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A B S T R A C T   

Purpose: The 1p/19q co-deletion status has been demonstrated to be a prognostic biomarker in lower grade 
glioma (LGG). The objective of this study was to build a magnetic resonance (MRI)-derived radiomics model to 
predict the 1p/19q co-deletion status. 
Method: 209 pathology-confirmed LGG patients from 2 different datasets from The Cancer Imaging Archive were 
retrospectively reviewed; one dataset with 159 patients as the training and discovery dataset and the other one 
with 50 patients as validation dataset. 
Radiomics features were extracted from T2- and T1-weighted post-contrast MRI resampled data using linear and 
cubic interpolation methods. 
For each of the voxel resampling methods a three-step approach was used for feature selection and a random 
forest (RF) classifier was trained on the training dataset. Model performance was evaluated on training and 
validation datasets and clinical utility indexes (CUIs) were computed. The distributions and intercorrelation for 
selected features were analyzed. 
Results: Seven radiomics features were selected from the cubic interpolated features and five from the linear 
interpolated features on the training dataset. The RF classifier showed similar performance for cubic and linear 
interpolation methods in the training dataset with accuracies of 0.81 (0.75− 0.86) and 0.76 (0.71− 0.82) 
respectively; in the validation dataset the accuracy dropped to 0.72 (0.6− 0.82) using cubic interpolation and 
0.72 (0.6− 0.84) using linear resampling. CUIs showed the model achieved satisfactory negative values (0.605 
using cubic interpolation and 0.569 for linear interpolation). 
Conclusions: MRI has the potential for predicting the 1p/19q status in LGGs. Both cubic and linear interpolation 
methods showed similar performance in external validation.   

1. Introduction 

Gliomas are tumors of the central nervous system and are the most 
frequent primary tumors arising in the brain [1]. They are classified into 
four grades based on their aggressiveness by The World Health 

Organization (WHO). WHO grade II (low grade) and grade III 
(anaplastic) diffuse gliomas form a heterogeneous group of neoplasms, 
also known as Low Grade Gliomas (LGGs), characterized by a wide range 
of malignant potential affecting mostly young adults [2]; LGG is 
potentially a fatal disease, with an median overall survival of around 7 
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years [3]. LGG finally advances to higher grades, with a significantly 
lower survival rate [3]. 

Treatment choices for LGG are based on WHO grades, molecular 
profiles, and patient characteristics (e.g. age and Karnofsky performance 
status) [4]. The co-deletion of chromosome arms 1p and 19q has an 
important role in choosing the right treatment, indeed co-deletion is a 
useful prognostic molecular marker as it can be used for the prediction of 
response to radiotherapy and chemotherapy, and it is associated with 
longer survival [5–8]. Thus, efficient treatment planning necessitates 
proper classification of WHO grade and 1p/19q co-deletion status. 

The 1p/19q status can be determined by different techniques: fluo
rescence in situ hybridization (FISH), polymerase chain reaction, array 
comparative genomic hybridization, or multiplex ligation-dependent 
probe amplification [9]. This molecular classification is achieved 
through histopathologic examination; albeit being the reference stan
dard for this task, it has some limits, such as limited surgical accessibility 
and heterogeneity of the sampled tissue. Furthermore, biopsy samples 
are not representative of the whole neoplasm [10]. 

The unmet clinical need is to find a non-invasive and robust classi
fication method of 1p/19q status of the entire tumor volume in order to 
effectively direct treatment planning of LGG [5–8] for cases when 
complete resection cannot be performed and/ or where the biopsy 
cannot be obtained from the tumor. Most notably, in childhood tumors 
around 30%–50% of LGGs are inoperable as a result of their position in 
highly eloquent areas of the brain [11]. Currently, MRI is a useful 
technique in order to obtain helpful data for therapy decisions, and for 
pre-therapeutic noninvasive diagnosis. 

