clearance at tissue-
levels, as well as its effects on tumor growth and patient 
prognosis in a personalized manner. The techniques hold 
great promise for the treatment of a wide range of neu-
rological disorders. Advancements in technology and 
methodology for closed-loop feedback control of the ultra-
sound-induced bioeffects and evaluation of tumor response 
to treatment are on the horizon, which will bring these 
emerging treatment strategies closer to clinical translation.

Funding This study was funded by National Institutes of Health with 
Grant No. R21EB027506.
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