Radiomics is a research field whose scope is to extract imaging fea
tures from radiographic images (including MRI) that can potentially 
capture phenotypic, genomic, proteomics patterns having prognostic 
value and clinical significance. The underlying hypothesis of radiomics 
is that medical imaging may express additional data correlating with 
genomic and proteomics patterns and can be manifested in macroscopic 
image-based features, not visible by the unaided eye and thus not used 
[12–14]. 

In the last few years different studies have demonstrated that 1p19q 
status can be predicted using MRI [15–22]. Furthermore, Branzoli et al. 
[23] recently identified elevated levels of cystathionine in 1p/19q 
codeleted gliomas compared to non-codeleted gliomas, using in vivo 
magnetic resonance spectroscopy. In our analysis, routine MRI se
quences were used, without additional experimental or expensive MRI 
sequences. 

The main purpose of this study was to develop and to validate a non- 
invasive method to predict the 1p/19q status of LGG from T2-weighted 
and T1-weighted post-contrast MRI images using texture analysis as an 
alternative to surgical biopsy. The secondary aim was to compare two 
voxel resampling methods: radiomics features calculated from images 
resampled using cubic and linear interpolation methods. Cubic spline 
and convolution interpolation are third-order methods that typically 
interpolate smoother surfaces than linear methods, while they are 
known to be slower in implementation [24]. Linear interpolation is a 
commonly used algorithm since it is computationally cheap and leads 
neither to rough blocking artifacts images that are generated by nearest 
neighbor techniques, nor will it cause out-of-range gray levels that might 
be produced by higher order interpolation [25]. 

2. Materials and methods 

2.1. Data 

The training dataset consisted of 159 LGG patients with pre- 
operative MRI images and 1p/19q status proven by biopsy. They were 
identified within the LGG-1p19q Deletion dataset [15,26,27] on The 
Cancer Imaging Archive (TCIA). The validation dataset consisted of 
similar patient data of 50 randomly selected patients, also from TCIA, 
albeit in the TCGA-LGG dataset [27,28]. For TCGA, the 1p/19q status for 

validation dataset was derived from a previous study based on this 
dataset [16]. Patients were selected according to the following inclusion 
criteria: exams with a slice thickness ≤ 7.5 mm, artifacts in less than 50 
% of the slices containing the gross tumor volume (GTV) visually 
assessed by a radiologist with 3 years’ experience (R.C.), and the pres
ence of T2-weighted and contrast enhanced T1-weighted images and 
1p/19q status. The GTV was delineated using MIM software version 
6.9.0 (MIM, Cleveland, United States) by one radiologist (R.C.). 

2.2. Image pre-processing and radiomics feature extraction 

In order to somewhat account for inter-scanner variability, Z-score 
normalization was applied to the GTVs in each image series (per pa
tient). The formula for Z-score normalization for GTV intensities is: 

original intensity value − μ
σ  

where μ is the mean intensity inside each GTV and σ is the intensity 
standard deviation in each GTV. 

Voxel size resampling was performed before feature extraction using 
cubic and linear interpolation separately. Images were resampled to a 
voxel size of 3 × 3  × 3 mm3; more information about the choice of voxel 
size can be found in the Supplementary Materials (Voxel size section). 

To reduce noise and computational burden, grayscale values were 
aggregated into the same number of bins (50 bins) for all MRI exams. 
The fixed bin number method was used to achieve a better normalizing 
effect as intensity units are not absolute in MRI [25]. Radiomics features 
compliant with the International Biomarker Standardization Initiative 
(IBSI), as well as non-IBSI features were extracted with the RadiomiX 
research software (supported by Oncoradiomics, Liège, Belgium). 

Radiomics features were extracted consisting of five main groups: 1) 
fractal features, 2) first order statistics, 3) shape and size, 4) texture 
descriptors including gray level co-occurrence (GLCM), gray level run- 
length (GLRLM) and gray level size-zone texture matrices (GLSZM), 5) 
features from groups 1, 3 and 4 after wavelet decomposition. GLCM 
distance was 1. Definitions and detailed feature list are described in 
Supplementary Materials (Tables 3 and 4). 

2.3. Feature selection and statistical analysis 

Fig. 1 illustrates the 3 steps that were performed only on the training 
dataset for feature selection; the second step was repeated 300 times, 
with different sample groupings. All this procedure was performed 
twice, for cubic and linear interpolation respectively. The first step used 
correlation-based feature subset selection (CfsSubsetEval function, 
Weka software version 3.8.3) [29–31] to eliminate irrelevant and 
redundant features. In the second step, a table was created that ordered 
and ranked features according to their importance using a 10-fold cross 
validation treebag recursive feature elimination algorithm (RFE) (Py
thon 3.7.6 version, scikit-learn 0.21.2 package). Finally, in the third 
step, a learning curve was computed (AUC vs. the incremental number 
of features obtained from the ranked feature table). More information 
about the 3 steps are explained in Supplementary Materials (Feature 
selection section). 

Inter-correlation among selected features and with volume were 
calculated with the Spearman correlation coefficient. Moreover, the 
Mann-Whitney test was applied in order to check statistically significant 
differences in GTV values in codeleted/non co-deleted groups in the 
training dataset. 

Statistical analysis was performed with Python 3.7.6 version (scipy 
1.4.1 package, pandas 1.0.0 package). 

2.4. Classification 

A random forest (RF) classification model was trained on the training 
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dataset with the selected features, and performance metrics calculated 
when applied to both datasets without further adjustments. To mitigate 
the effect of the unbalanced outcomes, the training dataset was balanced 
using an adaptive synthetic (ADASYN) resampling approach, which 
creates artificial patients for the minority class, before the RF model was 
trained [32]. On the training dataset, internal 10-fold cross-validation 
was performed, followed by a bootstrap method (n = 10000) to have 
an evaluation of the error of the performance metrics (median, 2.5 and 
97.5 percentiles). On the validation dataset, a bootstrap method 
(n = 10000) was implemented, and the median values and 2.5 and 97.5 
percentiles calculated. During the cross-validation procedure, each set 
preserved roughly the same ratio of samples for each class (co-dele
ted/non co-deleted) as the complete training dataset and ADASYN 
applied to the training fold. 

Accuracy, sensitivity, specificity, receiver operating characteristic 
curve (ROC) and AUC were computed. All these steps of the workflow 
were repeated twice (for cubic interpolation and linear interpolation). 
Classification performance was compared for cubic and linear 
interpolation-based data for both training dataset cross-validation re
sults and validation results; the De-Long test was used to compare AUCs 
obtained from each model. 

This segment and statistical analysis were performed with Python 
3.7.6 version (scikit-learn 0.21.2 package, scipy 1.4.1 package), and R 
3.6.1 version (pROC 1.14.0 package). 

2.5. TRIPOD and Radiomics quality score 

This study followed the instruction of Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis or Diagnosis 
(TRIPOD), and the Radiomics quality score (RQS) was used to evaluate 
the radiomics workflow [13,33,34]. The RQS score for this specific study 
was 44 %. The RQS maximum score is 100 % and it is based on a 36 
points system; a high value reveals a higher methodological quality 

research and reporting [33]. 

2.6. Clinical utility index (CUI) 

Clinical utility indexes were computed for the RF model tested on 
external validation dataset. CUI was developed in 2007 and aimed to 
take into account both occurrence and discrimination [35–40]. The 
value for CUI ranges from 0 to 1: excellent utility (CUI ≥ 0.81), good 
utility (CUI ≥ 0.64), satisfactory/fair utility (CUI ≥ 0.49), poor utility 
(CUI ≤ 0.49) and very poor utility (CUI ≤ 0.36) [36]. More information 
and relative formulas about CUI are reported in Supplementary Mate
rials (Clinical utility index section). 

2.7. Data sharing 

The dataset and GTV used in this article can be provided upon con
tact with the corresponding author. 

The python code used for the feature selection, classification model 
and evaluation of the algorithm is available on GitHub https://github. 
com/roberto-casale/LGG-1p-19q-deletion. 

3. Results 

3.1. Data 

3.1.1. Training dataset 
One hundred and fifty-nine consecutive LGG patients with pre- 

operative MRI images collected between 01-10-2002 and 01-09-2011 
and biopsy proven 1p/19q status were identified within the LGG- 
1p19q Deletion archive (Supplementary Materials Table 1). The data 
included 102 patients with co-deleted 1p/19q arms and 57 with non-co- 
deleted arms. The grades of the LGG lesions were II (n = 104) and III 
(n = 55). The types of LGG were oligoastrocytoma (n = 97), 

Fig. 1. Feature selection (only training dataset).  
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oligodendrogliomas (n = 45), and astrocytomas (n = 17). Median age 
was 42 (range 13–84) and this dataset included 76 women and 83 men. 
Post-contrast T1- and T2-weighted images were available for all selected 
patients. All images were acquired with 1.5 or 3 T scanners, slice 
thicknesses ranged from 1 to 7.5 mm and isotropic pixel size in the axial 
plane ranged from 0.43 to 1.09 mm. More details about exams are 
shown in Supplementary Materials and Supplementary Tables. 

3.1.2. External validation dataset 
Fifty (n = 50) patients were randomly chosen from the TCGA-LGG 

dataset (Supplementary Materials Table 2) while maintaining outcome 
balance. The 1p/19q status was identified thanks to Supplementary 
Tables from the research of Chia Feng Lu al. [15] that used the same 
dataset. This validation dataset included 25 non-deleted and 25 
co-deleted LGG. The grades of LGG were II (n = 29) and III (n = 21). The 
types of LGG were oligoastrocytoma (n = 14), oligodendrogliomas 
(n = 28), and astrocytomas (n = 8). Median age was 46 (range 20–74) 
and it included 22 women and 28 men. Post-contrast T1- and 
T2-weighted images were available for all selected patients. All images 
were acquired with 1.5 T or 3 T scanners (it was not reported the mag
netic field for five patients), and the slice thickness ranged from 0.9 mm 
to 7.5 mm and isotropic pixel size in the axial plane ranged from 0.39 to 
1.02 mm. More details about exams are shown in Supplementary Ma
terials and Supplementary Tables. 

No significant differences in gender (M/F = 1.1 in training set vs M/ 
F = 1.3 in validation set) and WHO grade ratios (II/III = 1.9 in training 
set vs II/III = 1.4) were observed between the training and validation 
sets. There were significant differences in histology and age (mean age 
46.5 in training set vs 41.6 in validation set). Level of significance was 
α = 0.05 for Chi-square tests and Mann-Whitney test (age comparison). 
Demographic and clinical data description are presented in Table 1. 

3.2. Radiomics features extraction, selection, and statistical analysis 

In total, 5352 radiomics features per patient were extracted from 
both T1- and T2- weighted images; 2676 features extracted with each of 
cubic and linear interpolation voxel resampling methods. 

After correlation-based feature subset selection a total of 48 features 
remained for cubic interpolation and 51 features for linear interpolation. 

These remaining features were fed into 300 loops of 10-fold cross 
validation RFE. Supplementary Materials Table 5 (for cubic interpola
tion) and Supplementary Materials Table 6 (for linear interpolation) 
show how many times each feature was selected during the 300 loops. 
GTV volume was not chosen among the selected features. 

With these ranked features, two learning curves were computed 
(AUC vs. incremental increase of features) respectively for cubic inter
polation (Supplementary Materials Fig. 1) and linear interpolation 
(Supplementary Materials Fig. 2) using only the training dataset. The 
classifier used to generate the curve was RF, with co-deleted/ non co- 

deleted outcome and 10- fold cross validation. 
The number of features for the final model was chosen near the first 

salient point of the learning curve for AUC score. All features that went 
into the model satisfy the condition that they were selected more than 68 
% (greater than or equal to 205 times) in the RFE loops to ensure a 
certain level of robustness. 

Finally, the selected features were 7 for cubic interpolation (Table 2) 
and 5 for linear interpolation (Table 3). 

The inter-correlation among the selected features in the training 
dataset is shown in Supplementary Materials Fig. 3 (cubic interpolation) 
and Supplementary Materials Figure 4 (linear interpolation). 

The inter-correlation among the selected features in external vali
dation dataset is shown in Supplementary Materials Figure 5 (cubic 
interpolation) and Supplementary Materials Figure 6 (linear interpola
tion). These results were computed with Spearman rank correlation. 

Value distributions for selected features for codeletion and non- 
codeletion classes in cases of cubic and linear interpolation are pre
sented in Supplementary Materials Figure 7 and Figure 8, respectively. 

3.3. Classification 

3.3.1. Results on training dataset 
All results are reported as the median [2.5 percentile – 97.5 

percentile]. For cubic interpolation, the RF model achieved an AUC of 
0.86 [0.81− 0.91] and for linear interpolation an AUC of 0.82 
[0.75− 0.87] (Table 4). 

The De-Long test was used to compare model performances obtained 
from models trained on data that underwent cubic and linear interpo
lation. According to the results of this test, there was no statistically 
significant difference between the two AUCs (p-value = 0.073). 

The Mann-Whitney, applied to GTV values in codeleted/non co- 
deleted groups, shows no statistical difference between the two groups 
(p = 0.149; alpha = 0.05). 

3.3.2. Results on validation dataset 
The AUC for features extracted for cubic interpolation was 0.87 

[0.76− 0.95] and for linear interpolation was 0.77 [0.61− 0.89] 
(Table 5). According to the DeLong test there was no statistically sig
nificant difference between the two models (p-value = 0.178). 

The confusion matrix for the two models are shown in Supplemen
tary Materials Table 7 (for cubic interpolation) and Table 8 (for linear 
interpolation). 

The ROC curves are shown in Fig. 2 (for cubic interpolation) and 
Fig. 3 (for linear interpolation). 

3.4. Clinical utility index (CUI) 

The positive CUI, calculated for the RF model with cubic interpola
tion features and tested on validation dataset, was 0.451 (CI: 
0.203− 0.698); the negative CUI was 0.605 (CI: 0.483− 0.762). The 
positive and negative CUI values obtained with cubic interpolation 
features had a poor and a satisfactory/fair utility value respectively. 

The positive CUI for the RF model, obtained with linear interpolation 
Table 1 
Data description.   

Training 
dataset 

Validation 
dataset 

p- 
value* 

Number of patients 159 60 – 
Age, y, mean (SD) 41.6 (13.8) 46.5 (13.0) 0.026 
Gender ratio (M/F) 83/76 28/22 0.759 
Grade ratio (II/III) 104/55 29/21 0.435 
Histology ratio (astrocytoma/ 

oligoastrocytoma/ 
oligodendroglioma) 

17/97/45 8/14/28 0.000 

Outcome ratio (codeletion/non- 
codeletion) 

102/57 25/25 –  

* p-value for statistically significant differences of value distribution in 
training and validation datasets: age – Mann-Whitney, gender ratio – chi-square, 
grade ratio-chi-square, histology ratio – chi square. 

Table 2 
Selected features for cubic interpolation with frequency.  

Features Frequency* 

GLCM_average (T2) 293 
Wavelet_LHL_Stats_median (T1) 289 
Wavelet_LLH_Stats_median (T1) 276 
GLCM_clusShade (T1) 258 
Wavelet_LHH_Fractal_lacunarity (T2) 223 
Wavelet_HLL_GLCM_correl1 (T2) 212 
Wavelet_LLL_Stats_p10 (T2) 206  

* Frequency is number of times the feature was selected during the 300 
loops. 
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features and tested on validation dataset, was 0.474 (CI: 0.238− 0.709), 
so with a poor utility value; the negative CUI for the model obtained 
with linear interpolation features was 0.569 (CI: 0.435− 0.703), so with 
a satisfactory/fair utility value. 

These results showed that the RF model, trained both with cubic and 
linear interpolation features, achieved a satisfactory negative CUI, 
meaning that this algorithm can be reasonably useful for screening pa
tients with 1p-19q non-co-deletion status. On the other side, the RF 
model, trained both with cubic and linear interpolation features, ach
ieved a poor positive CUI, meaning that this method has low utility to 
confirm patients with non-co-deleted status; in practical terms, if a pa
tient obtains a result that suggest having non-co-deleted status, this 
patient should be further studied to confirm the non-co-deleted status. 

4. Discussion 

In this study we explored the ability of radiomics features extracted 
from the GTV on preoperative MRI (acquired with T1-weighted contrast 
enhanced and T2-weighted sequences) to predict molecular status of 
chromosome 1p/19q co-deletion in LGG patients. To investigate the 
influence of the resampling method on the classification models’ per
formance, we used both cubic and linear interpolation kernels for 
further comparison. After feature selection, the feature vectors con
tained 5 and 7 features for cubic and linear interpolation-based data, 
respectively. These feature vectors only had 4 common features 
(Wavelet_LLH_Stats_median (T1), Wavelet_LHL_Stats_median (T1), 
GLCM_clusShade (T1) and Wavelet_LHH_Fractal_lacunarity (T2)). 
Therefore, we conclude that the method presented is not completely 
robust to the resampling method and additional studies on features 
reproducibility are needed. 

According to Spearman correlation coefficient, within the training 
dataset, the feature vectors consisted of statistically independent 

Table 3 
Selected features for linear interpolation with frequency.  

Features Frequency* 

Wavelet_LLH_Stats_median (T1) 275 
Wavelet_LHL_Stats_median (T1) 271 
Wavelet_LLL_IH_p10 (T1) 257 
GLCM_clusShade (T1) 213 
Wavelet_LHH_Fractal_lacunarity (T2) 205  

* Frequency is number of times the feature was selected during the 300 
loops. 

Table 4 
Classification performance on training dataset (10- fold cross validation).   

Cubic interpolation median 
[2.5–97.5 percentile] 

Linear interpolation median 
[2.5–97.5 percentile] 

Accuracy 0.81[0.75− 0.86] 0.76 [0.71− 0.82] 
Sensitivity 0.77 [0.69− 0.85] 0.72 [0.63− 0.8] 
Specificity 0.85 [0.78− 0.92] 0.81 [0.74− 0.88] 
AUC 0.86 [0.81− 0.91] 0.82 [0.75− 0.87]  

Table 5 
Classification performance on external validation dataset.   

Cubic interpolation [2.5- 
percentile - 97.5 percentile] 

Linear interpolation [2.5- 
percentile - 97.5 percentile] 

Accuracy 0.72 [0.6− 0.82] 0.72 [0.6− 0.84] 
Sensitivity 0.52 [0.32− 0.72] 0.6 [0.4− 0.8] 
Specificity 0.92 [0.8–1.0] 0.84 [0.68− 0.96] 
AUC 0.87 [0.76− 0.95] 0.77 [0.61− 0.89]  

Fig. 2. ROC and AUC for features extracted with cubic interpolation - Results on validation dataset.  
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features. In validation dataset, some of these features are correlated to 
each other (Spearman correlation coefficient 0.76 and 0.77 for T1- 
weighted Wavelet_LHL_Stats_median (T1) and Wave
let_LLH_Stats_median (T1) for cubic and linear interpolation-based fea
tures, respectively). 

According to De-Long test, there were no statistically significant 
differences between AUCs obtained from the cubic interpolation model 
and linear interpolation model both on training dataset (p- 
value = 0.178) and validation dataset (p-value = 0.073). 

The advantages of the present study are its non-invasiveness, the 
analysis of the entire volume of the lesion, and the ubiquitous avail
ability, as it is based on simple conventional MRI sequences. 

Other studies try to predict 1p/19q status, some of which aim to 
solve the same problem using MRI [15–22]. They all are using multi
modal conventional MRI data, most often combining T2-weighted and 
contrast enhanced T1-weighted data together. Classification perfor
mance of the present study did not exceed the results, obtained in 
[15–17,19,20]. Nevertheless, the present study has some benefits over 
previously mentioned studies [15–17,20]: (1) the potential reproduc
ibility, achieved with open source data usage and utilization of an 
automated pipeline, (2) the potential interpretability of results, as input 
features are known and understood, (3) the presence of clinical utility 
evaluation, (4) the evaluation of two different resampling methods. 

The present study has some limitations. The main limitation is the 
relatively small sample size, which decreases statistical power of the 
classification results. For this reason, to test the model, we performed 
cross-validation on the training dataset and then we trained it on the 
whole training dataset to perform validation on external dataset. Also, 
for this reason, to estimate model performance and its error on external 
validation dataset, we performed a bootstrapping approach, which 
produces multiple instances of the same observations and omits other 

original observations. The second limitation was related to data balance 
within and between training and validation datasets. Outcomes in the 
training dataset were significantly unbalanced (102 cases of codeletion 
vs 57 cases of non-codeletion); to partially overcome this limitation, the 
ADASYN method was used, which is not without uncertainties. The third 
limitation was related to significant differences in histology and age 
distribution in training and validation datasets. Histology effect and age 
have not been investigated and included into models and they could be 
explored in further studies. The fourth limitation was related to different 
MRI field strengths, values of slice thickness (0.9–7.5 mm) and isotropic 
pixel spacing (0.39–1.09 mm); these differences could be a source of 
batch effects, modifying radiomics features significantly, but also could 
be an opportunity to test the stability of methods across different image 
acquisition parameters. The fifth limitation arises from possible bias 
stemming from the random selection for 50 patients inside the valida
tion dataset. 

In summary, the proposed non-invasive method is able to predict 
molecular status of chromosome 1p/19q co-deletion in LGG patients, 
based on multi-scanner multi-field MRI data. Although there is still room 
for improvement in accuracy metrics, its usefulness was indicated for the 
estimation of prognostic molecular markers. Results of its validation on 
external data demonstrated its generalizability. According to the results 
of statistical tests, there were no statistically significant differences be
tween the AUCs obtained with different spatial resampling interpolation 
methods (cubic and linear). 

Regarding the diagnostic utility of this method, the CUI demon
strated that the RF model (trained both with cubic and linear interpo
lation features) achieved a satisfactory negative CUI, while the RF model 
(trained both with cubic and linear interpolation features) achieved a 
poor positive CUI. Therefore, linear and cubic models can be reasonably 
helpful for ruling out non-co-deleted status, but they can be poorly 

Fig. 3. ROC and AUC for features extracted with linear interpolation - Results on validation dataset.  
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useful for confirming non-co-deleted status. This difference can be 
explained by the different accuracy metrics: indeed, both algorithms had 
specificity and positive predictive values higher than sensitivity and 
negative predictive values; moreover, the unbalanced class in the 
training dataset could affect the performance. These results should be 
considered in future studies and should be taken into account in a future 
clinical scenario. 

This approach may be an opportunity to help medical decision. 
Despite the dataset was limited, ADASYN increased the number of cases 
in the training phase. However, further studies based on more hetero
geneous and larger patient population are mandatory to confirm and 
validate our current results. 

5. Conclusions 

MRI radiomics analysis, based on T2-weighted and T1-weighted 
post-contrast images, could supply a reliable noninvasive technique 
for the prediction of 1p/19q status in LGGs, giving useful information for 
personalized therapy assessment and pretreatment prediction. 
Regarding the two different voxel resampling methods, no statistically 
significant differences were found. 

CRediT authorship contribution statement 

Roberto Casale: Conceptualization, Methodology, Software, Formal 
analysis, Resources, Writing - original draft. Elizaveta Lavrova: Meth
odology, Software, Formal analysis, Investigation. Sebastian Sandu
leanu: Methodology, Visualization, Formal analysis, Writing - review & 
editing. Henry C. Woodruff: Supervision, Methodology. Philippe 
Lambin: Supervision, Funding acquisition. 

Declaration of Competing Interest 

P.L. reports—within and outside the submitted work—grants or 
sponsored research agreements from Varian Medical, Oncoradiomics, 
ptTheragnostic/DNAmito, and Health Innovation Ventures. He received 
an advisor/presenter fee and/or reimbursements of travel costs/external 
grant writing fee and/or in-kind manpower contribution from Oncor
adiomics, BHV, Merck, Varian, Elekta, ptTheragnostic and Convert 
Pharmaceuticals. P.L. has minority shares in the company Oncor
adiomics, Convert Pharmaceuticals, The Medical Cloud Company and 
LivingMed Biotech, and is co-inventor of two issues patents with roy
alties on radiomics (PCT/NL2014/050248, PCT/NL2014/050728) 
licensed to Oncoradiomics, one issue patent on mtDNA (PCT/EP2014/ 
059089) licensed to ptTheragnostic/DNAmito, three non-patented in
ventions (software) licensed to ptTheragnostic/DNAmito and Oncor
adiomics and Health Innovation Ventures, and three non-issues, non- 
licensed patents on Deep Learning-Radiomics and LSRT (N2024482, 
N2024889, N2024889). H.W. reports minority shares in 
OncoRadiomics. 

Acknowledgements 

Authors acknowledge financial support from ERC advanced grant 
(ERC-ADG-2015 n◦ 694812 - Hypoximmuno), ERC-2018-PoC: 813200- 
CL-IO, ERC-2020-PoC: 957565-AUTO.DISTINCT, Authors also 
acknowledge financial support from EUROSTARS (DART, DECIDE), the 
European Union’s Horizon 2020 research and innovation programme 
under grant agreement: ImmunoSABR n◦ 733008, MSCA-ITN-PREDICT 
n◦ 766276, FETOPEN- SCANnTREAT n◦ 899549, CHAIMELEON n◦

952172, EuCanImage n◦ 952103, TRANSCAN Joint Transnational Call 
2016 (JTC2016 CLEARLY n◦ UM 2017-8295) and Interreg V-A Euregio 
Meuse-Rhine (EURADIOMICS n◦ EMR4). 

Appendix A. Supplementary data 

Supplementary material related to this article can be found, in the 
online version, at doi:https://doi.org/10.1016/j.ejrad.2021.109678. 

References 

[1] S. Cha, Update on brain tumor imaging: from anatomy to physiology, AJNR Am. J. 
Neuroradiol. (2006) 475–487. 

[2] A. Lanese, E. Franceschi, A.A. Brandes, The risk assessment in low-grade gliomas: 
an analysis of the european organization for research and treatment of Cancer 
(EORTC) and the radiation therapy oncology group (RTOG) criteria, Oncol. Ther. 6 
(2) (2018) 105–108. 

[3] E.B. Claus, K.M. Walsh, J.K. Wiencke, A.M. Molinaro, J.L. Wiemels, J. 
M. Schildkraut, M.L. Bondy, M. Berger, R. Jenkins, M. Wrensch, Survival and low- 
grade glioma: the emergence of genetic information. Neurosurgical Focus, 
American Association of Neurological Surgeons, 2015. 

[4] A. Picca, G. Berzero, M. Sanson, Current Therapeutic Approaches to Diffuse Grade 
II and III Gliomas, Therapeutic Advances in Neurological Disorders, SAGE 
PublicationsSage UK, London, England, 2018. 

[5] S. Fellah, D. Caudal, A.M. De Paula, P. Dory-Lautrec, D. Figarella-Branger, 
O. Chinot, P. Metellus, P.J. Cozzone, S. Confort-Gouny, B. Ghattas, V. Callot, 
N. Girard, Multimodal MR imaging (Diffusion, perfusion, and spectroscopy): is it 
possible to distinguish oligodendroglial tumor grade and 1p/19q codeletion in the 
pretherapeutic diagnosis? Am. J. Neuroradiol. (2013) 1326–1333. 

[6] N.L. Jansen, C. Schwartz, V. Graute, S. Eigenbrod, J. Lutz, R. Egensperger, 
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